1
|
Yang J, Zhan Z, Li X, Hu M, Zhu Y, Xiao Y, Xu X. Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing. Mater Today Bio 2024; 27:101120. [PMID: 38975240 PMCID: PMC11225861 DOI: 10.1016/j.mtbio.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted "FPBS") for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
Collapse
Affiliation(s)
- Jielai Yang
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Zihang Zhan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang Province, PR China
| | - Xingchen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Mu Hu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yuan Zhu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yunchao Xiao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang Province, PR China
| | - Xiangyang Xu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| |
Collapse
|
2
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
3
|
Timoshen K, Khrebina A, Lebedev V, Loglio G, Miller R, Sedov V, Noskov B. Dynamic surface properties of carboxyfullerene solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Yang J, Liang J, Zhu Y, Hu M, Deng L, Cui W, Xu X. Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing. Bioact Mater 2021; 6:4801-4815. [PMID: 34095630 PMCID: PMC8144672 DOI: 10.1016/j.bioactmat.2021.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
The balance of redox homeostasis is key to stem cell maintenance and differentiation. However, this balance is disrupted by the overproduced reactive oxygen species (ROS) in pathological conditions, which seriously impair the therapeutic efficacy of stem cells. In the present study, highly dispersed fullerol nanocrystals with enhanced bioreactivity were incorporated into hydrogel microspheres using one-step innovative microfluidic technology to construct fullerol-hydrogel microfluidic spheres (FMSs) for in situ regulating the redox homeostasis of stem cells and promoting refractory bone healing. It was demonstrated that FMSs exhibited excellent antioxidant activity to quench both intracellular and extracellular ROS, sparing stem cells from oxidative stress damage. Furthermore, these could effectively promote the osteogenic differentiation of stem cells with the activation of FoxO1 signaling, indicating the intrinsically osteogenic property of FMSs. By injecting the stem cells-laden FMSs into rat calvarial defects, the formation of new bone was remarkably reinforced, which is a positive synergic effect from modulating the ROS microenvironment and enhancing the osteogenesis of stem cells. Collectively, the antioxidative FMSs, as injectable stem cell carriers, hold enormous promise for refractory bone healing, which can also be expanded to deliver a variety of other cells, targeting diseases that require in situ redox regulation.
Collapse
Affiliation(s)
- Jielai Yang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jing Liang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuan Zhu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Mu Hu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Wenguo Cui
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiangyang Xu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
5
|
Younis MR, He G, Qu J, Lin J, Huang P, Xia X. Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102587. [PMID: 34561971 PMCID: PMC8564446 DOI: 10.1002/advs.202102587] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/22/2021] [Indexed: 05/07/2023]
Abstract
Inorganic nanomaterials with intrinsic singlet oxygen (1 O2 ) generation capacity, are emerged yet dynamically developing materials as nano-photosensitizers (NPSs) for photodynamic therapy (PDT). Compared to previously reported nanomaterials that have been used as either carriers to load organic PSs or energy donors to excite the attached organic PSs through a Foster resonance energy transfer process, these NPSs possess intrinsic 1 O2 generation capacity with extremely high 1 O2 quantum yield (e.g., 1.56, 1.3, 1.26, and 1.09) than any classical organic PS reported to date, and thus are facilitating to make a revolution in PDT. In this review, the recent advances in the development of various inorganic nanomaterials as NPSs, including metal-based (gold, silver, and tungsten), metal oxide-based (titanium dioxide, tungsten oxide, and bismuth oxyhalide), metal sulfide-based (copper and molybdenum sulfide), carbon-based (graphene, fullerene, and graphitic carbon nitride), phosphorus-based, and others (hybrids and MXenes-based NPSs) are summarized, with an emphasis on the design principle and 1 O2 generation mechanism, and the photodynamic therapeutic performance against different types of cancers. Finally, the current challenges and an outlook of future research are also discussed. This review may provide a comprehensive account capable of explaining recent progress as well as future research of this emerging paradigm.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P.R. China
| | - Gang He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P.R. China
| |
Collapse
|
6
|
Zhang TX, Li JJ, Li HB, Guo DS. Deep Cavitand Calixarene-Solubilized Fullerene as a Potential Photodynamic Agent. Front Chem 2021; 9:710808. [PMID: 34350158 PMCID: PMC8327297 DOI: 10.3389/fchem.2021.710808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Fullerene has attracted much attention in biomedical research due to its unique physical and chemical properties. However, the hydrophobic nature of fullerene is limited to deploy in the body, given that the biofluids are mainly water. In this study, a water-soluble supramolecular nanoformulation based on a deep cavitand calixarene (SAC4A) and fullerene is developed to overcome the hydrophobicity of fullerene and is used as a potential photodynamic agent. SAC4A solubilizes fullerene very well with a simple grinding method. The significantly increased water solubility of fullerene enables efficient activation of reactive oxygen species. The host-guest strategy to solubilize fullerene can not only provide a new method to achieve water solubility but also expand the biomedical applications of fullerene.
Collapse
Affiliation(s)
| | | | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Sharoyko VV, Iurev GO, Postnov VN, Meshcheriakov AA, Ageev SV, Ivanova DA, Petrov AV, Luttsev MD, Nashchekin AV, Iamalova NR, Vasina LV, Solovtsova IL, Murin IV, Semenov KN. Biocompatibility of a nanocomposite based on Aerosil 380 and carboxylated fullerene C 60[C(COOH) 2] 3. J Biotechnol 2021; 331:83-98. [PMID: 33727085 DOI: 10.1016/j.jbiotec.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Silica is silicon dioxide, which, depending on the production method, can exist in various amorphous forms with varying specific surface area, particle size, pore volume and size, and, as a result, with different physicochemical and sorption characteristics. The presence of silanol groups on the surface of silicas provides the possibility of its further functionalisation. In addition, the developed specific surface of Aerosil allows to obtain composites with a high content of biologically active substances. In this work, we studied the biocompatibility of a composite based on Aerosil 380 and carboxylated fullerene C60[C(COOH)2]3, namely: haemolysis (spontaneous and photoinduced), platelet aggregation, binding to HSA, cyto- and genotoxicity, antiradical activity. Interest in the creation of this nanomaterial is due to the fact that carboxylated fullerenes have potential applications in various fields of biomedicine, including the ability to bind reactive oxygen species, inhibition of tumour development, inactivation of viruses and bacteria. The obtained composite can be used for the immobilisation of various drugs and the further development of drugs for theranostics.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Almazov National Medical Research Centre, 2 Akkuratova ulitsa, Saint Petersburg, 197341, Russia
| | - Viktor N Postnov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Michail D Luttsev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Alexei V Nashchekin
- Ioffe Institute, 26 Politekhnicheskaya ulitsa, Saint Petersburg, 194021, Russia
| | - Nailia R Iamalova
- Agrophysical Research Institute, 14 Grazhdanskii prospect, Saint Petersburg, 195220, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| |
Collapse
|
8
|
|
9
|
Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment. Molecules 2020; 25:molecules25214934. [PMID: 33114470 PMCID: PMC7663180 DOI: 10.3390/molecules25214934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022] Open
Abstract
With the rapid growth of industrialization, diverse pollutants produced as by-products are emitted to the air-water ecosystem, and toxic contamination of water is one of the most hazardous environmental issues. Various forms of carbon have been used for adsorption, electrochemical, and ion-exchange membrane filtration to separation processes for water treatment. The utilization of carbon materials has gained tremendous attention as they have exceptional properties such as chemical, mechanical, thermal, antibacterial activities, along with reinforcement capability and high thermal stability, that helps to maintain the ecological balance. Recently, engineered nano-carbon incorporated with polymer as a composite membrane has been spotlighted as a new and effective mode for water treatment. In particular, the properties of zero-dimensional (0D) carbon forms (fullerenes and carbon dots) have encouraged researchers to explore them in the field of wastewater treatment through membrane technologies as they are biocompatible, which is the ultimate requirement to ensure the safety of drinking water. Thus, the purpose of this review is to highlight and summarize current advances in the field of water purification/treatment using 0D carbon-polymer-based nanocomposite membranes. Particular emphasis is placed on the development of 0D carbon forms embedded into a variety of polymer membranes and their influence on the improved performance of the resulting membranes. Current challenges and opportunities for future research are discussed.
Collapse
|
10
|
Chen M, Zhou S, Guo L, Wang L, Yao F, Hu Y, Li H, Hao J. Aggregation Behavior and Antioxidant Properties of Amphiphilic Fullerene C 60 Derivatives Cofunctionalized with Cationic and Nonionic Hydrophilic Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6939-6949. [PMID: 31050292 DOI: 10.1021/acs.langmuir.8b03681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amphiphilic derivatives of fullerene C60 are attractive from viewpoints of supramolecular chemistry and biomedicine. The establishment of relationships among the molecular structure, aggregation behavior and properties such as scavenging radicals of the amphiphilic C60 derivatives is the key to push these carbon nanomaterials to real applications. In this work, six monosubstituted C60 derivatives were synthesized by a one-step quaternization of their neutral precursors, which bear Percec monodendrons terminated with oligo(poly(ethylene oxide)) (o-PEO) chain(s). The main difference among the C60 derivatives lies in the number and substituted position of the o-PEO chain(s) within the Percec monodendron. Derivative with a 4-substitution of the o-PEO chain still showed limited solubility in water. Other derivatives possessing two or three o-PEO chains exhibited much improved solubilities and rich aggregation behavior in water. It was found that the formation of aggregates is regulated both by the number and the substituted pattern of the o-PEO chains. Typical morphologies include nanosheets, nanowires, vesicles, nanotubes, and nanorods. Although the structures of the C60 derivatives are different from those of traditional surfactants, their aggregation behavior can be also well explained by applying the theory of critical packing parameter. Interestingly, the capabilities of the C60 derivatives to scavenge the hydroxyl radicals (OH·-) followed the same order of their solubility in water, where the compound bearing three o-PEO chains with a 2,3,4-substitution got the champion quenching efficiency of ∼97.79% at a concentration of 0.15 mg·mL-1 (∼0.11 mmol·L-1).
Collapse
Affiliation(s)
- Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Lin Wang
- Analytical Center of Qilu Normal University , Jinan 250100 , China
| | - Fuxin Yao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Yuanyuan Hu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| |
Collapse
|
11
|
Sakhautdinov IM, Mukhamet’yanova AF. Cycloaddition of Bromo(chloro)methyl Ketones and Allenoates of Adipic Acid Monoesters to Fullerene C60. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363218120125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol Adv 2018; 36:2232-2247. [PMID: 30342084 DOI: 10.1016/j.biotechadv.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
With unique characteristics such as high surface area, capacity of various functionalization, low weight, high conductivity, thermal and chemical stability, and free radical scavenging, carbon nanomaterials (CNMs) such as carbon nanotubes (CNTs), fullerene, graphene (oxide), carbon nanohorns (CNHs), and their derivatives have increasingly been utilized in nanomedicine and biomedicine. On the one hand, owing to ever-increasing applications of CNMs in technological and industrial fields as well as presence of combustion-derived CNMs in the ambient air, the skepticism has risen over the adverse effects of CNMs on human being. The influences of CNMs on cardiovascular system and cardiovascular diseases (CVDs) such as atherosclerosis, of which consequences are ischemic heart disease and ischemic stroke, as the main causes of death, is of paramount importance. In this regard, several studies have been devoted to specify the biomedical applications and cardiovascular toxicity of CNMs. Therefore, the aim of this review is to specify the roles and applications of various CNMs in atherosclerosis, and also identify the key role playing parameters in cardiovascular toxicity of CNMs so as to be a clue for prospective deployment of CNMs.
Collapse
|
13
|
|
14
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 2017; 1861:802-813. [PMID: 28115205 DOI: 10.1016/j.bbagen.2017.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. SCOPE OF REVIEW Redox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs. MAJOR CONCLUSIONS Direct interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction. GENERAL SIGNIFICANCE The usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Gómez-Gallego DM, Urcuqui-Inchima S, Hernández JC. Efecto inmunomodulador de nanopartículas usadas en nanomedicina. IATREIA 2016. [DOI: 10.17533/udea.iatreia.v29n4a06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Nanotechnology Definitions, Research, Industry and Property Rights. NANOSCIENCE IN FOOD AND AGRICULTURE 1 2016. [DOI: 10.1007/978-3-319-39303-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Deryabin DG, Efremova LV, Vasilchenko AS, Saidakova EV, Sizova EA, Troshin PA, Zhilenkov AV, Khakina EA, Khakina EE. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J Nanobiotechnology 2015; 13:50. [PMID: 26253116 PMCID: PMC4528854 DOI: 10.1186/s12951-015-0112-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022] Open
Abstract
Background The cause–effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate’s size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Results Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate’s size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the activity of positively charged [60]fullerene derivatives against bacterial cells required their direct interaction. The following zeta potential inversion on the bacterial cells surface was observed as an early stage of toxicity mechanism that violates the membrane-associated energetic functions. Conclusions The novel data about interrelations between physicochemical parameters and toxic properties of amphiphilic [60]fullerene derivatives make possible predicting their behavior in aquatic environment and their activity against bacterial cells.
Collapse
Affiliation(s)
- Dmitry G Deryabin
- Department of Microbiology, Orenburg State University, Orenburg, Russia.
| | - Ludmila V Efremova
- Department of Microbiology, Orenburg State University, Orenburg, Russia. .,All-Russia Research Institute of Beef Cattle Breeding, RAS, Orenburg, Russia.
| | - Alexey S Vasilchenko
- Department of Microbiology, Orenburg State University, Orenburg, Russia. .,Institute of Cellular and Intracellular Symbiosis, RAS, Orenburg, Russia.
| | | | - Elena A Sizova
- Department of Microbiology, Orenburg State University, Orenburg, Russia. .,All-Russia Research Institute of Beef Cattle Breeding, RAS, Orenburg, Russia.
| | - Pavel A Troshin
- Institute for Problems of Chemical Physics of RAS, Chernogolovka, Russia.
| | | | | | | |
Collapse
|
18
|
Jiao Q, Li L, Mu Q, Zhang Q. Immunomodulation of nanoparticles in nanomedicine applications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:426028. [PMID: 24949448 PMCID: PMC4052466 DOI: 10.1155/2014/426028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/07/2014] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NPs) have promising applications in medicine. Immune system is an important protective system to defend organisms from non-self matters. NPs interact with the immune system and modulate its function, leading to immunosuppression or immunostimulation. These modulating effects may bring benefits or danger. Compositions, sizes, and surface chemistry, and so forth, affect these immunomodulations. Here we give an overview of the relationship between the physicochemical properties of NPs, which are candidates to be applied in medicine, and their immunomodulation properties.
Collapse
Affiliation(s)
- Qing Jiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Liwen Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qingxin Mu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98125, USA
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Kallistatin modulates immune cells and confers anti-inflammatory response to protect mice from group A streptococcal infection. Antimicrob Agents Chemother 2013; 57:5366-72. [PMID: 23959316 DOI: 10.1128/aac.00322-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group A streptococcus (GAS) infection may cause severe life-threatening diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Despite the availability of effective antimicrobial agents, there has been a worldwide increase in the incidence of invasive GAS infection. Kallistatin (KS), originally found to be a tissue kallikrein-binding protein, has recently been shown to possess anti-inflammatory properties. However, its efficacy in microbial infection has not been explored. In this study, we transiently expressed the human KS gene by hydrodynamic injection and investigated its anti-inflammatory and protective effects in mice via air pouch inoculation of GAS. The results showed that KS significantly increased the survival rate of GAS-infected mice. KS treatment reduced local skin damage and bacterial counts compared with those in mice infected with GAS and treated with a control plasmid or saline. While there was a decrease in immune cell infiltration of the local infection site, cell viability and antimicrobial factors such as reactive oxygen species actually increased after KS treatment. The efficiency of intracellular bacterial killing in neutrophils was directly enhanced by KS administration. Several inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1β, and interleukin 6, in local infection sites were reduced by KS. In addition, KS treatment reduced vessel leakage, bacteremia, and liver damage after local infection. Therefore, our study demonstrates that KS provides protection in GAS-infected mice by enhancing bacterial clearance, as well as reducing inflammatory responses and organ damage.
Collapse
|
20
|
Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X. Fullerene-induced increase of glycosyl residue on living plant cell wall. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7490-8. [PMID: 23721301 DOI: 10.1021/es4010224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we have investigated the change of cell wall for the tobacco plant cell (Nicotiana tobacum L. cv. Bright Yellow) under the repression of water-soluble carboxyfullerenes (C70(C(COOH)2)(2-4)). The adsorption of C70(C(COOH)2)(2-4) on cell wall led to the disruption of cell wall and membrane, and consequently, cell growth inhibition. Results from atomic force microscopy (AFM) force measurement and confocal imaging revealed an increase of the glycosyl residue on the cell wall of carboxyfullerene-treated cells, with a time- and dose-dependent manner, and accompanied by the elevated reactive oxygen species (ROS). Moreover, the stimulation-sensitive alteration of glycosyl residue and ROS was demonstrated, which suggested a possible protection strategy for the plant cells under fullerene repression. This study provides the first direct evidence on the change of plant cell wall composition under the repression of fullerene and is the first successful application of AFM ligand-receptor binding force measurement to the living plant cell. The new information present here would help to a better understanding and assessment of the biological effect of fullerenes on plant.
Collapse
Affiliation(s)
- Qiaoling Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Cook SM, Skora A, Gillen CM, Walker MJ, McArthur JD. Streptokinase variants fromStreptococcus pyogenesisolates display altered plasminogen activation characteristics - implications for pathogenesis. Mol Microbiol 2012; 86:1052-62. [DOI: 10.1111/mmi.12037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2012] [Indexed: 01/23/2023]
Affiliation(s)
- Simon M. Cook
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| | - Amanda Skora
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre; University of Queensland; Brisbane; Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre; University of Queensland; Brisbane; Australia
| | - Jason D. McArthur
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| |
Collapse
|
22
|
Dextromethorphan efficiently increases bactericidal activity, attenuates inflammatory responses, and prevents group a streptococcal sepsis. Antimicrob Agents Chemother 2011; 55:967-73. [PMID: 21199930 DOI: 10.1128/aac.00950-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Group A streptococcus (GAS) is an important human pathogen that causes a wide spectrum of diseases, ranging from mild throat and skin infections to severe invasive diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), a dextrorotatory morphinan and a widely used antitussive drug, has recently been reported to possess anti-inflammatory properties. In this study, we investigated the potential protective effect of DM in GAS infection using an air pouch infection mouse model. Our results showed that DM treatment increased the survival rate of GAS-infected mice. Bacterial numbers in the air pouch were lower in mice treated with DM than in those infected with GAS alone. The bacterial elimination efficacy was associated with increased cell viability and bactericidal activity of air-pouch-infiltrating cells. Moreover, DM treatment prevented bacterial dissemination in the blood and reduced serum levels of the proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-1β and the chemokines monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), and RANTES. In addition, GAS-induced mouse liver injury was reduced by DM treatment. Taken together, DM can increase bacterial killing and reduce inflammatory responses to prevent sepsis in GAS infection. The consideration of DM as an adjunct treatment in combination with antibiotics against bacterial infection warrants further study.
Collapse
|
23
|
Musee N, Thwala M, Nota N. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. ACTA ACUST UNITED AC 2011; 13:1164-83. [DOI: 10.1039/c1em10023h] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
|
25
|
Osuna S, Swart M, Solà M. On the Mechanism of Action of Fullerene Derivatives in Superoxide Dismutation. Chemistry 2010; 16:3207-14. [DOI: 10.1002/chem.200902728] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Tsumoto H, Kawahara S, Fujisawa Y, Suzuki T, Nakagawa H, Kohda K, Miyata N. Syntheses of water-soluble [60]fullerene derivatives and their enhancing effect on neurite outgrowth in NGF-treated PC12 cells. Bioorg Med Chem Lett 2010; 20:1948-52. [DOI: 10.1016/j.bmcl.2010.01.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 11/26/2022]
|
27
|
Yang D, Zhao Y, Guo H, Li Y, Tewary P, Xing G, Hou W, Oppenheim JJ, Zhang N. [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS NANO 2010; 4:1178-86. [PMID: 20121217 PMCID: PMC2835518 DOI: 10.1021/nn901478z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C(82)(OH)(22)](n) could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC co-stimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C(82)(OH)(22)](n) can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C(82)(OH)(22)](n) exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNgamma, IL-1beta, and IL-2. The [Gd@C(82)(OH)(22)](n) nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C(82)(OH)(22)](n) nanoparticles reported previously.
Collapse
Affiliation(s)
- De Yang
- Tianjin Medical University, Research Center of Basic Medic Sciences, Cancer Institute and Hospital, Key Laboratory of Breast Cancer Research (Ministry of Education), Tianjin 300060, China
- Basic Research Program, SAIC-Frederick, Inc.; Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China, and National Center for Nanoscience and Technology of China
| | - Hua Guo
- Tianjin Medical University, Research Center of Basic Medic Sciences, Cancer Institute and Hospital, Key Laboratory of Breast Cancer Research (Ministry of Education), Tianjin 300060, China
| | - Yana Li
- Basic Research Program, SAIC-Frederick, Inc.; Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Poonam Tewary
- Basic Research Program, SAIC-Frederick, Inc.; Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China, and National Center for Nanoscience and Technology of China
- Correspondence should be addressed to: Ning Zhang, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. (Tel: 086-13502179648; ). Gengmei Xing, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049, China, and National Center for Nanoscience and Technology
| | - Wei Hou
- Tianjin Medical University, Research Center of Basic Medic Sciences, Cancer Institute and Hospital, Key Laboratory of Breast Cancer Research (Ministry of Education), Tianjin 300060, China
| | - Joost J. Oppenheim
- Basic Research Program, SAIC-Frederick, Inc.; Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Ning Zhang
- Tianjin Medical University, Research Center of Basic Medic Sciences, Cancer Institute and Hospital, Key Laboratory of Breast Cancer Research (Ministry of Education), Tianjin 300060, China
- Correspondence should be addressed to: Ning Zhang, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. (Tel: 086-13502179648; ). Gengmei Xing, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049, China, and National Center for Nanoscience and Technology
| |
Collapse
|
28
|
Kahnt A, Guldi DM, Brettreich M, Hartnagel U, Hirsch A. Reaction of water-soluble fullerenes with O2˙−and other reactive radical species. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b917346n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Chae SR, Hotze EM, Wiesner MR. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6208-6213. [PMID: 19746715 DOI: 10.1021/es901165q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultraviolet (UV) irradiated polyhydroxylated fullerene (fullerol) nanomaterials are examined for their potential to degrade organic compounds via reactive oxygen species (ROS) mediated by a photosensitization process. Organic compounds were selected for their sensitivity to individual species of reactive oxygen (hydroxyl radical (*OH-) for degradation of salicylic acid (SA); singlet oxygen (1O2) for degradation of 2-chlorophenol (2CP), and superoxide (O2*-) for oxidation of ethanol) and were monitored over time in aqueous suspensions of fullerol aggregates. Only the 2CP showed significant degradation underscoring the specificity of the fullerol in producing singlet oxygen in these conditions. Monitoring these processes via high performance liquid chromatography (HPLC) confirmed that organic compounds degraded primarily by ROS over a range of fullerol concentrations, pH values, and temperatures.
Collapse
Affiliation(s)
- So-Ryong Chae
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
30
|
Tsao N, Kuo CF, Lei HY, Lu SL, Huang KJ. Inhibition of group A streptococcal infection by Melaleuca alternifolia (tea tree) oil concentrate in the murine model. J Appl Microbiol 2009; 108:936-944. [PMID: 19709334 DOI: 10.1111/j.1365-2672.2009.04487.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS To investigate the effect of a water-soluble Melaleuca alternifolia concentrate (MAC) on group A streptococcus (GAS; Streptococcus pyogenes)-induced necrotizing fasciitis. METHODS AND RESULTS MAC pretreatment (1% and 2% v/v) was able to protect mice from GAS infection in an air pouch model. GAS-induced mouse death and skin injury were inhibited dose dependently by MAC. Administration of MAC at 6 h post-GAS infection partially delayed mouse death. Surveys of the exudates of the air pouch of MAC-treated mice revealed that the survival of infiltrating cells was prolonged, the bacteria were eliminated, and the production of inflammatory cytokines was inhibited. MAC could directly inhibit the growth of GAS in vitro, and the minimal inhibitory concentration (MIC) of MAC for GAS was determined as 0.05% v/v using the time-kill assay. Furthermore, a sub-MIC dose of MAC not only enhanced the bactericidal activity of RAW264.7 macrophage cells against GAS but also increased susceptibility of GAS for blood clearance. CONCLUSIONS These results suggest that MAC may inhibit GAS-induced skin damage and mouse death by directly inhibiting GAS growth and enhancing the bactericidal activity of macrophages. SIGNIFICANCE AND IMPACT OF THE STUDY Our results provide scientific data on the use of MAC for the treatment of GAS-induced necrotizing fasciitis in the murine model.
Collapse
Affiliation(s)
- N Tsao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung County, Taiwan
| | - C-F Kuo
- Department of Nursing, I-Shou University, Kaohsiung County, Taiwan
| | - H-Y Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S-L Lu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - K-J Huang
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
31
|
Kosenko EA, Solomadin IN, Kaminsky YG. Effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of enzymes in erythrocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:172-7. [DOI: 10.1134/s1068162009020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Markovic Z, Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 2008; 29:3561-73. [DOI: 10.1016/j.biomaterials.2008.05.005] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/12/2008] [Indexed: 12/22/2022]
|
33
|
Antioxidant Properties of Water-Soluble Fullerene Derivatives. MEDICINAL CHEMISTRY AND PHARMACOLOGICAL POTENTIAL OF FULLERENES AND CARBON NANOTUBES 2008. [DOI: 10.1007/978-1-4020-6845-4_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Witte P, Beuerle F, Hartnagel U, Lebovitz R, Savouchkina A, Sali S, Guldi D, Chronakis N, Hirsch A. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem 2007; 5:3599-613. [PMID: 17971989 DOI: 10.1039/b711912g] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, surface-modified, water soluble fullerenes have been shown by many different investigators to exhibit strong antioxidant activity against reactive oxygen species (ROS) in vitro and to protect cells and tissues from oxidative injury and cell death in vivo. Nevertheless, progress in developing fullerenes as bona fide drug candidates has been hampered by three development issues: 1) lack of methods for scalable synthesis; 2) inability to produce highly purified, single-species regioisomers compatible with pharmaceutical applications; and 3) inadequate understanding of structure-function relationships with respect to various surface modifications (e.g., anionic versus cationic versus charge-neutral polarity). To address these challenges, we have designed and synthesized more than a dozen novel water soluble fullerenes that can be purified as single isomers and which we believe can be manufactured to scale at reasonable cost. These compounds differ in addition pattern, lipophilicity and number and type of charge and were examined for their water solubility, antioxidant activity against superoxide anions and binding of cytochrome C. Our results indicate that dendritic water soluble fullerene[60] monoadducts exhibit the highest degree of antioxidant activity against superoxide anions in vitro as compared with trismalonate-derived anionic fullerenes as well as cationic fullerenes of similar overall structure. Among the higher adducts, anionic derivatives have a higher antioxidant activity than comparable cationic compounds. To achieve sufficient water solubility without the aid of a surfactant or co-solvent at least three charges on the addends are required. Significantly, anionic in contrast to cationic fullerene adducts bind with high affinity to cytochrome C.
Collapse
Affiliation(s)
- Patrick Witte
- The Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:6627-6632. [PMID: 17948818 DOI: 10.1021/es0708215] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The production of two reactive oxygen species through UV photosensitization of polyhydroxylated fullerene (fullerol) is shown to enhance viral inactivation rates. The production of both singlet oxygen and superoxide by fullerol in the presence of UV light is confirmed via two unique methods: electron paramagnetic resonance and reduction of nitro blue tetrazolium. These findings build on previous results both in the area of fullerene photosensitization and in the area of fullerene impact on microfauna. Results showed thatthe first-order MS2 bacteriophage inactivation rate nearly doubled due to the presence of singlet oxygen and increased by 125% due to singlet oxygen and superoxide as compared to UVA illumination alone. When fullerol and NADH are present in solution, dark inactivation of viruses occurs at nearly the same rate as that produced by UVA illumination without nanoparticles. These results suggest a potential for fullerenes to impact virus populations in both natural and engineered systems ranging from surface waters to disinfection technologies for water and wastewater treatment.
Collapse
Affiliation(s)
- Appala Raju Badireddy
- Department of Civil and Environmental Engineering University of Houston, Houston, Texas 77204-4003, USA
| | | | | | | | | |
Collapse
|
36
|
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. NATURE NANOTECHNOLOGY 2007; 2:469-78. [PMID: 18654343 DOI: 10.1038/nnano.2007.223] [Citation(s) in RCA: 1165] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most research on the toxicology of nanomaterials has focused on the effects of nanoparticles that enter the body accidentally. There has been much less research on the toxicology of nanoparticles that are used for biomedical applications, such as drug delivery or imaging, in which the nanoparticles are deliberately placed in the body. Moreover, there are no harmonized standards for assessing the toxicity of nanoparticles to the immune system (immunotoxicity). Here we review recent research on immunotoxicity, along with data on a range of nanotechnology-based drugs that are at different stages in the approval process. Research shows that nanoparticles can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface chemistry. Modifying these factors can significantly reduce the immunotoxicity of nanoparticles and make them useful platforms for drug delivery.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, NCI-Frederick, 1050 Boyles St, Bldg 469, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
37
|
Abstract
Nanotechnology, or systems/device manufacture at sizes generally ranging between 1 and 100 nm, is a multidisciplinary scientific field undergoing explosive development. The genesis of nanotechnology can be traced to advances in medicine, communications, genomics and robotics. One of the greatest values of nanotechnology will be in the development of new and effective medical treatments (i.e. nanomedicine). This review focuses on the potential of nanomedicine as it relates to the development of nanoparticles for enabling and improving the targeted delivery of therapeutic and diagnostic agents. We highlight the use of nanoparticles for specific intra-compartmental analysis using the examples of delivery to malignant cancers, to the central nervous system, and across the gastrointestinal barriers.
Collapse
|
38
|
Yang X, Chen Z, Meng X, Li B, Tan X. Inhibition of DNA restrictive endonucleases and Taq DNA polymerase by trimalonic acid C60. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0241-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Medvedeva NV, Ipatova OM, Ivanov YD, Drozhzhin AI, Archakov AI. Nanobiotechnology and nanomedicine. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Tong Z, Bischoff M, Nies L, Applegate B, Turco RF. Impact of fullerene (C60) on a soil microbial community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:2985-91. [PMID: 17533868 DOI: 10.1021/es061953l] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The nascent state of the nanoproduct industry calls for important early assessment of environmental impacts before significant releases have occurred. Clearly, the impact of manufactured nanomaterials on key soil processes must be addressed so that an unbiased discussion concerning the environmental consequences of nanotechnology can take place. In this study, soils were treated with either 1 microg C60 g(-1) soil in aqueous suspension (nC60) or 1000 microg C60 g(-1) soil in granularform, a control containing equivalent tetrahydrofuran residues as generated during nC60 formation process or water and incubated for up to 180 days. Treatment effects on soil respiration, both basal and glucose-induced, were evaluated. The effects on the soil microbial community size was evaluated using total phospholipid derived phosphate. The impact on community structure was evaluated using both fatty acid profiles and following extraction of total genomic DNA, by DGGE after PCR amplification of total genomic DNA using bacterial variable V3 region targeted primers. In addition, treatment affects on soil enzymatic activities for beta-glucosidase, acid-phosphatase, dehydrogenase, and urease were followed. Our observations show that the introduction of fullerene, as either C60 or nC60, has little impact on the structure and function of the soil microbial community and microbial processes.
Collapse
Affiliation(s)
- Zhonghua Tong
- College of Agriculture, Laboratory for Soil Microbiology, School of Civil Engineering, Ecological Engineering Science Group, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
41
|
Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:2636-42. [PMID: 17438827 DOI: 10.1021/es062181w] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Several fullerene-based nanomaterials generate reactive oxygen species that can damage cells. In this study, we investigated the effect of buckminsterfullerene (C60) introduced as colloidal aggregates in water (nC60) on bacterial membrane lipid composition and phase behavior. Pseudomonas putida (Gram-negative) and Bacillus subtilis (Gram-positive) responded to nC60 by altering membrane lipid composition, phase transition temperature, and membrane fluidity. P. putida decreased its levels of unsaturated fatty acids and increased the proportions of cyclopropane fatty acids in the presence of nC60, possibly to protect the bacterial membrane from oxidative stress. Fourier transform infrared spectroscopy measurement of intact bacterial cells showed slightly increased phase transition temperatures (Tm) and increased membrane fluidity for cells grown in the presence of high, growth-inhibiting concentrations (0.5 mg L(-1)) of nC60. B. subtilis responded to a low dose of nC6o (0.01 mg L(-1)) by significantly increasing the levels of iso- and anteiso-branched fatty acids (from 5.8 to 31.5% and 12.9 to 32.3% of total fatty acids, respectively) and to a high, growth-inhibiting concentration of nC60 (0.75 mg L-1) by increasing synthesis of monounsaturated fatty acids. In contrast to P. putida, B. subtilis response was a decrease in Tm and an increase in membrane fluidity. These findings represent the first demonstrated physiological adaptation response of bacteria to a manufactured nanomaterial, and they showthat response inlipid composition and membrane phase behavior depends on both the nC60 concentration and the cell wall morphology.
Collapse
Affiliation(s)
- Jiasong Fang
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | |
Collapse
|
42
|
Tang YJ, Ashcroft JM, Chen D, Min G, Kim CH, Murkhejee B, Larabell C, Keasling JD, Chen FF. Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. NANO LETTERS 2007; 7:754-60. [PMID: 17288489 DOI: 10.1021/nl063020t] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effects of four types of fullerene compounds (C60, C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms (Escherichia coli W3110 and Shewanella oneidensis MR-1). Positively charged C60-NH2 at concentrations as low as 10 mg/L inhibited growth and reduced substrate uptake for both microorganisms. Scanning electron microscopy (SEM) revealed damage to cellular structures. Neutrally charged C60 and C60-OH had mild negative effects on S. oneidensis MR-1, whereas the negatively charged C60-COOH did not affect either microorganism's growth. The effect of fullerene compounds on global metabolism was further investigated using [3-13C]L-lactate isotopic labeling, which tracks perturbations to metabolic reaction rates in bacteria by examining the change in the isotopic labeling pattern in the resulting metabolites (often amino acids).1-3 The 13C isotopomer analysis from all fullerene-exposed cultures revealed no significant differences in isotopomer distributions from unstressed cells. This result indicates that microbial central metabolism is robust to environmental stress inflicted by fullerene nanoparticles. In addition, although C60-NH2 compounds caused mechanical stress on the cell wall or membrane, both S. oneidensis MR-1 and E. coli W3110 can efficiently alleviate such stress by cell aggregation and precipitation of the toxic nanoparticles. The results presented here favor the hypothesis that fullerenes cause more membrane stress 4-6 than perturbation to energy metabolism.7.
Collapse
Affiliation(s)
- Yinjie J Tang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Toxicity Studies of Fullerenes and Derivatives. BIO-APPLICATIONS OF NANOPARTICLES 2007; 620:168-80. [DOI: 10.1007/978-0-387-76713-0_13] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Lyon DY, Adams LK, Falkner JC, Alvarezt PJJ. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:4360-6. [PMID: 16903271 DOI: 10.1021/es0603655] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fullerene research in biological systems has been hindered by the compound's relative insolubility in water. However, C60 molecules can be made to aggregate, forming stable fullerene water suspensions (FWS) whose properties differ from those of bulk solid C60. There are many different protocols for making FWS. This paper explores four of these methods and establishes the antibacterial activity of each resulting suspension, including a suspension made without intermediary solvents. The aggregates in each polydisperse suspension were separated by size using differential centrifugation and tested for antibacterial activity using Bacillus subtilis as a test organism. All suspensions exhibited relatively strong antibacterial activity. Fractions containing smaller aggregates had greater antibacterial activity, although the increase in toxicity was disproportionately higher than the associated increase in putative surface area. This suggests the need for improved understanding of the behavior of FWS towards organisms and in the environment to determine how C60 can be safely used and disposed.
Collapse
Affiliation(s)
- Delina Y Lyon
- Department of Civil and Environmental Engineering and Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | | | | | | |
Collapse
|
45
|
Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. ACTA ACUST UNITED AC 2006; 23:171-84. [PMID: 16843058 DOI: 10.1016/j.bioeng.2006.05.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/17/2006] [Accepted: 05/22/2006] [Indexed: 11/29/2022]
Abstract
Nanotechnology, or systems/device manufacture at the molecular level, is a multidisciplinary scientific field undergoing explosive development. The genesis of nanotechnology can be traced to the promise of revolutionary advances across medicine, communications, genomics and robotics. Without doubt one of the greatest values of nanotechnology will be in the development of new and effective medical treatments (i.e., nanomedicine). This review focuses on the potential of nanomedicine as it specifically relates to (1) the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents; (2) developing novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.
Collapse
Affiliation(s)
- Dwaine F Emerich
- LCT BioPharma, Inc., 4 Richmond Square, Providence, RI, United States.
| | | |
Collapse
|
46
|
Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin MR. Cationic fullerenes are effective and selective antimicrobial photosensitizers. ACTA ACUST UNITED AC 2006; 12:1127-35. [PMID: 16242655 PMCID: PMC3071678 DOI: 10.1016/j.chembiol.2005.08.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/13/2005] [Accepted: 08/04/2005] [Indexed: 11/26/2022]
Abstract
Fullerenes are soccer ball-shaped molecules composed of carbon atoms, and, when derivatized with functional groups, they become soluble and can act as photosensitizers. Antimicrobial photodynamic therapy combines a nontoxic photosensitizer with harmless visible light to generate reactive oxygen species that kill microbial cells. We have compared the antimicrobial activity of six functionalized C(60) compounds with one, two, or three hydrophilic or cationic groups in combination with white light against gram-positive bacteria, gram-negative bacteria, and fungi. After a 10 min incubation, the bis- and tris-cationic fullerenes were highly active in killing all tested microbes (4-6 logs) under conditions in which mammalian cells were comparatively unharmed. These compounds performed significantly better than a widely used antimicrobial photosensitizer, toluidine blue O. The high selectivity and efficacy exhibited by these photosensitizers encourage further testing for antimicrobial applications.
Collapse
Affiliation(s)
- George P. Tegos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tatiana N. Demidova
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Cell, Molecular, and Developmental Biology Program, Tufts University, Boston, Massachusetts 02111
| | - Dennisse Arcila-Lopez
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Tim Wharton
- Lynntech, Inc., College Station, Texas 77840
| | | | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139
- Correspondence:
| |
Collapse
|
47
|
Yoon EJ, Jo YW, Choi SH, Lee TH, Rhee JK, Yoo M, Shim MJ, Choi EC. In vitro and in vivo activities of DA-7867, a new oxazolidinone, against aerobic gram-positive bacteria. Antimicrob Agents Chemother 2005; 49:2498-500. [PMID: 15917554 PMCID: PMC1140508 DOI: 10.1128/aac.49.6.2498-2500.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro and in vivo activities of DA-7867 were assessed against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae. All isolates were inhibited by DA-7867 at <or=0.78 microg/ml, a four-times-lower concentration than that of inhibition by linezolid. For murine infection models, DA-7867 also exhibited greater efficacy than linezolid against all isolates tested.
Collapse
Affiliation(s)
- Eun Jeong Yoon
- Department of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shillim-9 dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Bar-Shir A, Engel Y, Gozin M. Synthesis and water solubility of adamantyl-OEG-fullerene hybrids. J Org Chem 2005; 70:2660-6. [PMID: 15787557 DOI: 10.1021/jo0479359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] A series of new adamantyl-oligoethyleneglycol-fullerene hybrids was prepared via Bingel-Hirsch functionalization of the C60 fullerene with various adamantyl-oligoethyleneglycol malonates. As NMDA-targeted antioxidants, these compounds may have the potential to be developed as therapeutic agents for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
50
|
Abstract
Nanotechnology, or systems/device manufacture at the molecular level, is a multidisciplinary scientific field undergoing explosive development. The genesis of nanotechnology can be traced to the promise of revolutionary advances across medicine, communications, genomics and robotics. Without doubt, one of the greatest values of nanotechnology will be in the development of new and effective medical treatments (i.e., nanomedicine). This review focuses on the potential of nanomedicine, including the development of nanoparticles for diagnostic and screening purposes, DNA sequencing using nanopores, manufacture of drug delivery systems and single-virus detection.
Collapse
|