1
|
Anedda E, Ekhlas D, Alexa E, Farrell ML, Gaffney MT, Madigan G, Morris D, Burgess CM. Characterization of antimicrobial resistant Enterobacterales isolated from spinach and soil following zinc amendment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124774. [PMID: 39178936 DOI: 10.1016/j.envpol.2024.124774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Antimicrobial resistant bacteria can occur in the primary food production environment. The emergence and dissemination of antimicrobial resistance (AMR) in the environment can be influenced by several factors, including the presence of heavy metals. The aim of this study was to examine the presence and characteristics of antimicrobial resistant Enterobacterales in soils and spinach grown in soils with and without zinc amendment. A total of 160 samples (92 soil and 68 spinach) were collected from two locations, in which some plots had been amended with zinc. Samples were cultured on selective agars for detection of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL), carbapenem-resistant Enterobacterales and ciprofloxacin-resistant Enterobacterales. Samples were also cultured for enumeration of total Enterobacterales. Isolates were identified by MALDI-TOF. Antimicrobial susceptibility testing was carried out in accordance with EUCAST and CLSI criteria. The whole genome sequence (WGS) of selected isolates was determined. Inductively coupled plasma atomic emission spectrometry was also performed on soil samples in order to measure the concentration of zinc. In total 20 antimicrobial resistant Enterobacterales were isolated from the soil (n = 8) and spinach samples (n = 12). In both sample types, Serratia fonticola (n = 16) was the dominant species, followed by Escherichia coli (n = 1), Citrobacter freundii (n = 1) and Morganella morganii (n = 1) detected in spinach samples, and Enterobacter cloacae (n = 1) detected in a soil sample. The WGS identified genes conferring resistance to different antimicrobials in agreement with the phenotypic results; 14 S. fonticola isolates were confirmed as ESBL producers and harboured the blaFONA gene. Genes that encoded for zinc resistance and multidrug efflux pumps, transporters that can target both antimicrobials and heavy metals, were also identified. Overall, the findings of this study suggest the presence of zinc did not influence the AMR Enterobacterales in soil or spinach samples.
Collapse
Affiliation(s)
- E Anedda
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - D Ekhlas
- Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland; School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - E Alexa
- Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - M L Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland
| | - M T Gaffney
- Horticultural Development Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - G Madigan
- Bacteriology/Parasitology Division, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland
| | - C M Burgess
- Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| |
Collapse
|
2
|
Aldeia C, Campos-Madueno EI, Endimiani A. Genomic insights into Leminorella grimontii and its chromosomal class A GRI β-lactamase. Eur J Clin Microbiol Infect Dis 2024; 43:1855-1860. [PMID: 38958811 PMCID: PMC11349772 DOI: 10.1007/s10096-024-04888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Leminorella grimontii strain LG-KP-E1-2-T0 was isolated from Zophobas morio larvae. It showed a susceptibility phenotype compatible with the expression of an inducible extended-spectrum β-lactamase. The presence of a chromosomal bla gene encoding for the class A GRI-1 β-lactamase was revealed by whole-genome sequencing. GRI-1 shared the highest amino acid identity with RIC-1 and OXY-type β-lactamases (76-80%). Analysis of six further publicly-available L. grimontii draft genomes deposited in NCBI revealed that blaGRI-1 was always present. Core-genome analysis indicated that LG-KP-E1-2-T0 was unique from other strains. We provided the first complete genome of L. grimontii and new insights on its chromosomal β-lactamases.
Collapse
Affiliation(s)
- Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 25, Bern, CH-3001, Switzerland
| | - Edgar I Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 25, Bern, CH-3001, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 25, Bern, CH-3001, Switzerland.
| |
Collapse
|
3
|
Guo K, Zhao Z, Yang Y, Jiang X, Xu H, Tao F, Xu Y, Liu W. Emergence of an Extensive Drug Resistant Citrobacter portucalensis Clinical Strain Harboring bla SFO-1, bla KPC-2, and bla NDM-1. Infect Drug Resist 2024; 17:2273-2283. [PMID: 38854780 PMCID: PMC11162216 DOI: 10.2147/idr.s461118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Background To explore the plasmid characteristics and transfer mechanisms of an extensive drug resistant (XDR) clinical isolate, Citrobacter portucalensis L2724hy, co-producing bla SFO-1, bla NDM-1, and bla KPC-2. Methods Species confirmation of L2724hy was achieved through 16S rRNA sequencing and Average Nucleotide Identity (ANI) analysis. Antimicrobial susceptibility testing (AST) employed the agar dilution and micro broth dilution methods. Identification of resistance genes was carried out by PCR and whole-genome sequencing (WGS). Essential resistance gene locations were verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and southern hybridization experiments. Subsequent WGS data analysis delved into drug resistance genes and plasmids. Results The confirmation of the strain L2724hy as an extensive drug-resistant Citrobacter portucalensis, resistant to almost all antibiotics tested except polymyxin B and tigecycline, was achieved through 16S rRNA sequencing, ANI analysis and AST results. WGS and subsequent analysis revealed L2724hy carrying bla SFO-1, bla NDM-1, and bla KPC-2 on plasmids of various sizes. The uncommon ESBL gene bla SFO-1 coexists with the fosA3 gene on an IncFII plasmid, featuring the genetic environment IS26-fosA3-IS26-ampR-bla SFO-1-IS26. The bla NDM-1 was found on an IncX3 plasmid, coexisting with bla SHV-12, displaying the sequence IS5-IS3000-IS3000-Tn2-bla NDM-1-ble-trpF-dsbD-cutA-gros-groL, lacking ISAa125. The bla KPC-2 is located on an unclassified plasmid, exhibiting the sequence Tn2-tnpR-ISKpn27-bla KPC-2-ISKpn6-korC. Conjugation assays confirmed the transferability of both bla NDM-1 and bla KPC-2. Conclusion We discovered the coexistence of bla SFO-1, bla NDM-1, and bla KPC-2 in C. portucalensis for the first time, delving into plasmid characteristics and transfer mechanisms. Our finding highlights the importance of vigilant monitoring of drug-resistance genes and insertion elements in uncommon strains.
Collapse
Affiliation(s)
- Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Zanzan Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ye Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Liu C, Dong N, Zhang Y, Sun Q, Huang Y, Cai C, Chen G, Zhang R. Phenotypic and genomic characteristics of clinical IMP-producing Klebsiella spp. Isolates in China. COMMUNICATIONS MEDICINE 2024; 4:25. [PMID: 38383740 PMCID: PMC10881498 DOI: 10.1038/s43856-024-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND IMP-producing Klebsiella spp. (IMPKsp) strains have spread globally, including in China. Currently, the prevalence and genomic characterization of IMPKsp is largely unknown nationwide. Here we aimed to provide a general overview of the phenotypic and genomic characteristics of IMPKsp strains. METHODS 61 IMPKsp strains were obtained from 13 provinces in China during 2016-2021. All strains were tested for their susceptibility to antimicrobial agents by the microdilution broth method and sequenced with Illumina next-generation sequencing. We performed conjugation experiments on thirteen representative strains which were also sequenced by Oxford nanopore sequencing technology to characterize blaIMP-encoding plasmids. RESULTS We find that all IMPKsp strains display multidrug-resistant (MDR) phenotypes. All strains belong to 27 different STs. ST307 emerges as a principal IMP-producing sublineage. blaIMP-4 is found to be the major isoform, followed by blaIMP-38. Seven incompatibility types of blaIMP-encoding plasmids are identified, including IncHI5 (32/61, 52.5%), IncN-IncR (10/61, 16.4%), IncFIB(K)-HI1B (7/61, 11.5%), IncN (5/61, 8.2%), IncN-IncFII (2/61, 3.3%), IncFII (1/61, 1.6%) and IncP (1/61, 1.6%). The strains carrying IncHI5 and IncN plasmids belong to diverse ST types, indicating that these two plasmids may play an important role in the transmission of blaIMP genes among Klebsiella spp. strains. CONCLUSIONS Our results highlight that multi-clonal transmission, multiple genetic environments and plasmid types play a major role in the dissemination process of blaIMP genes among Klebsiella spp. IncHI5 type plasmids have the potential to be the main vectors mediating the spread of the blaIMP genes in Klebsiella spp.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yonglu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Chang Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Tkalec V, Lindic P, Jursa T, Ivanusa Sket H, Maric L, Cimerman M, Rupnik M, Golle A. Carbapenemase and extended-spectrum beta-lactamase-producing bacteria in waters originating from a single landfill in Slovenia. FEMS Microbiol Lett 2024; 371:fnae070. [PMID: 39227167 DOI: 10.1093/femsle/fnae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024] Open
Abstract
Groundwater, rainwater, and leachate associated with a single landfill were analysed to detect extended-spectrum beta-lactamase (ESBL)-producing and carbapenemase (CP)-producing bacteria. After cultivation on three commercial selective-differential media, 240 bacterial isolates were obtained and identified by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Isolates from clinically relevant species were further genotyped by enterobacterial repetitive intergenic consensus polymerase chain reaction, and tested for antibiotic susceptibility and presence of CPs and ESBL enzymes. Two ESBL-producing isolates and two isolates producing CPs were detected in rainwater, groundwater, and leachate: Klebsiella oxytoca complex with the gene for the ESBL enzyme CTX-M-1 and the gene for the CP OXA-48, Serratia fonticola with the gene for the ESBL enzyme FONA-2, and Pseudomonas aeruginosa with the gene coding Verona integron-encoded Metallo-beta-lactamases (VIM) metallo-beta-lactamase. Our study indicates that bacteria with ESBL and CP genes can be present in landfill-associated waters.
Collapse
Affiliation(s)
- Valerija Tkalec
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Department of microbiology, 2000 Maribor, Slovenia
| | - Polona Lindic
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Tatjana Jursa
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | | | - Leon Maric
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Mojca Cimerman
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Department of microbiology, 2000 Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Qiao J, Ge H, Xu H, Guo X, Liu R, Li C, Chen R, Zheng B, Gou J. Detection of IMP-4 and SFO-1 co-producing ST51 Enterobacter hormaechei clinical isolates. Front Cell Infect Microbiol 2022; 12:998578. [PMID: 36389152 PMCID: PMC9647121 DOI: 10.3389/fcimb.2022.998578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose To explore the genetic characteristics of the IMP-4 and SFO-1 co-producing multidrug-resistant (MDR) clinical isolates, Enterobacter hormaechei YQ13422hy and YQ13530hy. Methods MALDI-TOF MS was used for species identification. Antibiotic resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms. Annotation was performed by RAST on the genome. The phylogenetic tree was achieved using kSNP3.0. Plasmid characterization was conducted using S1-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and whole genome sequencing (WGS). An in-depth study of the conjugation module was conducted using the OriTFinder website. The genetic context of bla IMP-4 and bla SFO-1 was analyzed using BLAST Ring Image Generator (BRIG) and Easyfig 2.3. Results YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei harboring bla IMP-4 and bla SFO-1, were identified. They were only sensitive to meropenem, amikacin and polymyxin B, and were resistant to cephalosporins, aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to imipenem. The genetic context surrounding bla IMP-4 was 5'CS-hin-1-IS26-IntI1-bla IMP-4-IS6100-ecoRII. The integron of bla IMP-4 is In823, which is the array of gene cassettes of 5'CS-bla IMP-4. Phylogenetic analysis demonstrated that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small clusters with a high degree of homology. Conclusion This observation revealed the dissemination of the bla IMP-4 gene in E. hormaechei in China. We found that bla IMP-4 and bla SFO-1 co-exist in MDR clinical E. hormaechei isolates. This work showed a transferable IncN-type plasmid carrying the bla IMP-4 resistance gene in E. hormaechei. We examined the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-SFO-1, along with their detailed genetic contexts.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Yeh TK, Lin HJ, Liu PY, Wang JH, Hsueh PR. Antibiotic resistance in Enterobacter hormaechei. Int J Antimicrob Agents 2022; 60:106650. [DOI: 10.1016/j.ijantimicag.2022.106650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
|
8
|
Pintor-Cora A, Álvaro-Llorente L, Otero A, Rodríguez-Calleja JM, Santos JA. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods 2021; 10:foods10112609. [PMID: 34828891 PMCID: PMC8619215 DOI: 10.3390/foods10112609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fresh vegetables are an essential part of a healthy diet, but microbial contamination of fruits and vegetables is a serious concern to human health, not only for the presence of foodborne pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9% vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11) and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even though their implication in human infections is rare, they can become an environmental reservoir of antibiotic-resistance genes that can be further disseminated along the food chain.
Collapse
|
9
|
Ai W, Zhou Y, Wang B, Zhan Q, Hu L, Xu Y, Guo Y, Wang L, Yu F, Li X. Corrigendum: First Report of Coexistence of bla SFO-1 and bla NDM-1 β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Front Microbiol 2021; 12:741628. [PMID: 34650541 PMCID: PMC8507845 DOI: 10.3389/fmicb.2021.741628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2021.676113.].
Collapse
Affiliation(s)
- Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Extended Spectrum Beta-Lactamase (ESBL) Produced by Gram-Negative Bacteria in Trinidad and Tobago. Int J Microbiol 2021; 2021:5582755. [PMID: 34475957 PMCID: PMC8408010 DOI: 10.1155/2021/5582755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Gram-negative bacterial infections are a global health problem. The production of beta-lactamase is still the most vital factor leading to beta-lactam resistance. In Trinidad and Tobago, extended spectrum beta-lactamase (ESBL) production has been detected and reported mainly in the isolates of Klebsiella pneumoniae and Escherichia coli and constitutes a public health emergency that causes high morbidity and mortality in some patients. In this literature review, the authors cover vast information on ESBL frequency and laboratory detection using both conventional and molecular methods from clinical data. The aim is to make the reader reflect on how the actual knowledge can be used for rapid detection and understanding of the spread of antimicrobial resistance problems stemming from ESBL production among common Gram-negative organisms in the health care system.
Collapse
|
11
|
Ai W, Zhou Y, Wang B, Zhan Q, Hu L, Xu Y, Guo Y, Wang L, Yu F, Li X. First Report of Coexistence of bla SFO-1 and bla NDM-1 β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Front Microbiol 2021; 12:676113. [PMID: 34220761 PMCID: PMC8252965 DOI: 10.3389/fmicb.2021.676113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (blaSFO–1, blaNDM–1, and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of blaSFO–1, blaNDM–1, and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the blaSFO–1, blaNDM–1, and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of blaSFO–1, blaNDM–1, and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes.
Collapse
Affiliation(s)
- Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Selvakumar V, Kannan K, Panneerselvam A, Suresh M, Nooruddin T, Pal K, Elkodous MA, Nada HG, El-Bastawisy HS, Tolba MM, Noureldeen A, Darwish H, Fayad E, Khairy WA, Nasser HA, El-Sayyad GS. Molecular identification of extended spectrum β-lactamases (ESBLs)-producing strains in clinical specimens from Tiruchirappalli, India. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01886-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Structural and Biochemical Characterization of the Novel CTX-M-151 Extended-Spectrum β-Lactamase and Its Inhibition by Avibactam. Antimicrob Agents Chemother 2021; 65:AAC.01757-20. [PMID: 33431411 DOI: 10.1128/aac.01757-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The diazabicyclooctane (DBO) inhibitor avibactam (AVI) reversibly inactivates most serine β-lactamases, including the CTX-M β-lactamases. Currently, more than 230 unique CTX-M members distributed in five clusters with less than 5% amino acid sequence divergence within each group have been described. Recently, a variant named CTX-M-151 was isolated from a Salmonella enterica subsp. enterica serovar Choleraesuis strain in Japan. This variant possesses a low degree of amino acid identity with the other CTX-Ms (63.2% to 69.7% with respect to the mature proteins), and thus it may represent a new subgroup within the family. CTX-M-151 hydrolyzes ceftriaxone better than ceftazidime (k cat/K m values 6,000-fold higher), as observed with CTX-Ms. CTX-M-151 is well inhibited by mechanism-based inhibitors like clavulanic acid (inactivation rate [k inact]/inhibition constant [Ki ] = 0.15 μM-1 · s-1). For AVI, the apparent inhibition constant (Ki app), 0.4 μM, was comparable to that of KPC-2; the acylation rate (k2/K) (37,000 M-1 · s-1) was lower than that for CTX-M-15, while the deacylation rate (k off) (0.0015 s-1) was 2- to 14-fold higher than those of other class A β-lactamases. The structure of the CTX-M-151/AVI complex (1.32 Å) reveals that AVI adopts a chair conformation with hydrogen bonds between the AVI carbamate and Ser70 and Ser237 at the oxyanion hole. Upon acylation, the side chain of Lys73 points toward Ser130, which is associated with the protonation of Glu166, supporting the role of Lys73 in the proton relay pathway and Glu166 as the general base in deacylation. To our knowledge, this is the first chromosomally encoded CTX-M in Salmonella Choleraesuis that shows similar hydrolytic preference toward cefotaxime (CTX) and ceftriaxone (CRO) to that toward ceftazidime (CAZ).
Collapse
|
14
|
Bergšpica I, Kaprou G, Alexa EA, Prieto M, Alvarez-Ordóñez A. Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union. Antibiotics (Basel) 2020; 9:E678. [PMID: 33036406 PMCID: PMC7600538 DOI: 10.3390/antibiotics9100678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this article is to review the fast and worldwide distribution of ESBL enzymes and to describe the role of the pork production chain as a reservoir and transmission route of ESBL-producing Escherichia coli and ESBLs in the European Union (EU). The use of β-lactam antibiotics in swine production and the prevalence of ESBL producing E. coli in fattening pigs and pork meat across Europe is analyzed. Overall, an increasing trend in the prevalence of presumptive ESBL producing E. coli in fattening pigs in the EU has been observed in the last decade, although with major differences among countries, linked to different approaches in the use of antimicrobials in pork production within the EU. Moreover, the various dissemination pathways of these bacteria along the pork production chain are described, along with factors at farm and slaughterhouse level influencing the risk of introducing or spreading ESBL producing bacteria throughout the food chain.
Collapse
Affiliation(s)
- Ieva Bergšpica
- Department of Food Hygiene and Technology, Universidad de León, 24007 León, Spain; (G.K.); (E.A.A.); (M.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia
| | - Georgia Kaprou
- Department of Food Hygiene and Technology, Universidad de León, 24007 León, Spain; (G.K.); (E.A.A.); (M.P.)
| | - Elena A. Alexa
- Department of Food Hygiene and Technology, Universidad de León, 24007 León, Spain; (G.K.); (E.A.A.); (M.P.)
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, 24007 León, Spain; (G.K.); (E.A.A.); (M.P.)
- Institute of Food Science and Technology, Universidad de León, 24007 León, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24007 León, Spain; (G.K.); (E.A.A.); (M.P.)
- Institute of Food Science and Technology, Universidad de León, 24007 León, Spain
| |
Collapse
|
15
|
Tanimoto K, Nomura T, Hashimoto Y, Hirakawa H, Watanabe H, Tomita H. Isolation of Serratia fonticola Producing FONA, a Minor Extended-Spectrum β-Lactamase (ESBL), from Imported Chicken Meat in Japan. Jpn J Infect Dis 2020; 74:79-81. [PMID: 32741928 DOI: 10.7883/yoken.jjid.2020.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Five novel strains of Serratia fonticola that produce FONA, a minor extended-spectrum beta-lactamase (ESBL), were isolated during routine surveillance of ESBL-producing Enterobacteriaceae in imported chicken meat in Japan in 2017 and 2018. These strains exhibited a clear ESBL phenotype in susceptibility tests carried out in the presence of clavulanic acid; however, all strains tested negative in a multiplex polymerase chain reaction assay used to detect TEM, SHV, and CTX-M β-lactamase genes. After identification of the bacterial species as S. fonticola, full length blaFONA genes were amplified and the DNA sequences were determined. The blaFONA genes from all 5 strains were different from those previously reported (blaFONA-1 to blaFONA-6); they clustered close to one another but were distinct from previously reported blaFONA genes in a phylogenic analysis based on amino acid sequences.
Collapse
Affiliation(s)
- Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Japan
| | - Takahiro Nomura
- Department of Bacteriology, Gunma University Graduate School of Medicine, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Japan
| | - Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Japan
| | - Haruo Watanabe
- Department of Public Health, Faculty of Medicine, International University of Health and Welfare, Japan
| | - Haruyoshi Tomita
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Japan.,Department of Bacteriology, Gunma University Graduate School of Medicine, Japan
| |
Collapse
|
16
|
Dissemination of a 'rare' extended-spectrum β-lactamase gene bla SFO-1 mediated by epidemic clones of carbapenemase-producing Enterobacter hormaechei in China. Int J Antimicrob Agents 2020; 56:106079. [PMID: 32634604 DOI: 10.1016/j.ijantimicag.2020.106079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/16/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
An increasing trend of the coexistence of a rare extended-spectrum β-lactamase gene blaSFO-1 and carbapenemase genes in Enterobacteriaceae has recently been noted. This study aimed to determine the epidemiological and genetic characterisation of SFO-1-positive carbapenem-resistant Enterobacter cloacae complex (CREC) isolates. A total of 61 CREC clinical isolates were collected in the framework of a national surveillance for carbapenem-resistant Enterobacteriaceae during 2011-2015 in China. Seven SFO-1-positive CREC isolates (11.5%) were identified in four provinces, suggesting a wide dissemination of the blaSFO-1 gene among the CREC population in China. Five SFO-1-positive CREC isolates were further identified by screening 1625 genomes of E. cloacae complex strains retrieved from GenBank. The 12 SFO-1-positive CREC isolates were further identified as Enterobacter hormaechei, of which 10 belonged to epidemic clones (ST93, ST114 and ST418), indicating that these clones might largely contribute to the dissemination of blaSFO-1. Phylogenomics analysis further identified the occurrence of clonal dissemination in the community setting. The blaSFO-1-bearing plasmids were assigned to various incompatibility groups with highly diverse sizes (~104-370 kb), suggesting a wide vector range of blaSFO-1. Two types of genetic context, with and without insertion sequence IS26, were identified for the blaSFO-1 gene. The genetic context flanked by IS26 was more prevalent, thus largely facilitating the mobility of blaSFO-1. This study revealed that the blaSFO-1 gene is not as rare as previously found and that epidemic clones of CREC are responsible for its dissemination in China. These findings highlight the potential of wide dissemination of low-prevalence antimicrobial resistance genes.
Collapse
|
17
|
Pereira R, Rabelo VWH, Sibajev A, Abreu PA, Castro HC. Class A β-lactamases and inhibitors: In silico analysis of the binding mode and the relationship with resistance. J Biotechnol 2018; 279:37-46. [PMID: 29753682 DOI: 10.1016/j.jbiotec.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 02/01/2023]
Abstract
β-lactams are one of the most common antimicrobials used to treat bacterial infections. However, bacterial resistance has compromised their efficacy, mainly due to the β-lactamase enzyme production. To overcome this resistance, β-lactamase inhibitors can be used in association with these antimicrobials. Herein, we analyzed the structural characteristics of β-lactamases and their interactions with classical inhibitors, such as clavulanic acid (CA), sulbactam (SB) and tazobactam (TZ) to gain insights into resistance. The homology models of five class A β-lactamases, namely CARB-3, IMI-1, SFO-1, SHV-5 and TEM-10, were constructed and validated and revealed an overall 3D structural conservation, but with significant differences in the electrostatic potential maps, especially at important regions in the catalytic site. Molecular dockings of CA, SB and TZ with these enzymes revealed a covalent bond with the S70 in all complexes, except Carb-3 which is in agreement with experimental data reported so far. This is likely related to the less voluminous active site of Carb-3 model. Although few specific contacts were observed in the β-lactamase-inhibitor complexes, all compounds interacted with the residues in positions 73, 130, 132, 236 and 237. Therefore, this study provides new perspectives for the design of innovative compounds with broad-spectrum inhibitory profiles against β-lactamases.
Collapse
Affiliation(s)
- Rebeca Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil
| | - Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil; Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, RJ, CEP 27965-045, Brazil
| | - Alexander Sibajev
- Centro de Ciências da Saúde - Curso de Medicina, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, RR, CEP 69304-000, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, RJ, CEP 27965-045, Brazil.
| | - Helena Carla Castro
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil.
| |
Collapse
|
18
|
ESBL-producing Escherichia coli
and Its Rapid Rise among Healthy People. Food Saf (Tokyo) 2017; 5:122-150. [PMID: 32231938 DOI: 10.14252/foodsafetyfscj.2017011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since around the 2000s, Escherichia coli (E. coli) resistant to both oxyimino-cephalosporins and fluoroquinolones has remarkably increased worldwide in clinical settings. The kind of E. coli is also identified in patients suffering from community-onset infectious diseases such as urinary tract infections. Moreover, recoveries of multi-drug resistant E. coli from the feces of healthy people have been increasingly documented in recent years, although the actual state remains uncertain. These E. coli isolates usually produce extended-spectrum β-lactamase (ESBL), as well as acquisition of amino acid substitutions in the quinolone-resistance determining regions (QRDRs) of GyrA and/or ParC, together with plasmid-mediated quinolone resistance determinants such as Qnr, AAC(6')-Ib-cr, and QepA. The actual state of ESBL-producing E. coli in hospitalized patients has been carefully investigated in many countries, while that in healthy people still remains uncertain, although high fecal carriage rates of ESBL producers in healthy people have been reported especially in Asian and South American countries. The issues regarding the ESBL producers have become very complicated and chaotic due to rapid increase of both ESBL variants and plasmids mediating ESBL genes, together with the emergence of various "epidemic strains" or "international clones" of E. coli and Klebsiella pneumoniae harboring transferable-plasmids carrying multiple antimicrobial resistance genes. Thus, the current state of ESBL producers outside hospital settings was overviewed together with the relation among those recovered from livestock, foods, pets, environments and wildlife from the viewpoint of molecular epidemiology. This mini review may contribute to better understanding about ESBL producers among people who are not familiar with the antimicrobial resistance (AMR) threatening rising globally.
Collapse
|
19
|
Zhou K, Yu W, Shen P, Lu H, Wang B, Rossen JWA, Xiao Y. A novel Tn1696-like composite transposon (Tn6404) harboring bla IMP-4 in a Klebsiella pneumoniae isolate carrying a rare ESBL gene bla SFO-1. Sci Rep 2017; 7:17321. [PMID: 29229976 PMCID: PMC5725488 DOI: 10.1038/s41598-017-17641-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Genetic determinants of a clinical Klebsiella pneumoniae isolate (KP1814) coproducing IMP-4 and a rare ESBL gene SFO-1 was investigated. KP1814 belongs to a novel sequence type (ST) assigned to ST2270. WGS identified four circular DNA sequences in KP1814, including two multidrug-resistance (MDR) plasmids, one virulence plasmid, and one circular form. The MDR plasmid pKP1814-1 (299.9 Kb) is untypeable, and carries two large mosaic multiresistance regions (MRRs). blaSFO-1 and blaIMP-4 co-exists on MRR1, and blaSFO-1 is associated with an IS/Tn-independent genetic context. blaIMP-4 is carried by a novel In804-like integron (intlI-blaIMP-4-Kl.pn.I3-qacG2-aacA4-catB3∆) associated with a novel Tn1696-like transposon (designed Tn6404) flanked by IS5075. The other MDR plasmid pKP1814-3 is a 95,701-bp IncFII plasmid, and is a hybrid of a Shigella flexneri plasmid pSF07201 and an E. coli plasmid pCA08. All resistance genes of pKP1814-3 were detected in a ~16-kb IS26-flanked composite transposon carried by a Tn5396 transposon. The circular form (18.3 Kb) was composed of two parts belonging to pKP1814-1 and pKP1814-3, respectively. The plasmid pKP1814-2, carrying multiple virulence factors, encodes IncFIBK and IncFIIK replicons with a size of 187,349 bp. The coexistence of MDR and virulence plasmids largely enhances the bacterial fitness in the host and environment.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China.,Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Chromosome-Encoded Broad-Spectrum Ambler Class A β-Lactamase RUB-1 from Serratia rubidaea. Antimicrob Agents Chemother 2016; 61:AAC.01908-16. [PMID: 27956418 DOI: 10.1128/aac.01908-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/27/2016] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing of Serratia rubidaea CIP 103234T revealed a chromosomally located Ambler class A β-lactamase gene. The gene was cloned, and the β-lactamase, RUB-1, was characterized. RUB-1 displayed 74% and 73% amino acid sequence identity with the GIL-1 and TEM-1 penicillinases, respectively, and its substrate profile was similar to that of the latter β-lactamases. Analysis by 5' rapid amplification of cDNA ends revealed promoter sequences highly divergent from the Escherichia coli σ70 consensus sequence. This work further illustrates the heterogeneity of β-lactamases among Serratia spp.
Collapse
|
21
|
Sun F, Zhou D, Sun Q, Luo W, Tong Y, Zhang D, Wang Q, Feng W, Chen W, Fan Y, Xia P. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep 2016; 6:33982. [PMID: 27658354 PMCID: PMC5034289 DOI: 10.1038/srep33982] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 02/04/2023] Open
Abstract
We previously reported the complete sequence of the resistance plasmid pP10164-NDM, harboring blaNDM (conferring carbapenem resistance) and bleMBL (conferring bleomycin resistance), which is recovered from a clinical Leclercia adecarboxylata isolate P10164 from China. This follow-up work disclosed that there were still two multidrug-resistant (MDR) plasmids pP10164-2 and pP10164-3 coexisting in this strain. pP10164-2 and pP10164-3 were completely sequenced and shown to carry a wealth of resistance genes, which encoded the resistance to at least 10 classes of antibiotics (β-lactams. macrolides, quinolones, aminoglycosides, tetracyclines, amphenicols, quaternary ammonium compounds, sulphonamides, trimethoprim, and rifampicin) and 7 kinds of heavy mental (mercury, silver, copper, nickel, chromate, arsenic, and tellurium). All of these antibiotic resistance genes are associated with mobile elements such as transposons, integrons, and insertion sequence-based transposable units, constituting a total of three novel MDR regions, two in pP10164-2 and the other one in pP10164-3. Coexistence of three resistance plasmids pP10164-NDM, pP10164-2 and pP10164-3 makes L. adecarboxylata P10164 tend to become extensively drug-resistant.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou 121013, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yahan Fan
- Transfusion Department, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
22
|
A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016; 29:29-57. [PMID: 26511485 DOI: 10.1128/cmr.00019-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data.
Collapse
|
23
|
Multidrug-resistant phenotype and isolation of a novel SHV- beta-Lactamase variant in a clinical isolate of Enterobacter cloacae. J Biomed Sci 2015; 22:27. [PMID: 25888770 PMCID: PMC4407307 DOI: 10.1186/s12929-015-0131-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/25/2015] [Indexed: 11/21/2022] Open
Abstract
Background ESBL-producing bacteria are a clinical problem in the management of diseases caused by these pathogens. Worldwide, systemic infections with BL enzymes are evolving by mutations from classical bla genes in an intensified manner and they continue to be transferred across species. Results E.cloacae BF1417 isolate and its transconjugants gave positive results with the DDST, suggesting the presence of ESBL. Sequence analysis revealed a blaSHV-ESBL-type gene that differs from the gene encoding SHV-1 by five point mutations resulting in three amino acid substitutions in the coding region: C123R, I282T and L286P. This novel SHV-type enzyme was designated SHV-128. The conjugation tests and plasmid characterization showed that the blaSHV-128 is located on a conjugative plasmid IncFII type. Expression studies demonstrated that the above mutations participated in drug resistance, hydrolysis of extended spectrum β-lactam and the change of the isoelectric point of the protein. Conclusion These findings underscore the diversity by which antibiotic resistance can arise and the evolutionary potential of the clinically important ESBL enzymes. In addition, this study highlights the need for systematic surveillance of ESBL-mediated resistance as well as in clinical areas and communities.
Collapse
|
24
|
Zhao JY, Zhu YQ, Li YN, Mu XD, You LP, Xu C, Qin P, Ma JL. Coexistence of SFO-1 and NDM-1 β-lactamase genes and fosfomycin resistance gene fosA3 in an Escherichia coli clinical isolate. FEMS Microbiol Lett 2014; 362:1-7. [PMID: 25790496 DOI: 10.1093/femsle/fnu018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aims to characterize antimicrobial resistance and antimicrobial resistance genetic determinants of an Escherichia coli clinical isolate HD0149 from China in 2012. This strain displayed high-level resistance to cephalosporins, carbapenems, fluoroquinolones, aminoglycosides and fosfomycin. A range of antimicrobial resistance genes was detected responsible for its multiple antimicrobial resistances, involving the blaCMY-2, blaCTX-M-65, blaNDM-1, blaSFO-1, blaTEM-1, fosA3, rmtB, sul1 and sul2 genes. Four amino acid substitutions were detected in the quinolone resistance-determining regions (QRDRs) of GyrA (S83L and D87N), ParC (S80I) and ParE (S458A). Conjugation experiments revealed two multiresistance plasmids present in E. coli HD0149. The blaSFO-1 gene associated with blaNDM-1 gene was located in a 190 kb IncA/C plasmid and the blaCTX-M-65, fosA3 and rmtB genes were located in a 110 kb IncF plasmid. This is the first identification of the blaSFO-1 gene in an E. coli isolate and on a conjugative IncA/C plasmid. This may dramatically enhance the international prevalence and dissemination of blaSFO-1 among Enterobacteriaceae.
Collapse
Affiliation(s)
- Jing-yi Zhao
- Center for Bioengineering and Biotechnology and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yuan-qi Zhu
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Yan-nian Li
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Xiao-dong Mu
- Center for Bioengineering and Biotechnology and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Li-ping You
- Medical College, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Cha Xu
- Medical College, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Ping Qin
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Jin-long Ma
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| |
Collapse
|
25
|
De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK, Birch PRJ, Coutinho TA. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics 2014; 15:404. [PMID: 24884520 PMCID: PMC4070556 DOI: 10.1186/1471-2164-15-404] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. Results The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. Conclusions P. ananatis has an ‘open’ pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-404) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0002, South Africa.
| | | | | | | | | | | | | |
Collapse
|
26
|
Belmar Campos C, Fenner I, Wiese N, Lensing C, Christner M, Rohde H, Aepfelbacher M, Fenner T, Hentschke M. Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. Int J Med Microbiol 2014; 304:678-84. [PMID: 24856867 DOI: 10.1016/j.ijmm.2014.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022] Open
Abstract
Chicken meat has been proposed to constitute a source for extended spectrum beta-lactamase (ESBL)-carrying Enterobacteriaceae that colonize and infect humans. In this study the prevalence of ESBL-producing Enterobacteriaceae in stool samples from ambulatory patients who presented in the emergency department of the University Medical Centre Hamburg-Eppendorf with gastrointestinal complains and in chicken meat samples from the Hamburg region were analysed and compared with respect to ESBL-genotypes, sequence types and antibiotic resistance profiles. Twenty-nine (4.1%) of 707 stool samples and 72 (60%) of 120 chicken meat samples were positive for ESBL-producing Enterobacteriaceae. The distribution of ESBL genes in the stool vs. chicken meat isolates (given as % of total isolates from stool vs. chicken meat) was as follows: CTX-M-15 (38% vs. 0%), CTX-M-14 (17% vs. 6%), CTX-M-1 (17% vs. 69%), SHV-12 (3% vs. 18%) and TEM-52 (3% each). Comparison of ESBL- and multilocus sequence type revealed no correlation between isolates of human and chicken. Furthermore, ESBL-producing E. coli from stool samples were significantly more resistant to fluoroquinolones, aminoglycosides and/or trimethoprim-sulfamethoxazole than chicken isolates. The differences in ESBL-genotypes, sequence types and antibiotic resistance patterns indicate that in our clinical setting chicken meat is not a major contributor to human colonization with ESBL-carrying Enterobacteriaceae.
Collapse
Affiliation(s)
- Cristina Belmar Campos
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Ines Fenner
- Fen-Lab GmbH, Bergstrasse 14, 20095 Hamburg, Germany
| | - Nicole Wiese
- Fen-Lab GmbH, Bergstrasse 14, 20095 Hamburg, Germany
| | | | - Martin Christner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Fenner
- Fen-Lab GmbH, Bergstrasse 14, 20095 Hamburg, Germany
| | - Moritz Hentschke
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
27
|
Molecular typing and characterization of TEM, SHV, CTX-M, and CMY-2 β-lactamases in Enterobacter cloacae strains isolated in patients and their hospital environment in the west of Algeria. Med Mal Infect 2014; 44:146-52. [PMID: 24731757 DOI: 10.1016/j.medmal.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/27/2013] [Accepted: 01/15/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Enterobacter cloacae is a major nosocomial bacterium causing severe infections. A multicenter retrospective cohort study was conducted to collect baseline information on the molecular characteristics of β-lactamase producing Enterobacter cloacae in the west of Algeria. MATERIALS AND METHODS We report a series of 42 extended-spectrum β-lactamase (ESBL) producing non-repetitive Enterobacter cloacae strains, collected in 3 university hospital (Tlemcen, Oran, and Sidi Bel Abbes). Antibiotic susceptibility testing (antibiogram and MIC) and screening for ESBL were performed according to the French Society for Microbiology guidelines. PFGE typing was used to characterize the clonality of all the strains. β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaECB, and blaCMY-2) were amplified by PCR with specific primers. Plasmid isolation, electroporation, and conjugation experiments were carried out using standard methods. RESULTS Sequence analysis revealed that most strains produced CTX-M type ESBLs (CTX-M-15 and CTX-M-3), whereas only 5 produced SHV-type ESBLs (SHV-12). The blaTEM gene was identified in all strains of Enterobacter cloacae. Several epidemic clones were determined. One strain was found to produce plasmid-mediated AmpC β-lactamase (CMY-2); this gene was transferred from E. cloacae by electroporation. Conjugation experiments showed that blaCTX-M, blaTEM, and blaSHV were carried by conjugative plasmids of high molecular weight (≥70kb). CONCLUSION The emergence of resistance genes is a public health problem.
Collapse
|
28
|
Extended spectrum ß-lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. Int J Food Microbiol 2013; 168-169:8-16. [PMID: 24211774 DOI: 10.1016/j.ijfoodmicro.2013.10.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/02/2013] [Accepted: 10/10/2013] [Indexed: 02/01/2023]
Abstract
The attribution of fresh produce to the overall community-associated exposure of humans to ESBL- or AmpC-producing bacteria is currently unknown. To address this issue, the prevalence of ESBL- and AmpC-producing Enterobacteriaceae on fresh produce produced in the Netherlands was determined. Seven vegetable types that are consumed raw were selected: blanched celery, bunched carrots, chicory, endive, iceberg lettuce, mushrooms, and radish. The vegetables were mostly obtained from supermarkets. To determine whether the agricultural environment is the source of ESBL-producing Enterobacteriaceae on fresh produce, iceberg lettuce was also obtained directly from three farms, in conjunction with soil and irrigation water. ESBL-producing Enterobacteriaceae isolated from vegetables and environment were all environmental species: Rahnella aquatilis (n = 119), Serratia fonticola (n = 45) and Pantoea agglomerans (n = 1). ESBL genes of R. aquatilis and S. fonticola were identified as blaRAHN-1 and blaRAHN-2 and blaFONA-1, blaFONA-2, blaFONA-3/6 and blaFONA-5, respectively. For R. aquatilis and S. fonticola, different prevalence numbers were observed using different isolation methods, which could at least partially be explained by an inverse correlation between the level of cefotaxime resistance of these species and incubation temperature. R. aquatilis was isolated from 0 to 46% of soil samples and 11 to 83% of vegetable samples, and S. fonticola from 2 to 60% of soil samples and 0 to 1.3% of vegetable samples. Third generation cephalosporin-resistant faecal Enterobacteriaceae were isolated from 2.7%, 1.3% and 1.1% of supermarket vegetables, iceberg lettuce from farms, and agricultural soil respectively. Faecal Enterobacteriaceae were all identified as Citrobacter and Enterobacter species and, with the exception of one Citrobacter koseri strain, all had phenotypes indicative of constitutive AmpC production. Comparison of fresh produce and its agricultural environment indicates that the Enterobacteriaceae population on fresh produce reflects that of the soil it is grown in. Public health risks associated with exposure to ESBL- and AmpC-producing bacteria through consumption of uncooked fresh produce are diverse. They range from occasional ingestion of 3GC-resistant opportunistic pathogens which may result in difficult-to-treat infections, to frequent ingestion of relatively harmless ESBL-producing environmental bacteria that may therewith constitute a continuously replenished intestinal reservoir facilitating dissemination of ESBL genes to (opportunistic) pathogens.
Collapse
|
29
|
Abstract
β-Lactamases can be named on the basis of molecular characteristics or functional properties. Molecular classes A, B, C, and D define an enzyme according to amino acid sequence and conserved motifs. Functional groups 1, 2, and 3 are used to assign a clinically useful description to a family of enzymes, with subgroups designated according to substrate and inhibitor profiles. In addition, other designations are used to define the functionality of specific subgroups, such as extended-spectrum β-lactamases, or ESBLs, and inhibitor-resistant TEM, or IRT, β-lactamases. None of these systems provides an unambiguous description of this versatile set of enzymes. A proposed classification system involving microbiological, molecular, and biochemical properties is described, based on the traditional classes A, B, C, and D and functional groups 1, 2, and 3 designations.
Collapse
Affiliation(s)
- Karen Bush
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Simon Hall 102B, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
| |
Collapse
|
30
|
Lartigue MF, Nordmann P, Edelstein MV, Cuzon G, Brisse S, Poirel L. Characterization of an extended-spectrum class A β-lactamase from a novel enterobacterial species taxonomically related to Rahnella spp./Ewingella spp. J Antimicrob Chemother 2013; 68:1733-6. [PMID: 23580557 DOI: 10.1093/jac/dkt122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the naturally occurring β-lactamase gene identified from a clinical isolate belonging to a novel enterobacterial species that is closely related to Rahnella spp. and Ewingella spp. METHODS Shotgun cloning and expression in Escherichia coli were performed in order to characterize this resistance determinant. Enzymatic activities were measured by UV spectrophotometry after an ion-exchange chromatography purification procedure. RESULTS A chromosomal gene coding for the extended-spectrum β-lactamase (ESBL) SMO-1 was identified from a novel enterobacterial species that is taxonomically related to Rahnella aquatilis and Ewingella americana. The β-lactamase efficiently hydrolysed penicillins and cefotaxime, and shared 75% amino acid identity with the plasmid-mediated β-lactamase SFO-1 from Serratia fonticola, 74% amino acid identity with the plasmid-mediated ESBL CTX-M-2 originating from Kluyvera spp. and 72% amino acid identity with the chromosomally encoded and intrinsic RAHN-1 from R. aquatilis. CONCLUSIONS We have identified a novel enterobacterial species recovered from a clinical specimen, constituting another potential source of acquired ESBL. The ESBL shared significant similarities with the CTX-M-type enzymes.
Collapse
Affiliation(s)
- Marie-Frédérique Lartigue
- INSERM U914 "Emerging Resistance to Antibiotics", Faculté de Médecine et Université Paris Sud, 94275 K.-Bicêtre, France.
| | | | | | | | | | | |
Collapse
|
31
|
Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. INFECTION GENETICS AND EVOLUTION 2012; 12:883-93. [DOI: 10.1016/j.meegid.2012.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 02/01/2023]
|
32
|
Chromosome-encoded extended-spectrum class A β-lactamase MIN-1 from Minibacterium massiliensis. Antimicrob Agents Chemother 2012; 56:4009-12. [PMID: 22526320 DOI: 10.1128/aac.06401-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minibacterium massiliensis strain CIP107820 is a recently discovered waterborne Gram-negative rod isolated from hospital water samples. It harbors a chromosomally located gene encoding an Ambler class A extended-spectrum β-lactamase termed MIN-1, sharing 56%, 54%, and 51% amino acid identities with β-lactamases LUT-1, KPC-2, and CTX-M-2, respectively. β-Lactamase MIN-1 hydrolyzes penicillins, narrow-spectrum cephalosporins, cefotaxime, and, less efficiently, cefepime, while ceftazidime and carbapenems are very poor substrates, and cephamycins and aztreonam are not hydrolyzed.
Collapse
|
33
|
Expression of OXA-type and SFO-1 β-lactamases induces changes in peptidoglycan composition and affects bacterial fitness. Antimicrob Agents Chemother 2012; 56:1877-84. [PMID: 22290977 DOI: 10.1128/aac.05402-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
β-Lactamases and penicillin-binding proteins (PBPs) have evolved from a common ancestor. β-Lactamases are enzymes that degrade β-lactam antibiotics, whereas PBPs are involved in the synthesis and processing of peptidoglycan, which forms an elastic network in the bacterial cell wall. This study analyzed the interaction between β-lactamases and peptidoglycan and the impact on fitness and biofilm production. A representative set of all classes of β-lactamases was cloned in the expression vector pBGS18 under the control of the CTX-M promoter and expressed in Escherichia coli MG1655. The peptidoglycan composition of all clones was evaluated, and quantitative changes were found in E. coli strains expressing OXA-24, OXA-10-like, and SFO-1 (with its upstream regulator AmpR) β-lactamases; the level of cross-linked muropeptides decreased, and their average length increased. These changes were associated with a statistically significant fitness cost, which was demonstrated in both in vitro and in vivo experiments. The observed changes in peptidoglycan may be explained by the presence of residual DD-endopeptidase activity in these β-lactamases, which may result in hydrolysis of the peptide cross bridge. The biological cost associated with these changes provides important data regarding the interaction between β-lactamases and the metabolism of peptidoglycan and may provide an explanation for the epidemiology of these β-lactamases in Enterobacteriaceae.
Collapse
|
34
|
[Enterobacteriaceae and beta-lactams : wild susceptibility patterns]. ACTA ACUST UNITED AC 2012; 60:112-26. [PMID: 22280847 DOI: 10.1016/j.patbio.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
Four susceptibility patterns of wild types of enterobacteria against old beta-lactams including aminopenicillins, carboxypenicillins and first-generation cephalosporins were individualized during the 1980s : susceptible, penicillinase low level, cephalosporinase and a combination of penicillinase and cephalosporinase. Such indirect detection of a mechanism of resistance allowed an interpretative reading for this class of antibiotics. At the present time, seven susceptibility patterns were proposed for this family of gram negative bacilli. Nevertheless, an analysis of results in terms of MICs and diameters of inhibition zone sizes of the main bacterial species of enterobacteria, mainly obtained from the databank of European Committee on Antimicrobial Susceptibility Testing (EUCAST), compared to that observed when overproducing strains were isolated in vivo and in vitro and to the type of beta-lactamase identified and their amino acid sequences conducted to a proposal of five susceptibility patterns. The fifth wild type individualized in several enterobacteria since 2005 is related to the synthesis of various chromosomal extended-spectrum beta-lactamases (ESBL) which hydrolyze many beta-lactams including oxyimino-cephalosporins such as ceftriaxone or cefotaxime. Their expression in a wild strain is characteristic and conducted to our interest for their role as progenitors of the transferable CTM-M types. Otherwise, a medical biologist must consider the possibility of selection of a mutant with a chromosomal overproduced beta-lactamase. But within the same beta-lactam susceptibility pattern such as for Klebsiella pneumoniae and K. oxytoca or Citrobacter amalonaticus, the spectrum of inactivation will be highly variable according to the type of enzyme overproduced. Finally, a nice synergy observed between clavulanic acid and cefotaxime or ceftriaxone or even aztreonam does not mean anytime a transferable ESBL. In some cases according to the result of enterobacterial identification, the epidemiological impact will be very low, because without multidrug resistance (MDR).
Collapse
|
35
|
Bourouis A, Dubois V, Coulange L, André C, Bejhadj C, Ben Moussa M, Quentin C, Belhadj O. First report of CTX-M-9 in a clinical isolate of Enterobacter cloacae in a Tunisian hospital. ACTA ACUST UNITED AC 2011; 59:187-91. [DOI: 10.1016/j.patbio.2009.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
36
|
Emergence in Spain of a multidrug-resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum beta-lactamase. J Clin Microbiol 2011; 49:822-8. [PMID: 21227991 DOI: 10.1128/jcm.01872-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between February 2006 and October 2009, 38 patients in different wards at the A Coruña University Hospital (northwest Spain) were either infected with or colonized by an epidemic, multidrug-resistant (MDR), and extended-spectrum-β-lactamase (ESBL)-producing strain of Enterobacter cloacae (EbSF), which was susceptible only to carbapenems. Semiautomated repetitive extragenic palindromic sequence-based PCR (rep-PCR) and pulsed-field gel electrophoresis (PFGE) analysis revealed that all of the E. cloacae isolates belonged to the same clone. Cloning and sequencing enabled the detection of the SFO-1 ESBL in the epidemic strain and the description of its genetic environment. The presence of the ampR gene was detected upstream of bla(SFO-1), and two complete sequences of IS26 surrounding ampR and ampA were detected. These IS26 sequences are bordered by complete left and right inverted repeats (IRL and IRR, respectively), which suggested that they were functional. The whole segment flanked by two IS26 copies may be considered a putative large composite transposon. A gene coding for aminoglycoside acetyltransferase (gentamicin resistance gene [aac3]) was found downstream of the 3' IS26. Despite the implementation of strict infection control measures, strain EbSF spread through different areas of the hospital. A case-control study was performed to assess risk factors for EbSF acquisition. A multivariate analysis revealed that the prior administration of β-lactam antibiotics, chronic renal failure, tracheostomy, and prior hospitalization were statistically associated with SFO-1-producing E. cloacae acquisition. This study describes for the first time an outbreak in which an SFO-1-producing E. cloacae strain was involved. Note that so far, this β-lactamase has previously been isolated in only a single case of E. cloacae infection in Japan.
Collapse
|
37
|
Abstract
Extended-spectrum β-lactamases (ESBLs) are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that are posing a major therapeutic challenge today in the treatment of hospitalized and community-based patients. Infections due to ESBL producers range from uncomplicated urinary tract infections to life-threatening sepsis. Derived from the older TEM is derived from Temoniera, a patient from whom the strain was first isolated in Greece. β-lactamases, these enzymes share the ability to hydrolyze third-generation cephalosporins and aztreonam and yet are inhibited by clavulanic acid. In addition, ESBL-producing organisms exhibit co-resistance to many other classes of antibiotics, resulting in limitation of therapeutic option. Because of inoculum effect and substrate specificity, their detection is also a major challenge. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in Klebsiella pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. In common to all ESBL-detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic-resistance mechanisms in the face of the introduction of new antimicrobial agents. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation to reduce further selection and spread of these increasingly resistant pathogens.
Collapse
Affiliation(s)
- Deepti Rawat
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Deepthi Nair
- Department of Microbiology, Vardhaman Mahavir Medical College & Safdarjang Hospital, New Delhi, India
| |
Collapse
|
38
|
Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, Coque TM. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008; 14 Suppl 1:144-53. [PMID: 18154538 DOI: 10.1111/j.1469-0691.2007.01850.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extended-spectrum beta-lactamases (ESBLs) represent a major threat among resistant bacterial isolates. The first types described were derivatives of the TEM-1, TEM-2 and SHV-1 enzymes during the 1980s in Europe, mainly in Klebsiella pneumoniae associated with nosocomial outbreaks. Nowadays, they are mostly found among Escherichia coli isolates in community-acquired infections, with an increasing occurrence of CTX-M enzymes. The prevalence of ESBLs in Europe is higher than in the USA but lower than in Asia and South America. However, important differences among European countries have been observed. Spread of mobile genetic elements, mainly epidemic plasmids, and the dispersion of specific clones have been responsible for the increase in ESBL-producing isolates, such as those with TEM-4, TEM-24, TEM-52, SHV-12, CTX-M-9, CTX-M-14, CTX-M-3, CTX-M-15 and CTX-M-32 enzymes.
Collapse
Affiliation(s)
- R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Extended-spectrum beta-lactamases (ESBLs) are usually plasmid-mediated enzymes that confer resistance to a broad range of beta-lactams. Initially, resistance to third-generation cephalosporins in Gram-negative rods was mainly due to the dissemination of TEM- and SHV-type ESBLs, which are point mutants of the classic TEM and SHV enzymes with extended substrate specificity. During the last ten years, CTX-M-type ESBLs have become increasingly predominant, but less frequent class A beta-lactamases have also been described, including SFO, BES, BEL, TLA, GES, PER and VEB types. While several of these latter are rarely identified, or are very localised, others are becoming locally prevalent, or are increasingly isolated worldwide. In addition, mutations can extend the spectrum of some OXA-type beta-lactamases to include expanded-spectrum cephalosporins, and several of these enzymes are considered to be ESBLs.
Collapse
Affiliation(s)
- T Naas
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, Université Paris XI, 94275 K.-Bicêtre, France.
| | | | | |
Collapse
|
40
|
|
41
|
Su LH, Chu C, Cloeckaert A, Chiu CH. An epidemic of plasmids? Dissemination of extended-spectrum cephalosporinases among Salmonella and other Enterobacteriaceae. ACTA ACUST UNITED AC 2007; 52:155-68. [PMID: 18093140 DOI: 10.1111/j.1574-695x.2007.00360.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTX-M- and AmpC-type beta-lactamases comprise the two most rapidly growing populations among the extended-spectrum cephalosporinases. The evolution and dissemination of resistance genes encoding these enzymes occur mostly through the transmission of plasmids. The high prevalence of clinical isolates of Enterobacteriaceae producing the plasmid-mediated extended-spectrum cephalosporinases resembles an epidemic of plasmids, and has generated serious therapeutic problems. This review describes the emergence and worldwide spread of various classes of plasmid-mediated extended-spectrum cephalosporinases in Salmonella and other Enterobacteriaceae, the transfer mechanism of the plasmids, detection methods, and therapeutic choices.
Collapse
Affiliation(s)
- Lin-Hui Su
- Department of Clinical Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
42
|
|
43
|
Girlich D, Poirel L, Schlüter A, Nordmann P. TLA-2, a novel Ambler class A expanded-spectrum beta-lactamase. Antimicrob Agents Chemother 2006; 49:4767-70. [PMID: 16251326 PMCID: PMC1280146 DOI: 10.1128/aac.49.11.4767-4770.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-lactamase TLA-2 is encoded by a 47-kb plasmid isolated from an unidentified bacterial strain from a wastewater treatment plant. TLA-2 is an Ambler class A beta-lactamase that shares 52% amino acid identity with CGA-1 from Chryseobacterium gleum and 51% with TLA-1 from Escherichia coli. The enzyme hydrolyzes mostly cephalosporins.
Collapse
Affiliation(s)
- Delphine Girlich
- Service de Bactériologie-Virologie, Université Paris XI, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
44
|
Abstract
Extended-spectrum beta-lactamases (ESBLs) are a rapidly evolving group of beta-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these beta-lactamases. This extends the spectrum of beta-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli. In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
Collapse
Affiliation(s)
- David L Paterson
- Infectious Disease Division, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
45
|
Ishii Y, Alba J, Kimura S, Shiroto K, Yamaguchi K. Evaluation of antimicrobial activity of beta-lactam antibiotics using Etest against clinical isolates from 60 medical centres in Japan. Int J Antimicrob Agents 2005; 25:296-301. [PMID: 15784308 DOI: 10.1016/j.ijantimicag.2004.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
An antimicrobial resistance surveillance study was carried out in 60 medical centres across Japan. Resistance to piperacillin was 10.8% in clinical isolates of Escherichia coli, while 1.3% or fewer isolates were resistant to other beta-lactams. Klebsiella spp. were more susceptible to imipenem, cefepime and cefpirome. Isolates of Enterobacter spp., Citrobacter spp., indole-positive Proteus and Serratia spp. were susceptible to imipenem, cefepime and cefpirome, while Acinetobacter spp. were most susceptible to cefoperazone/sulbactam, imipenem, ceftazidime (5.8% resistance) and cefepime (7.6%). Isolates of Pseudomonas aeruginosa were more susceptible to ceftazidime (12.3% resistance), cefoperazone/sulbactam (12.5%) and cefepime (12.6%) than to piperacillin (15.0%), cefpirome (22.6%) and imipenem (30.8%). The percentage of Japanese imipenem resistant P. aeruginosa clinical isolates was around 30%.
Collapse
Affiliation(s)
- Yoshikazu Ishii
- Department of Microbiology, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 1438540 Tokyo, Japan.
| | | | | | | | | |
Collapse
|
46
|
Schlesinger J, Navon-Venezia S, Chmelnitsky I, Hammer-Münz O, Leavitt A, Gold HS, Schwaber MJ, Carmeli Y. Extended-spectrum beta-lactamases among Enterobacter isolates obtained in Tel Aviv, Israel. Antimicrob Agents Chemother 2005; 49:1150-6. [PMID: 15728917 PMCID: PMC549242 DOI: 10.1128/aac.49.3.1150-1156.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extended-spectrum beta-lactamase (ESBL)-producing phenotype is frequent among Enterobacter isolates at the Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. We examined the clonal relatedness and characterized the ESBLs of a collection of these strains. Clonal relatedness was determined by pulsed-field gel electrophoresis. Isoelectric focusing (IEF) and transconjugation experiments were performed. ESBL gene families were screened by colony hybridization and PCR for bla(TEM), bla(SHV), bla(CTX-M), bla(IBC), bla(PER), bla(OXA), bla(VEB), and bla(SFO); and the PCR products were sequenced. The 17 Enterobacter isolates studied comprised 15 distinct genotypes. All isolates showed at least one IEF band (range, one to five bands) whose appearance was suppressed by addition of clavulanate; pIs ranged from 5.4 to > or = 8.2. Colony hybridization identified at least one family of beta-lactamase genes in 11 isolates: 10 harbored bla(TEM) and 9 harbored bla(SHV). PCR screening and sequence analysis of the PCR products for bla(TEM), bla(SHV), and bla(CTX-M) identified TEM-1 in 11 isolates, SHV-12 in 7 isolates, SHV-1 in 1 isolate, a CTX-M-2-like gene in 2 isolates, and CTX-M-26 in 1 isolate. In transconjugation experiments with four isolates harboring bla(TEM-1) and bla(SHV-12), both genes were simultaneously transferred to the recipient strain Escherichia coli HB101. Plasmid mapping, PCR, and Southern analysis with TEM- and SHV-specific probes demonstrated that a single transferred plasmid carried both the TEM-1 and the SHV-12 genes. The widespread presence of ESBLs among Enterobacter isolates in Tel Aviv is likely due not to clonal spread but, rather, to plasmid-mediated transfer, at times simultaneously, of genes encoding several types of enzymes. The dominant ESBL identified was SHV-12.
Collapse
Affiliation(s)
- Jacob Schlesinger
- Division of Epidemiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 64239, Israel
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- George A Jacoby
- Department of Infectious Diseases, Lahey Clinic, Burlington, Mass 01805, USA.
| | | |
Collapse
|
48
|
Shah AA, Hasan F, Ahmed S, Hameed A. Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum beta-lactamases. Res Microbiol 2004; 155:409-21. [PMID: 15249058 DOI: 10.1016/j.resmic.2004.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 02/18/2004] [Indexed: 11/19/2022]
Abstract
Beta-lactam antimicrobial agents represent the most common treatment for bacterial infections and continue to be the leading cause of resistance to beta-lactam antibiotics among Gram-negative bacteria worldwide. The persistent exposure of bacterial strains to a multitude of beta-lactams has induced dynamic and continuous production and mutation of beta-lactamases in these bacteria, expanding their activity even against the newly developed beta-lactam antibiotics. These enzymes are known as extended-spectrum beta-lactamases (ESBLs). The majority of ESBLs are derived from the widespread broad-spectrum beta-lactamases TEM-1 and SHV-1. There are also new families of ESBLs, including the CTX-M and OXA-type enzymes as well as novel unrelated beta-lactamases. In recent years, there has been an increased incidence and prevalence of ESBLs. ESBLs are mainly found in strains of Escherichia coli and Klebsiella pneumoniae but have also been reported in other Enterobacteriaceae strains and Pseudomonas aeruginosa. Infections with ESBL-producing bacterial strains are encountered singly or in outbreaks, especially in critical care units in hospitals, resulting in increasing cost of treatment and prolonged hospital stays. Not only may nursing home patients be an important reservoir of ESBL-containing multiple antibiotic-resistant organisms, but ambulatory patients with chronic conditions may also harbor ESBL-producing organisms.
Collapse
Affiliation(s)
- Aamer Ali Shah
- Microbiology Research Laboratory, Department of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | | | | | | |
Collapse
|
49
|
Henriques I, Moura A, Alves A, Saavedra MJ, Correia A. Molecular characterization of a carbapenem-hydrolyzing class A beta-lactamase, SFC-1, from Serratia fonticola UTAD54. Antimicrob Agents Chemother 2004; 48:2321-4. [PMID: 15155245 PMCID: PMC415594 DOI: 10.1128/aac.48.6.2321-2324.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An environmental isolate of Serratia fonticola resistant to carbapenems contains a gene encoding a class A beta-lactamase with carbapenemase activity. The enzyme was designated SFC-1. The bla(SFC-I) gene is contained in the chromosome of S. fonticola UTAD54 and is absent from other S. fonticola strains.
Collapse
Affiliation(s)
- Isabel Henriques
- Center for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
50
|
Wachino JI, Doi Y, Yamane K, Shibata N, Yagi T, Kubota T, Ito H, Arakawa Y. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class a beta-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob Agents Chemother 2004; 48:1960-7. [PMID: 15155185 PMCID: PMC415581 DOI: 10.1128/aac.48.6.1960-1967.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae strain KG525, which showed high-level resistance to broad-spectrum cephalosporins, was isolated from the neonatal intensive care unit (NICU) of a Japanese hospital in March 2002. The ceftazidime resistance of strain KG525 was transferable to Escherichia coli CSH-2 by conjugation. Cloning and sequence analysis revealed that production of a novel extended-spectrum class A beta-lactamase (pI 7.0), designated GES-3, which had two amino acid substitutions of M62T and E104K on the basis of the sequence of GES-1, was responsible for resistance in strain KG525 and its transconjugant. The bla(GES-3) gene was located as the first gene cassette in a class 1 integron that also contained an aacA1-orfG fused gene cassette and one unique cassette that has not been described in other class 1 integrons and ended with a truncated 3' conserved segment by insertion of IS26. Another five ceftazidime-resistant K. pneumoniae strains, strains KG914, KG1116, KG545, KG502, and KG827, which were isolated from different neonates during a 1-year period in the same NICU where strain KG525 had been isolated, were also positive for GES-type beta-lactamase genes by PCR. Pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus-PCR analyses displayed genetic relatedness among the six K. pneumoniae strains. Southern hybridization analysis with a GES-type beta-lactamase gene-specific probe showed that the locations of bla(GES) were multiple and diverse among the six strains. These findings suggest that within the NICU setting genetically related K. pneumoniae strains carrying the bla(GES) gene were ambushed with genetic rearrangements that caused the multiplication and translocation of the bla(GES) gene.
Collapse
Affiliation(s)
- Jun-ichi Wachino
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | |
Collapse
|