1
|
Madden DE, Baird T, Bell SC, McCarthy KL, Price EP, Sarovich DS. Keeping up with the pathogens: improved antimicrobial resistance detection and prediction from Pseudomonas aeruginosa genomes. Genome Med 2024; 16:78. [PMID: 38849863 PMCID: PMC11157771 DOI: 10.1186/s13073-024-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is an intensifying threat that requires urgent mitigation to avoid a post-antibiotic era. Pseudomonas aeruginosa represents one of the greatest AMR concerns due to increasing multi- and pan-drug resistance rates. Shotgun sequencing is gaining traction for in silico AMR profiling due to its unambiguity and transferability; however, accurate and comprehensive AMR prediction from P. aeruginosa genomes remains an unsolved problem. METHODS We first curated the most comprehensive database yet of known P. aeruginosa AMR variants. Next, we performed comparative genomics and microbial genome-wide association study analysis across a Global isolate Dataset (n = 1877) with paired antimicrobial phenotype and genomic data to identify novel AMR variants. Finally, the performance of our P. aeruginosa AMR database, implemented in our AMR detection and prediction tool, ARDaP, was compared with three previously published in silico AMR gene detection or phenotype prediction tools-abritAMR, AMRFinderPlus, ResFinder-across both the Global Dataset and an analysis-naïve Validation Dataset (n = 102). RESULTS Our AMR database comprises 3639 mobile AMR genes and 728 chromosomal variants, including 75 previously unreported chromosomal AMR variants, 10 variants associated with unusual antimicrobial susceptibility, and 281 chromosomal variants that we show are unlikely to confer AMR. Our pipeline achieved a genotype-phenotype balanced accuracy (bACC) of 85% and 81% across 10 clinically relevant antibiotics when tested against the Global and Validation Datasets, respectively, vs. just 56% and 54% with abritAMR, 58% and 54% with AMRFinderPlus, and 60% and 53% with ResFinder. ARDaP's superior performance was predominantly due to the inclusion of chromosomal AMR variants, which are generally not identified with most AMR identification tools. CONCLUSIONS Our ARDaP software and associated AMR variant database provides an accurate tool for predicting AMR phenotypes in P. aeruginosa, far surpassing the performance of current tools. Implementation of ARDaP for routine AMR prediction from P. aeruginosa genomes and metagenomes will improve AMR identification, addressing a critical facet in combatting this treatment-refractory pathogen. However, knowledge gaps remain in our understanding of the P. aeruginosa resistome, particularly the basis of colistin AMR.
Collapse
Affiliation(s)
- Danielle E Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Kate L McCarthy
- University of Queensland Medical School, Herston, QLD, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Erin P Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Derek S Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.
| |
Collapse
|
2
|
MATSUMOTO Y, YAMASAKI S, HAYAMA K, IINO R, NOJI H, YAMAGUCHI A, NISHINO K. Changes in the expression of mexB, mexY, and oprD in clinical Pseudomonas aeruginosa isolates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:57-67. [PMID: 38199247 PMCID: PMC10864171 DOI: 10.2183/pjab.100.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-β-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-β-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.
Collapse
Affiliation(s)
- Yoshimi MATSUMOTO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Seiji YAMASAKI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kouhei HAYAMA
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Ryota IINO
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Hiroyuki NOJI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akihito YAMAGUCHI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Kunihiko NISHINO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Nepalia A, Fernandes SE, Singh H, Rana S, Saini DK. Anti-microbial resistance and aging-A design for evolution. WIREs Mech Dis 2023; 15:e1626. [PMID: 37553220 DOI: 10.1002/wsbm.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
The emergence of resistance to anti-infective agents poses a significant threat to successfully treating infections caused by bacteria. Bacteria acquire random mutations due to exposure to environmental stresses, which may increase their fitness to other selection pressures. Interestingly, for bacteria, the frequency of anti-microbial resistance (AMR) seems to be increasing in tandem with the human lifespan. Based on evidence from previous literature, we speculate that increased levels of free radicals (Reactive Oxygen Species-ROS and Reactive Nitrosative Species-RNS), elevated inflammation, and the altered tissue microenvironment in aged individuals may drive pathogen mutagenesis. If these mutations result in the hyperactivation of efflux pumps or alteration in drug target binding sites, it could confer AMR, thus rendering antibiotic therapy ineffective while leading to the selection of novel drug-resistant variants. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Amrita Nepalia
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sheryl Erica Fernandes
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, and Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
CID12261165, a flavonoid compound as antibacterial agents against quinolone-resistant Staphylococcus aureus. Sci Rep 2023; 13:1725. [PMID: 36720958 PMCID: PMC9889749 DOI: 10.1038/s41598-023-28859-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Flavonoids are plant-produced secondary metabolites that are found ubiquitously. We have previously reported that apigenin, a class of flavonoid, has unique antimicrobial activity against Staphylococcus aureus (S. aureus), one of the major human pathogens. Apigenin inhibited fluoroquinolone-resistant S. aureus with DNA gyrase harboring the quinolone-resistant S84L mutation but did not inhibit wild-type DNA gyrase. In this study, we describe five flavonoids, quercetin, luteolin, kaempferol, baicalein, and commercially available CID12261165, that show similar antimicrobial activity against fluoroquinolone-resistant S. aureus. Among them, CID12261165 was the most effective with MIC values of ≤ 4 mg/L against quinolone-resistant S. aureus strains. In vitro DNA cleavage and supercoiling assays demonstrated inhibitory activity of CID12261165 against mutated DNA gyrase, whereas activity against wild-type DNA gyrase was not observed. CID12261165 also inhibited quinolone-resistant Enterococci with an MIC value of 8 mg/L. While fluoroquinolone-resistant amino acid replacements can improve the fitness of bacterial cells, it is unknown why quinolone-susceptible S. aureus strains were predominant before the introduction of fluoroquinolone. The present study discusses the current discrepancies in the interpretation of antimicrobial activities of flavonoids, as well as the possible reasons for the preservation of wild-type DNA gyrase wherein the environmental flavonoids cannot be ignored.
Collapse
|
5
|
Anbo M, Jelsbak L. A bittersweet fate: detection of serotype switching in Pseudomonas aeruginosa. Microb Genom 2023; 9:mgen000919. [PMID: 36748704 PMCID: PMC9973846 DOI: 10.1099/mgen.0.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-risk clone types in Pseudomonas aeruginosa are problematic global multidrug-resistant clones. However, apart from their ability to resist antimicrobial treatment, not much is known about what sets these clones apart from the multitude of other clones. In high-risk clone ST111, it has previously been shown that replacement of the native serotype biosynthetic gene cluster (O4) by a different gene cluster (O12) by horizontal gene transfer and recombination may have contributed to the global success of this clone. However, the extent to which isolates undergo this type of serotype switching has not been adequately explored in P. aeruginosa. In the present study, a bioinformatics tool has been developed and utilized to provide a first estimate of serotype switching in groups of multidrug resistant (MDR) clinical isolates. The tool detects serotype switching by analysis of core-genome phylogeny and in silico serotype. Analysis of a national survey of MDR isolates found a prevalence of 3.9 % of serotype-switched isolates in high-risk clone types ST111, ST244 and ST253. A global survey of MDR isolates was additionally analysed, and it was found that 2.3 % of isolates had undergone a serotype switch. To further understand this process, we determined the exact boundaries of the horizontally transferred serotype O12 island. We found that the size of the serotype island correlates with the clone type of the receiving isolate and additionally we found intra-clone type variations in size and boundaries. This suggests multiple serotype switch events. Moreover, we found that the housekeeping gene gyrA is co-transferred with the O12 serotype island, which prompted us to analyse this allele for all serotype O12 isolates. We found that 95 % of ST111 O12 isolates had a resistant gyrA allele and 86 % of all O12 isolates had a resistant gyrA allele. The rates of resistant gyrA alleles in isolates with other prevalent serotypes are all lower. Together, these results show that the transfer and acquisition of serotype O12 in high-risk clone ST111 has happened multiple times and may be facilitated by multiple donors, which clearly suggests a strong selection pressure for this process. However, gyrA-mediated antibiotic resistance may not be the only evolutionary driver.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
- *Correspondence: Lars Jelsbak,
| |
Collapse
|
6
|
Parallel Evolution to Elucidate the Contributions of PA0625 and parE to Ciprofloxacin Sensitivity in Pseudomonas aeruginosa. Microorganisms 2022; 11:microorganisms11010013. [PMID: 36677304 PMCID: PMC9860795 DOI: 10.3390/microorganisms11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous pathogen that causes a wide range of acute and chronic infections. Ciprofloxacin, one of the first-line fluoroquinolone class antibiotics, is commonly used for the treatment of P. aeruginosa infections. However, ciprofloxacin-resistant P. aeruginosa is increasingly reported worldwide, making treatment difficult. To determine resistance-related mutations, we conducted an experimental evolution using a previously identified ciprofloxacin-resistant P. aeruginosa clinical isolate, CRP42. The evolved mutants could tolerate a 512-fold higher concentration of ciprofloxacin than CRP42. Genomic DNA reference mapping was performed, which revealed mutations in genes known to be associated with ciprofloxacin resistance as well as in those not previously linked to ciprofloxacin resistance, including the ParER586W substitution and PA0625 frameshift insertion. Simulation of the ParER586W substitution and PA0625 frameshift insertion by gene editing in CRP42 and the model strain PAO1 demonstrated that while the PA0625 mutation does contribute to resistance, mutation in the ParER586W does not contribute to resistance but rather affects tolerance against ciprofloxacin. These findings advance our understanding of ciprofloxacin resistance in P. aeruginosa.
Collapse
|
7
|
Madden DE, McCarthy KL, Bell SC, Olagoke O, Baird T, Neill J, Ramsay KA, Kidd TJ, Stewart AG, Subedi S, Choong K, Fraser TA, Sarovich DS, Price EP. Rapid fluoroquinolone resistance detection in Pseudomonas aeruginosa using mismatch amplification mutation assay-based real-time PCR. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Antimicrobial resistance (AMR) is an ever-increasing global health concern. One crucial facet in tackling the AMR epidemic is earlier and more accurate AMR diagnosis, particularly in the dangerous and highly multi-drug-resistant ESKAPE pathogen,
Pseudomonas aeruginosa
.
Objectives. We aimed to develop two SYBR Green-based mismatch amplification mutation assays (SYBR-MAMAs) targeting GyrA T83I (gyrA248) and GyrA D87N, D87Y and D87H (gyrA259). Together, these variants cause the majority of fluoroquinolone (FQ) AMR in
P. aeruginosa
.
Methods. Following assay validation, the gyrA248 and gyrA259 SYBR-MAMAs were tested on 84 Australian clinical
P. aeruginosa
isolates, 46 of which demonstrated intermediate/full ciprofloxacin resistance according to antimicrobial susceptibility testing.
Results. Our two SYBR-MAMAs correctly predicted an AMR phenotype in the majority (83%) of isolates with intermediate/full FQ resistance. All FQ-sensitive strains were predicted to have a sensitive phenotype. Whole-genome sequencing confirmed 100 % concordance with SYBR-MAMA genotypes.
Conclusions. Our GyrA SYBR-MAMAs provide a rapid and cost-effective method for same-day identification of FQ AMR in
P. aeruginosa
. An additional SYBR-MAMA targeting the GyrB S466Y/S466F variants would increase FQ AMR prediction to 91 %. Clinical implementation of our assays will permit more timely treatment alterations in cases where decreased FQ susceptibility is identified, leading to improved patient outcomes and antimicrobial stewardship.
Collapse
Affiliation(s)
- Danielle E. Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Kate L. McCarthy
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Scott C. Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Olusola Olagoke
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Kay A. Ramsay
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Timothy J. Kidd
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Adam G. Stewart
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Shradha Subedi
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Keat Choong
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Tamieka A. Fraser
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Derek S. Sarovich
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
8
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
9
|
Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0072322. [PMID: 36000896 PMCID: PMC9603996 DOI: 10.1128/spectrum.00723-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low antibiotic concentrations present in natural environments are a severe and often neglected threat to public health. Even if they are present below their MICs, they may select for antibiotic-resistant pathogens. Notably, the minimal subinhibitory concentrations that select resistant bacteria, and define the respective sub-MIC selective windows, differ between antibiotics. The establishment of these selective concentrations is needed for risk-assessment studies regarding the presence of antibiotics in different habitats. Using short-term evolution experiments in a set of 12 Pseudomonas aeruginosa clinical isolates (including high-risk clones with ubiquitous distribution), we have determined that ciprofloxacin sub-MIC selective windows are strain specific and resistome dependent. Nonetheless, in all cases, clinically relevant multidrug-resistant (MDR) mutants emerged upon exposure to low ciprofloxacin concentrations, with these concentrations being below the levels reported in ciprofloxacin-polluted natural habitats where P. aeruginosa can be present. This feature expands the conditions and habitats where clinically relevant quinolone-resistant mutants can emerge. In addition, we established the lowest concentration threshold beyond which P. aeruginosa, regardless of the strain, becomes resistant to ciprofloxacin. Three days of exposure under this sub-MIC "risk concentration" led to the selection of MDR mutants that displayed resistance mechanisms usually ascribed to high selective pressures, i.e., the overproduction of the efflux pumps MexCD-OprJ and MexEF-OprN. From a One-Health viewpoint, these data stress the transcendent role of low drug concentrations, which can be encountered in natural ecosystems, in aggravating the antibiotic resistance problem, especially when it comes to pathogens of environmental origin. IMPORTANCE It has been established that antibiotic concentrations below MICs can select antibiotic-resistant pathogens, a feature of relevance for analyzing the role of nonclinical ecosystems in antibiotic resistance evolution. The range of concentrations where this selection occurs defines the sub-MIC selective window, whose width depends on the antibiotic. Herein, we have determined the ciprofloxacin sub-MIC selective windows of a set of Pseudomonas aeruginosa clinical isolates (including high-risk clones with worldwide distribution) and established the lowest concentration threshold, notably an amount reported to be present in natural ecosystems, beyond which this pathogen acquires resistance. Importantly, our results show that this ciprofloxacin sub-MIC selects for multidrug-resistant mutants overproducing clinically relevant efflux pumps. From a One-Health angle, this information supports that low antimicrobial concentrations, present in natural environments, may have a relevant role in worsening the antibiotic resistance crisis, particularly regarding pathogens with environmental niches, such as P. aeruginosa.
Collapse
|
10
|
Molecular Evolution of the Pseudomonas aeruginosa DNA Gyrase gyrA Gene. Microorganisms 2022; 10:microorganisms10081660. [PMID: 36014079 PMCID: PMC9415716 DOI: 10.3390/microorganisms10081660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
DNA gyrase plays important roles in genome replication in various bacteria, including Pseudomonasaeruginosa. The gyrA gene encodes the gyrase subunit A protein (GyrA). Mutations in GyrA are associated with resistance to quinolone-based antibiotics. We performed a detailed molecular evolutionary analyses of the gyrA gene and associated resistance to the quinolone drug, ciprofloxacin, using bioinformatics techniques. We produced an evolutionary phylogenetic tree using the Bayesian Markov Chain Monte Carlo (MCMC) method. This tree indicated that a common ancestor of the gene was present over 760 years ago, and the offspring formed multiple clusters. Quinolone drug-resistance-associated amino-acid substitutions in GyrA, including T83I and D87N, emerged after the drug was used clinically. These substitutions appeared to be positive selection sites. The molecular affinity between ciprofloxacin and the GyrA protein containing T83I and/or D87N decreased significantly compared to that between the drug and GyrA protein, with no substitutions. The rate of evolution of the gene before quinolone drugs were first used in the clinic, in 1962, was significantly lower than that after the drug was used. These results suggest that the gyrA gene evolved to permit the bacterium to overcome quinolone treatment.
Collapse
|
11
|
Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J, Torres A. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1600-1610. [PMID: 35323912 PMCID: PMC9155640 DOI: 10.1093/jac/dkac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-cystic fibrosis bronchiectasis (BE) is a chronic structural lung condition that facilitates chronic colonization by different microorganisms and courses with recurrent respiratory infections and frequent exacerbations. One of the main pathogens involved in BE is Pseudomonas aeruginosa. Objectives To determine the molecular mechanisms of resistance and the molecular epidemiology of P. aeruginosa strains isolated from patients with BE. Methods A total of 43 strains of P. aeruginosa were isolated from the sputum of BE patients. Susceptibility to the following antimicrobials was analysed: ciprofloxacin, meropenem, imipenem, amikacin, tobramycin, aztreonam, piperacillin/tazobactam, ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam, cefepime and colistin. The resistance mechanisms present in each strain were assessed by PCR, sequencing and quantitative RT–PCR. Molecular epidemiology was determined by MLST. Phylogenetic analysis was carried out using the eBURST algorithm. Results High levels of resistance to ciprofloxacin (44.19%) were found. Mutations in the gyrA, gyrB, parC and parE genes were detected in ciprofloxacin-resistant P. aeruginosa strains. The number of mutated QRDR genes was related to increased MIC. Different β-lactamases were detected: blaOXA50, blaGES-2, blaIMI-2 and blaGIM-1. The aac(3)-Ia, aac(3)-Ic, aac(6″)-Ib and ant(2″)-Ia genes were associated with aminoglycoside-resistant strains. The gene expression analysis showed overproduction of the MexAB-OprM efflux system (46.5%) over the other efflux system. The most frequently detected clones were ST619, ST676, ST532 and ST109. Conclusions Resistance to first-line antimicrobials recommended in BE guidelines could threaten the treatment of BE and the eradication of P. aeruginosa, contributing to chronic infection.
Collapse
Affiliation(s)
- Roberto Cabrera
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laia Fernández-Barat
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
- Corresponding author. E-mail:
| | - Nil Vázquez
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Victoria Alcaraz-Serrano
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Leticia Bueno-Freire
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Rosanel Amaro
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Rubén López-Aladid
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Patricia Oscanoa
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laura Muñoz
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Antoni Torres
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
12
|
Guo LL, Li LM, Li Y, Duan XX, Liu YJ, Gao R, Zhao YD. Characterization of antimicrobial resistance and virulence genes of Pseudomonas aeruginosa isolated from mink in China, 2011-2020. Microb Pathog 2021; 162:105323. [PMID: 34843921 DOI: 10.1016/j.micpath.2021.105323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa strains are potential pathogens that cause respiratory diseases in minks, and caused serious economic loss to mink breeding industry. In this study, we identified antimicrobial resistance and virulence genes in 125 P. aeruginosa isolates from mink in China from 2011 to 2020. The results showed at least one mutation in the gyrA (Thr83Val or Asp87Gly) and parC (Ser87 Leu) genes as well as single mutations in 56 isolates. At least 4-fold reductions in the fluoroquinolone minimum inhibitory concentration values were found when tested in the presence of PAβN in 23 isolates, while 44 isolates were positive for the extended spectrum β-lactamases and 15 antibiotic resistance genes were identified in this population with a prevalence between 1-32%, including qnrA, CTX-M-1G, ermB and C, cmlA, flor, catl, intl1, tetA, B, C, and D as well as sul1, 2, and 3 genes. Interestingly, one isolate carried ten resistance genes. Five virulence genes were detected, where exoS and algD were the most frequently detected (76.8%), which were followed by plcH (76%), lasB (73.6%), and pilB (31.2%). The isolates carrying the antibiotic resistance or virulence genes were genetically variable, suggesting a horizontal spread through the population. Hence, this study provides novel and important data on the resistance and pathogenicity of P. aeruginosa in farmed mink infections. These data provide important insights into the mechanism of fluoroquinolone resistance in P. aeruginosa, highlighting its usefulness in the treatment and control of P. aeruginosa infections in minks.
Collapse
Affiliation(s)
- Li-Li Guo
- College of Veterinary Medicine, Qingdao Agricultural University, 266109, Qingdao, PR China; College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lu-Mei Li
- Qingdao Yibang Biological Engineering Co., Ltd, Qingdao, 266109, PR China
| | - Yan Li
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, 266109, PR China
| | - Xiao-Xiao Duan
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, 266109, PR China
| | - Yu-Jing Liu
- Qingdao Yibang Biological Engineering Co., Ltd, Qingdao, 266109, PR China
| | - RuiYuan Gao
- College of Veterinary Medicine, Qingdao Agricultural University, 266109, Qingdao, PR China
| | - Yong-da Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, 266109, Qingdao, PR China.
| |
Collapse
|
13
|
Sanz-García F, Hernando-Amado S, Martínez JL. Evolution under low antibiotic concentrations: a risk for the selection of Pseudomonas aeruginosa multidrug-resistant mutants in nature. Environ Microbiol 2021; 24:1279-1293. [PMID: 34666420 DOI: 10.1111/1462-2920.15806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Antibiotic pollution of non-clinical environments might have a relevant impact on human health if resistant pathogens are selected. However, this potential risk is often overlooked, since drug concentrations in nature are usually below their minimal inhibitory concentrations (MICs). Albeit, antibiotic resistant bacteria can be selected even at sub-MIC concentrations, in a range known as the sub-MIC selective window. Using short-term evolution experiments, we have determined the sub-MIC selective windows of the opportunistic pathogen Pseudomonas aeruginosa for seven antibiotics of clinical relevance, finding the ones of quinolones to be the widest, and the ones of polymyxin B and imipenem, the narrowest. Clinically relevant multidrug-resistant mutants arose within the sub-MIC selective windows of most antibiotics tested, being some of these phenotypes mediated by efflux pumps' activity. The fact that the concentration of antibiotics reported in aquatic ecosystems - colonizable by P. aeruginosa - are, in occasions, higher than the ones that select multidrug-resistant mutants in our assays, has implications for understanding the role of different ecosystems and conditions in the emergence of antibiotic resistance from a One-Health perspective. Further, it reinforces the importance of procuring accurate information on the sub-MIC selective windows for drugs of clinical value in pathogens with environmental niches.
Collapse
|
14
|
Arabameri N, Heshmatipour Z, Eftekhar Ardebili S, Jafari Bidhendi Z. The role of Gene Mutations ( gyrA, parC) in Resistance to Ciprofloxacin in Clinical Isolates of Pseudomonas Aeruginosa. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:426-432. [PMID: 34567192 PMCID: PMC8463757 DOI: 10.30699/ijp.2021.520570.2542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/27/2021] [Indexed: 11/17/2022]
Abstract
Background & Objective: Pseudomonas aeruginosa is an opportunistic pathogen and one of the most common causes of nosocomial infections. This bacterium's antibiotic resistance to the common fluoroquinolone antibiotics, especially ciprofloxacin, is due to mutations in the gyrA and parC genes. This study aimed to investigate the effect of the mutation in (gyrA, parC) on ciprofloxacin resistance in clinical isolates of Pseudomonas aeruginosa. Methods: A total of 140 clinical samples were collected from hospitals. The samples were identified by standard biochemical tests, and the antibiotic resistance was investigated by the disk diffusion method. DNA was extracted from 30 isolates, and PCR was performed. PCR-sequencing was carried out to assess gyrA and parC mutations in drug-resistant isolates. NCBI-Blast and MEGA7 software was used to analyze the nucleotide sequences. Results: 30 clinical isolates were 80% resistant to ciprofloxacin; meanwhile, in 21 samples, mutations were observed. 87/5% of mutations were related to gyrA (Thr83 → Ile), 79/16 % parC (Ser87 → Leu), and 4/18% (Glu91 → Lys). The antibiotic resistance to ciprofloxacin and mutations in gyrA and parC genes in resistant isolates are significantly related to each other (P<0.05). Conclusion: The mutations in the gyrA and parC genes play an essential role in resistance to ciprofloxacin in clinical isolates of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Nasibeh Arabameri
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shima Eftekhar Ardebili
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Zeinab Jafari Bidhendi
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
15
|
Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil? GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Magallon A, Roussel M, Neuwirth C, Tetu J, Cheiakh AC, Boulet B, Varin V, Urbain V, Bador J, Amoureux L. Fluoroquinolone resistance in Achromobacter spp.: substitutions in QRDRs of GyrA, GyrB, ParC and ParE and implication of the RND efflux system AxyEF-OprN. J Antimicrob Chemother 2021; 76:297-304. [PMID: 33156919 DOI: 10.1093/jac/dkaa440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Achromobacter are emerging pathogens in cystic fibrosis patients. Mechanisms of resistance to fluoroquinolones are unknown in clinical isolates. Among non-fermenting Gram-negative bacilli, fluoroquinolone resistance is mostly due to amino acid substitutions in localized regions of the targets (GyrA, GyrB, ParC and ParE) named QRDRs, but also to efflux. OBJECTIVES To explore quinolone resistance mechanisms in Achromobacter. METHODS The putative QRDRs of GyrA, GyrB, ParC and ParE were sequenced in 62 clinical isolates, and in vitro one-step mutants obtained after exposure to fluoroquinolones. An in vitro mutant and its parental isolate were investigated by RNASeq and WGS. RT-qPCR and gene inactivation were used to explore the role of efflux systems overexpression. RESULTS We detected seven substitutions in QRDRs (Q83L/S84P/D87N/D87G for GyrA, Q480P for GyrB, T395A/K525Q for ParE), all in nine of the 27 clinical isolates with ciprofloxacin MIC ≥16 mg/L, whereas none among the in vitro mutants. The RND efflux system AxyEF-OprN was overproduced (about 150-fold) in the in vitro mutant NCF-39-Bl6 versus its parental strain NCF-39 (ciprofloxacin MICs 64 and 1.5 mg/L, respectively). A substitution in AxyT (putative regulator of AxyEF-OprN) was detected in NCF-39-Bl6. Ciprofloxacin MIC in NCF-39-Bl6 dropped from 64 to 1.5 mg/L following gene inactivation of either axyT or axyF. Substitutions in AxyT associated with overexpression of AxyEF-OprN were also detected in seven clinical strains with ciprofloxacin MIC ≥16 mg/L. CONCLUSIONS Target alteration is not the primary mechanism involved in fluoroquinolone resistance in Achromobacter. The role of AxyEF-OprN overproduction was demonstrated in one in vitro mutant.
Collapse
Affiliation(s)
- Arnaud Magallon
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Mathilde Roussel
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Jennifer Tetu
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Anne-Charlotte Cheiakh
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Baptiste Boulet
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Véronique Varin
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Victor Urbain
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Julien Bador
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| |
Collapse
|
17
|
Emergence of Carbapenem-Resistant Providencia rettgeri and Providencia stuartii Producing IMP-Type Metallo-β-Lactamase in Japan. Antimicrob Agents Chemother 2020; 64:AAC.00382-20. [PMID: 32816727 PMCID: PMC7577129 DOI: 10.1128/aac.00382-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Four Providencia rettgeri isolates and one Providencia stuartii isolate were obtained from urine samples of five patients in 2018 in Japan. All of the isolates were resistant to imipenem and meropenem, and three were highly resistant to both carbapenems, with MICs of 512 μg/ml. The three highly carbapenem-resistant isolates harbored blaIMP-70, encoding a variant of IMP-1 metallo-β-lactamase with two amino acid substitutions (Val67Phe and Phe87Val), and the other two harbored blaIMP-1 and blaIMP-11, respectively. Whole-genome sequencing revealed that an isolate harbored two copies of blaIMP-1 on the chromosome and that the other four harbored a copy of blaIMP-11 or blaIMP-70 in a plasmid. Expression of blaIMP-70 conferred carbapenem resistance in Escherichia coli Recombinant IMP-70 and an IMP-1 variant with Val67Phe but without Phe87Val had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that an amino acid substitution of Val67Phe affects increased activities against meropenem in IMP-70. These results suggest that Providencia spp. become more highly resistant to carbapenems by acquisition of two copies of blaIMP-1 or by mutation of blaIMP genes with amino acid substitutions, such as blaIMP-70.
Collapse
|
18
|
Soares A, Alexandre K, Lamoureux F, Lemée L, Caron F, Pestel-Caron M, Etienne M. Efficacy of a ciprofloxacin/amikacin combination against planktonic and biofilm cultures of susceptible and low-level resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2020; 74:3252-3259. [PMID: 31424553 DOI: 10.1093/jac/dkz355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Eradicating bacterial biofilm without mechanical dispersion remains a challenge. Combination therapy has been suggested as a suitable strategy to eradicate biofilm. OBJECTIVES To evaluate the efficacy of a ciprofloxacin/amikacin combination in a model of in vitro Pseudomonas aeruginosa biofilm. METHODS The antibacterial activity of ciprofloxacin and amikacin (alone, in combination and successively) was evaluated by planktonic and biofilm time-kill assays against five P. aeruginosa strains: PAO1, a WT clinical strain and three clinical strains overexpressing the efflux pumps MexAB-OprM (AB), MexXY-OprM (XY) and MexCD-OprJ (CD), respectively. Amikacin MIC was 16 mg/L for XY and ciprofloxacin MIC was 0.5 mg/L for CD. The other strains were fully susceptible to ciprofloxacin and amikacin. The numbers of total and resistant cells were determined. RESULTS In planktonic cultures, regrowth of high-level resistant mutants was observed when CD was exposed to ciprofloxacin alone and XY to amikacin alone. Eradication was obtained with ciprofloxacin or amikacin in the other strains, or with the combination in XY and CD strains. In biofilm, bactericidal reduction after 8 h followed by a mean 4 log10 cfu/mL plateau in all strains and for all regimens was noticed. No regrowth of resistant mutants was observed whatever the antibiotic regimen. The bacterial reduction obtained with a second antibiotic used simultaneously or consecutively was not significant. CONCLUSIONS The ciprofloxacin/amikacin combination prevented the emergence of resistant mutants in low-level resistant strains in planktonic cultures. Biofilm persister cells were not eradicated, either with monotherapy or with the combination.
Collapse
Affiliation(s)
- Anaïs Soares
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - Kévin Alexandre
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Fabien Lamoureux
- Laboratory of Pharmacology, Toxicology and Pharmacogenetics, Rouen University Hospital, Rouen, France
| | - Ludovic Lemée
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - François Caron
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Martine Pestel-Caron
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - Manuel Etienne
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
19
|
Dench J, Hinz A, Aris‐Brosou S, Kassen R. Identifying the drivers of computationally detected correlated evolution among sites under antibiotic selection. Evol Appl 2020; 13:781-793. [PMID: 32211067 PMCID: PMC7086105 DOI: 10.1111/eva.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022] Open
Abstract
The ultimate causes of correlated evolution among sites in a genome remain difficult to tease apart. To address this problem directly, we performed a high-throughput search for correlated evolution among sites associated with resistance to a fluoroquinolone antibiotic using whole-genome data from clinical strains of Pseudomonas aeruginosa, before validating our computational predictions experimentally. We show that for at least two sites, this correlation is underlain by epistasis. Our analysis also revealed eight additional pairs of synonymous substitutions displaying correlated evolution underlain by physical linkage, rather than selection associated with antibiotic resistance. Our results provide direct evidence that both epistasis and physical linkage among sites can drive the correlated evolution identified by high-throughput computational tools. In other words, the observation of correlated evolution is not by itself sufficient evidence to guarantee that the sites in question are epistatic; such a claim requires additional evidence, ideally coming from direct estimates of epistasis, based on experimental evidence.
Collapse
Affiliation(s)
- Jonathan Dench
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Aaron Hinz
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Stéphane Aris‐Brosou
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of Mathematics and StatisticsUniversity of OttawaOttawaOntarioCanada
| | - Rees Kassen
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
20
|
Hyun JC, Kavvas ES, Monk JM, Palsson BO. Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Comput Biol 2020; 16:e1007608. [PMID: 32119670 PMCID: PMC7067475 DOI: 10.1371/journal.pcbi.1007608] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/12/2020] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
The evolution of antimicrobial resistance (AMR) poses a persistent threat to global public health. Sequencing efforts have already yielded genome sequences for thousands of resistant microbial isolates and require robust computational tools to systematically elucidate the genetic basis for AMR. Here, we present a generalizable machine learning workflow for identifying genetic features driving AMR based on constructing reference strain-agnostic pan-genomes and training random subspace ensembles (RSEs). This workflow was applied to the resistance profiles of 14 antimicrobials across three urgent threat pathogens encompassing 288 Staphylococcus aureus, 456 Pseudomonas aeruginosa, and 1588 Escherichia coli genomes. We find that feature selection by RSE detects known AMR associations more reliably than common statistical tests and previous ensemble approaches, identifying a total of 45 known AMR-conferring genes and alleles across the three organisms, as well as 25 candidate associations backed by domain-level annotations. Furthermore, we find that results from the RSE approach are consistent with existing understanding of fluoroquinolone (FQ) resistance due to mutations in the main drug targets, gyrA and parC, in all three organisms, and suggest the mutational landscape of those genes with respect to FQ resistance is simple. As larger datasets become available, we expect this approach to more reliably predict AMR determinants for a wider range of microbial pathogens.
Collapse
Affiliation(s)
- Jason C. Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, United States of America
| | - Erol S. Kavvas
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
21
|
Characterization of Mechanisms Lowering Susceptibility to Flumequine among Bacteria Isolated from Chilean Salmonid Farms. Microorganisms 2019; 7:microorganisms7120698. [PMID: 31847389 PMCID: PMC6955667 DOI: 10.3390/microorganisms7120698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Despite their great importance for human therapy, quinolones are still used in Chilean salmon farming, with flumequine and oxolinic acid currently approved for use in this industry. The aim of this study was to improve our knowledge of the mechanisms conferring low susceptibility or resistance to quinolones among bacteria recovered from Chilean salmon farms. Sixty-five isolates exhibiting resistance, reduced susceptibility, or susceptibility to flumequine recovered from salmon farms were identified by their 16S rRNA genes, detecting a high predominance of species belonging to the Pseudomonas genus (52%). The minimum inhibitory concentrations (MIC) of flumequine in the absence and presence of the efflux pump inhibitor (EPI) Phe-Arg-β-naphthylamide and resistance patterns of isolates were determined by a microdilution broth and disk diffusion assays, respectively, observing MIC values ranging from 0.25 to >64 µg/mL and a high level of multi-resistance (96%), mostly showing resistance to florfenicol and oxytetracycline. Furthermore, mechanisms conferring low susceptibility to quinolones mediated by efflux pump activity, quinolone target mutations, or horizontally acquired resistance genes (qepA, oqxA, aac(6′)-lb-cr, qnr) were investigated. Among isolates exhibiting resistance to flumequine (≥16 µg/mL), the occurrence of chromosomal mutations in target protein GyrA appears to be unusual (three out of 15), contrasting with the high incidence of mutations in GyrB (14 out of 17). Bacterial isolates showing resistance or reduced susceptibility to quinolones mediated by efflux pumps appear to be highly prevalent (49 isolates, 75%), thus suggesting a major role of intrinsic resistance mediated by active efflux.
Collapse
|
22
|
Abstract
While the description of resistance to quinolones is almost as old as these antimicrobial agents themselves, transferable mechanisms of quinolone resistance (TMQR) remained absent from the scenario for more than 36 years, appearing first as sporadic events and afterward as epidemics. In 1998, the first TMQR was soundly described, that is, QnrA. The presence of QnrA was almost anecdotal for years, but in the middle of the first decade of the 21st century, there was an explosion of TMQR descriptions, which definitively changed the epidemiology of quinolone resistance. Currently, 3 different clinically relevant mechanisms of quinolone resistance are encoded within mobile elements: (i) target protection, which is mediated by 7 different families of Qnr (QnrA, QnrB, QnrC, QnrD, QnrE, QnrS, and QnrVC), which overall account for more than 100 recognized alleles; (ii) antibiotic efflux, which is mediated by 2 main transferable efflux pumps (QepA and OqxAB), which together account for more than 30 alleles, and a series of other efflux pumps (e.g., QacBIII), which at present have been sporadically described; and (iii) antibiotic modification, which is mediated by the enzymes AAC(6')Ib-cr, from which different alleles have been claimed, as well as CrpP, a newly described phosphorylase.
Collapse
|
23
|
Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2019; 8:antibiotics8020037. [PMID: 30959901 PMCID: PMC6628318 DOI: 10.3390/antibiotics8020037] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has increased markedly in gram-negative bacteria over the last two decades, and in many cases has been associated with increased mortality and healthcare costs. The adoption of genotyping and next generation whole genome sequencing of large sets of clinical bacterial isolates has greatly expanded our understanding of how antibiotic resistance develops and transmits among bacteria and between patients. Diverse mechanisms of resistance, including antibiotic degradation, antibiotic target modification, and modulation of permeability through the bacterial membrane have been demonstrated. These fundamental insights into the mechanisms of gram-negative antibiotic resistance have influenced the development of novel antibiotics and treatment practices in highly resistant infections. Here, we review the mechanisms and global epidemiology of antibiotic resistance in some of the most clinically important resistance phenotypes, including carbapenem resistant Enterobacteriaceae, extensively drug resistant (XDR) Pseudomonas aeruginosa, and XDR Acinetobacter baumannii. Understanding the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterials and for individual treatment decisions, which often involve alternatives to β-lactam antibiotics.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Bai X, Liu S, Zhao J, Cheng Y, Zhang H, Hu B, Zhang L, Shi Q, Zhang Z, Wu T, Luo G, Lian S, Xu S, Wang J, Zhang W, Yan X. Epidemiology and molecular characterization of the antimicrobial resistance of Pseudomonas aeruginosa in Chinese mink infected by hemorrhagic pneumonia. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:122-132. [PMID: 31097874 PMCID: PMC6450165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/08/2018] [Indexed: 06/09/2023]
Abstract
Hemorrhagic pneumonia in mink is a fatal disease caused by Pseudomonas aeruginosa. Very little is known about P. aeruginosa in relation to genotype and the mechanisms underlying antimicrobial resistance in mink. A total of 110 P. aeruginosa samples were collected from mink from Chinese mink farms between 2007 and 2015. Samples underwent molecular genotyping using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST), antimicrobial susceptibility and its mechanism were investigated at the molecular level. The PFGE identified 73 unique types and 15 clusters, while MLST identified 43 (7 new) sequence types (ST) and 12 sequence type clonal complexes (STCC). Sequence types and PFGE showed persistence of endemic clones in cities Wendeng (Shandong, China) and Dalian (Liaoning, China), even in different timelines. The MLST also revealed the gene correlation of the mink P. aeruginosa across different time and place. The ST1058 (n = 14), ST882 (n = 11), and ST2442 (n = 10) were the predominant types, among which ST1058 was the only one found both in Shandong province and Dalian (Liaoning, China). The MLST for P. aeruginosa infection in mink was highly associated with that in humans and other animals, implying possible transmission events. A small proportion of mink exhibited drug resistance to P. aeruginosa (9/69, 13%) with resistance predominantly to fluoroquinolone, aminoglycoside, and β-lactamase. Eight strains had mutations in the quinolone-resistance determining regions (QRDR). High proportions (65%; 72/110) of the fosA gene and 2 types of glpt deletion for fosmycin were detected. Furthermore, in the whole genome sequence of one multidrug resistant strain, we identified 27 genes that conferred resistance to 14 types of drugs.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Siguo Liu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Jianjun Zhao
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Hailing Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Lei Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Qiumei Shi
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Zhiqiang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Tonglei Wu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Guoliang Luo
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Shujuan Xu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Jianke Wang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Wanjiang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Xijun Yan
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| |
Collapse
|
25
|
The Role of DNA Gyrase (gyrA) in Ciprofloxacin-Resistant Locally Isolates Pseudomonas aeruginosa in Al-Khadhmiya Teaching Hospital Baghdad, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Uncoupled Quorum Sensing Modulates the Interplay of Virulence and Resistance in a Multidrug-Resistant Clinical Pseudomonas aeruginosa Isolate Belonging to the MLST550 Clonal Complex. Antimicrob Agents Chemother 2019; 63:AAC.01944-18. [PMID: 30670423 DOI: 10.1128/aac.01944-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/13/2019] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a prevalent and pernicious pathogen equipped with extraordinary capabilities both to infect the host and to develop antimicrobial resistance (AMR). Monitoring the emergence of AMR high-risk clones and understanding the interplay of their pathogenicity and antibiotic resistance is of paramount importance to avoid resistance dissemination and to control P. aeruginosa infections. In this study, we report the identification of a multidrug-resistant (MDR) P. aeruginosa strain PA154197 isolated from a blood stream infection in Hong Kong. PA154197 belongs to a distinctive MLST550 clonal complex shared by two other international P. aeruginosa isolates VW0289 and AUS544. Comparative genome and transcriptome analysis of PA154197 with the reference strain PAO1 led to the identification of a variety of genetic variations in antibiotic resistance genes and the hyperexpression of three multidrug efflux pumps MexAB-OprM, MexEF-OprN, and MexGHI-OpmD in PA154197. Unexpectedly, the strain does not display a metabolic cost and a compromised virulence compared to PAO1. Characterizing its various physiological and virulence traits demonstrated that PA154197 produces a substantially higher level of the P. aeruginosa major virulence factor pyocyanin (PYO) than PAO1, but it produces a decreased level of pyoverdine and displays decreased biofilm formation compared with PAO1. Further analysis revealed that the secondary quorum-sensing (QS) system Pqs that primarily controls the PYO production is hyperactive in PA154197 independent of the master QS systems Las and Rhl. Together, these investigations disclose a unique, uncoupled QS mediated pathoadaptation mechanism in clinical P. aeruginosa which may account for the high pathogenic potentials and antibiotic resistance in the MDR isolate PA154197.
Collapse
|
27
|
Prevalence and mechanism of fluoroquinolone resistance in clinical isolates of Proteus mirabilis in Japan. Heliyon 2019; 5:e01291. [PMID: 30886932 PMCID: PMC6403068 DOI: 10.1016/j.heliyon.2019.e01291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 11/27/2022] Open
Abstract
Fluoroquinolone (FQ) and cephalosporin (CEP) resistance among Enterobacteriaceae has been increasingly reported. FQ resistance occurs primarily through mutations in DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE). CEP resistance in Enterobacteriaceae is mainly due to the production of CTX-M type extended-spectrum β-lactamases. Although prevalence and mechanisms of FQ and CEP resistance in Enterobacteriaceae such as Escherichia coli have been well studied, little is known about Proteus mirabilis in Japan. In this study, we assessed the prevalence and mechanism of FQ resistance in Japanese clinical isolates of P. mirabilis. We collected 5845 P. mirabilis isolates from eight hospitals between 2000 and 2013. Prevalence of FQ resistance was calculated as the annual average percentage of all P. mirabilis isolates. We selected 50 isolates exhibiting susceptibility, intermediate resistance, or resistance to levofloxacin (LVX) and identified amino acid substitutions in GyrA, GyrB, ParC, and ParE. The prevalence of FQ-resistant P. mirabilis gradually increased from 2001 to 2004, reaching 16.6% in 2005, and has remained relatively high (13.3–17.5%) since then. Low-level LVX-resistant strains (MIC, 8–16 mg/L) showed significant changes in GyrB (S464Y or -I, or E466D). High-level LVX-resistant strains (MIC, 32–128 mg/L) displayed significant changes in GyrA (E87K) and ParE (D420N). The highest-level LVX-resistant strains (MIC, ≥ 256 mg/L) presented significant changes in GyrA (E87K or -G), GyrB (S464I or -F), and ParE (D420N). Our findings suggest that substitutions in GyrA (E87) and ParE (D420) have played an important role in the emergence of high-level LVX-resistant P. mirabilis isolates (MIC, ≥ 32 mg/L) in Japan.
Collapse
|
28
|
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68:1-10. [DOI: 10.1099/jmm.0.000873] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Attika Rehman
- 1Department of Biochemistry, University of Otago, New Zealand
| | - Wayne M. Patrick
- 1Department of Biochemistry, University of Otago, New Zealand
- 2School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Iain L. Lamont
- 1Department of Biochemistry, University of Otago, New Zealand
| |
Collapse
|
29
|
Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One 2018; 13:e0204936. [PMID: 30265709 PMCID: PMC6161911 DOI: 10.1371/journal.pone.0204936] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Virulent strains of Pseudomonas aeruginosa are often associated with an acquired cytotoxic protein, exoenzyme U (ExoU) that rapidly destroys the cell membranes of host cells by its phospholipase activity. Strains possessing the exoU gene are predominant in eye infections and are more resistant to antibiotics. Thus, it is essential to understand treatment options for these strains. Here, we have investigated the resistance profiles and genes associated with resistance for fluoroquinolone and beta-lactams. A total of 22 strains of P. aeruginosa from anterior eye infections, microbial keratitis (MK), and the lungs of cystic fibrosis (CF) patients were used. Based on whole genome sequencing, the prevalence of the exoU gene was 61.5% in MK isolates whereas none of the CF isolates possessed this gene. Overall, higher antibiotic resistance was observed in the isolates possessing exoU. Of the exoU strains, all except one were resistant to fluoroquinolones, 100% were resistant to beta-lactams. 75% had mutations in quinolone resistance determining regions (T81I gyrA and/or S87L parC) which correlated with fluoroquinolone resistance. In addition, exoU strains had mutations at K76Q, A110T, and V126E in ampC, Q155I and V356I in ampR and E114A, G283E, and M288R in mexR genes that are associated with higher beta-lactamase and efflux pump activities. In contrast, such mutations were not observed in the strains lacking exoU. The expression of the ampC gene increased by up to nine-fold in all eight exoU strains and the ampR was upregulated in seven exoU strains compared to PAO1. The expression of mexR gene was 1.4 to 3.6 fold lower in 75% of exoU strains. This study highlights the association between virulence traits and antibiotic resistance in pathogenic P. aeruginosa.
Collapse
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Gurjeet Singh Kohli
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore
- The ithree institute, The University of Technology Sydney, Sydney NSW Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Ben Nejma M, Sioud O, Mastouri M. Quinolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia. 3 Biotech 2018; 8:1. [PMID: 29201587 DOI: 10.1007/s13205-017-1019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023] Open
Abstract
In this study, we examined mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes of Pseudomonas aeruginosa (P. aeruginosa) clinical isolates collected from patients hospitalized in University Hospital of Monastir, Tunisia. A total of 81 P. aeruginosa strains, obtained from clinical specimens, were included in the present study. Isolates were tested against 11 different antibiotics by a disk diffusion method. Minimum inhibitory concentrations (MICs) of ciprofloxacin were evaluated by E test method. The gyrA and parC sequences genes amplified by polymerase chain reaction (PCR) were sequenced. The highest resistance rates were found for ciprofloxacin (100%), gentamicin (96%) and ticarcillin (93%). The lower resistance rates were obtained for imipenem (74%) and ceftazidime (70%). Notably, 54% of isolates resistant to ciprofloxacin were determined to be multi-drug resistant. The investigation of mutations in the nucleotide sequences of the gyrA and parC genes showed that 77% of isolates have a single mutation in both gyrA (Thr-83 → Ile) and parC (Ser-87 → Leu). The emergence of ciprofloxacin resistance in clinical P. aeruginosa requires the establishment of appropriate antibiotherapy strategies in order to prescribe the most effective antibiotic treatment for preventing the emergence of multi-drug-resistant (MDR) P. aeruginosa strains.
Collapse
Affiliation(s)
- Mouna Ben Nejma
- Laboratoire des Maladies Transmissibles et substances biologiquement actives « LR99ES27», Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisie
| | - Olfa Sioud
- Laboratoire des Maladies Transmissibles et substances biologiquement actives « LR99ES27», Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisie
| | - Maha Mastouri
- Laboratoire des Maladies Transmissibles et substances biologiquement actives « LR99ES27», Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisie
| |
Collapse
|
31
|
Takata I, Yamagishi Y, Mikamo H. Association of the exoU genotype with a multidrug non-susceptible phenotype and mRNA expressions of resistance genes in Pseudomonas aeruginosa. J Infect Chemother 2017; 24:45-52. [PMID: 29107652 DOI: 10.1016/j.jiac.2017.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022]
Abstract
The increased prevalence of the virulence factor exoU + genotype among multidrug-resistant Pseudomonas aeruginosa has been previously reported. However, the genes that are related to the multidrug resistance of the exoU + genotype strain have not been analyzed and remain to be elucidated. The objective of this study was to analyze the correlations between virulence factors and resistance genes. The exoU + genotype was frequently found in carbapenem and fluoroquinolone non-susceptible strains. The imp carbapenemase genotype, the quinolone-resistance-determining region mutation in GyrA and ParC and the defective mutation in OprD were not frequently found in the exoU + genotype and carbapenem and fluoroquinolone non-susceptible strains. On the other hand, mexY and ampC mRNA overexpressing strains were more frequently found in the exoU + genotype and carbapenem and fluoroquinolone non-susceptible strains. Moreover, sequence type 235, a high risk clone of multidrug-resistant P. aeruginosa, was prevalent among the exoU + genotype and carbapenem and fluoroquinolone non-susceptible strains. ExoU is highly virulent protein, and the overexpression of efflux pumps and AmpC β-lactamase induce a multidrug-resistant phenotype. Therefore, the increased prevalence of P. aeruginosa strains with an exoU + genotype and the overexpression of efflux pumps and AmpC β-lactamase are likely to make P. aeruginosa infections difficult to treat. An understanding of the prevalence of both the exoU + genotype and the mRNA overexpression of resistance genes may help to select empirical therapy for the treatment of nosocomial infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Iichiro Takata
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Aichi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Aichi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Aichi, Japan.
| |
Collapse
|
32
|
Antibacterial Resistance in Ureaplasma Species and Mycoplasma hominis Isolates from Urine Cultures in College-Aged Females. Antimicrob Agents Chemother 2017; 61:AAC.01104-17. [PMID: 28827422 DOI: 10.1128/aac.01104-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infections (UTIs) affect nearly 20% of women age 15 to 29 and account for an estimated $3.5 billion in costs. Antibiotic resistance prolongs UTI treatment, and resistance profiles vary regionally. This regional variation is an important consideration in guiding empirical treatment selection. Regional studies in the United States have identified tetracycline resistance in over one-third of Ureaplasma species isolates, but no studies have evaluated antibiotic resistance levels in college-aged women with a first-time UTI. We tested a panel of antibiotics and determined the MICs of Ureaplasma species (60 U. parvum and 13 U. urealyticum) and 10 Mycoplasma hominis isolates obtained from urine from college-aged women with a first-time UTI. Low antibiotic resistance was found in this population of women with a first-time UTI. All M. hominis and U. urealyticum isolates were sensitive. However, two U. parvum isolates were resistant, with one to levofloxacin (MIC, 4 μg/ml) and one to tetracycline (MIC, 8 μg/ml). For the Ureaplasma spp., the MIC90s were highest against gentamicin (21 μg/ml) and lowest against doxycycline (0.25 μg/ml). In a comparison of MIC levels between Ureaplasma spp., U. urealyticum had significantly higher MICs against each antibiotic except doxycycline. For the resistant isolates, the genetic mechanisms of resistance were determined. PCR amplification identified tetM to be present in the tetracycline-resistant isolate and an S83W mutation within the parC gene of the quinolone-resistant isolate. To our knowledge, this study is the first to provide molecular and phenotypic evidence of the S83W parC mutation conferring levofloxacin resistance in U. parvum isolated from a patient in the United States.
Collapse
|
33
|
Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett 2017; 364:3866593. [DOI: 10.1093/femsle/fnx124] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
|
34
|
Hamasuna R, Ohnishi M, Matsumoto M, Okumura R, Unemo M, Matsumoto T. In Vitro Activity of Sitafloxacin and Additional Newer Generation Fluoroquinolones Against Ciprofloxacin-Resistant Neisseria gonorrhoeae Isolates. Microb Drug Resist 2017; 24:30-34. [PMID: 28581359 DOI: 10.1089/mdr.2017.0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Emergence of antimicrobial resistance in Neisseria gonorrhoeae is a major public health concern globally, and new antimicrobials for treatment of gonorrhea are imperative. In this study, the in vitro activity of sitafloxacin, a fluoroquinolone mainly used for respiratory tract or urogenital infections in Japan, and additional newer generation fluoroquinolones were determined against ciprofloxacin-resistant N. gonorrhoeae isolates. Minimum inhibitory concentrations (MICs) of ciprofloxacin, levofloxacin, moxifloxacin, sitafloxacin, pazufloxacin, and tosufloxacin against 47 N. gonorrhoeae isolates cultured in 2009 in Japan were determined by agar dilution method. The quinolone resistance-determining region (QRDR) of gyrA and parC was sequenced. The in vitro potency of sitafloxacin was substantially higher compared with all other tested fluoroquinolones. The MICs of sitafloxacin ranged from 0.03 to 0.5 mg/L for 35 ciprofloxacin-resistant N. gonorrhoeae isolates (ciprofloxacin MICs from 2 to 32 mg/L). No identified mutations in GyrA and ParC QRDR resulted in higher sitafloxacin MIC than 0.5 mg/L. Sitafloxacin had a high activity against N. gonorrhoeae isolates, including strains with mutations in DNA gyrase and topoisomerase IV, resulting in high-level resistance to ciprofloxacin and all other newer generation fluoroquinolones examined. However, it was still to a lower extent affected by GyrA and ParC QRDR mutations resulting in sitafloxacin MICs of up to 0.5 mg/L. This indicates that sitafloxacin should not be considered for empirical first-line monotherapy of gonorrhea. However, sitafloxacin could be valuable in a dual antimicrobial therapy and for cases with ceftriaxone resistance or allergy.
Collapse
Affiliation(s)
- Ryoichi Hamasuna
- 1 Department of Urology, University of Occupational and Environmental Health , Kitakyushu, Japan
| | - Makoto Ohnishi
- 2 Department of Bacteriology I, National Institute of Infectious Diseases , Tokyo, Japan
| | - Masahiro Matsumoto
- 1 Department of Urology, University of Occupational and Environmental Health , Kitakyushu, Japan
| | - Ryo Okumura
- 3 Rare Disease & LCM Laboratories, Group I, R&D Division, Daiichi Sankyo Co., Ltd. , Tokyo, Japan
| | - Magnus Unemo
- 4 WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University , Örebro, Sweden
| | - Tetsuro Matsumoto
- 1 Department of Urology, University of Occupational and Environmental Health , Kitakyushu, Japan
| |
Collapse
|
35
|
Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 2017; 104:133-144. [PMID: 28366652 DOI: 10.1016/j.ejps.2017.03.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Paola Valentini
- Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Raffaele Spanò
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Luca Goldoni
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy.
| |
Collapse
|
36
|
Nouri R, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol 2016; 47:925-930. [PMID: 27522930 PMCID: PMC5052375 DOI: 10.1016/j.bjm.2016.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/25/2016] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to examine mutations in the quinolone-resistance-determining region (QRDR) of gyrA and parC genes in Pseudomonas aeruginosa isolates. A total of 100 clinical P. aeruginosa isolates were collected from different university-affiliated hospitals in Tabriz, Iran. Minimum inhibitory concentrations (MICs) of ciprofloxacin and levofloxacin were evaluated by agar dilution assay. DNA sequences of the QRDR of gyrA and parC were determined by the dideoxy chain termination method. Of the total 100 isolates, 64 were resistant to ciprofloxacin. No amino acid alterations were detected in gyrA or parC genes of the ciprofloxacin susceptible or ciprofloxacin intermediate isolates. Thr-83 → Ile substitution in gyrA was found in all 64 ciprofloxacin resistant isolates. Forty-four (68.75%) of them had additional substitution in parC. A correlation was found between the number of the amino acid alterations in the QRDR of gyrA and parC and the level of ciprofloxacin and levofloxacin resistance of the P. aeruginosa isolates. Ala-88 → Pro alteration in parC was generally found in high level ciprofloxacin resistant isolates, which were suggested to be responsible for fluoroquinolone resistance. These findings showed that in P. aeruginosa, gyrA was the primary target for fluoroquinolone and additional mutation in parC led to highly resistant isolates.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran; Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran; Tabriz University of Medical Sciences, Student Research Committee, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran; Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran.
| | - Alka Hasani
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran; Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran
| | - Mohammad Aghazadeh
- Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Tabriz University of Medical Sciences, Biotechnology Research Center, Tabriz, Iran
| |
Collapse
|
37
|
Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 2016; 6:26717. [PMID: 27225966 PMCID: PMC4880932 DOI: 10.1038/srep26717] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 02/08/2023] Open
Abstract
Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections.
Collapse
Affiliation(s)
- Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Mark Sistrom
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - John E Wertz
- E. coli Genetic Stock Center, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Kaitlyn E Kortright
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Deepak Narayan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.,Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Tada T, Miyoshi-Akiyama T, Shimada K, Shiroma A, Nakano K, Teruya K, Satou K, Hirano T, Shimojima M, Kirikae T. A Carbapenem-Resistant Pseudomonas aeruginosa Isolate Harboring Two Copies of blaIMP-34 Encoding a Metallo-β-Lactamase. PLoS One 2016; 11:e0149385. [PMID: 27055243 PMCID: PMC4824433 DOI: 10.1371/journal.pone.0149385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
A carbapenem-resistant strain of Pseudomonas aeruginosa, NCGM1984, was isolated in 2012 from a hospitalized patient in Japan. Immunochromatographic assay showed that the isolate was positive for IMP-type metallo-β-lactamase. Complete genome sequencing revealed that NCGM1984 harbored two copies of blaIMP-34, located at different sites on the chromosome. Each blaIMP-34 was present in the same structures of the class 1 integrons, tnpA(ISPa7)-intI1-qacG-blaIMP-34-aac(6')-Ib-qacEdelta1-sul1-orf5-tniBdelta-tniA. The isolate belonged to multilocus sequence typing ST235, one of the international high-risk clones. IMP-34, with an amino acid substitution (Glu126Gly) compared with IMP-1, hydrolyzed all β-lactamases tested except aztreonam, and its catalytic activities were similar to IMP-1. This is the first report of a clinical isolate of an IMP-34-producing P. aeruginosa harboring two copies of blaIMP-34 on its chromosome.
Collapse
Affiliation(s)
- Tatsuya Tada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
| | - Kayo Shimada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
| | - Akino Shiroma
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kazuma Nakano
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kuniko Teruya
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kazuhito Satou
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Takashi Hirano
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | | | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Matsumoto Y, Sakakihara S, Grushnikov A, Kikuchi K, Noji H, Yamaguchi A, Iino R, Yagi Y, Nishino K. A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS One 2016; 11:e0148797. [PMID: 26872134 PMCID: PMC4752270 DOI: 10.1371/journal.pone.0148797] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
The recent global increase in the prevalence of antibiotic-resistant bacteria and lack of development of new therapeutic agents emphasize the importance of selecting appropriate antimicrobials for the treatment of infections. However, to date, the development of completely accelerated drug susceptibility testing methods has not been achieved despite the availability of a rapid identification method. We proposed an innovative rapid method for drug susceptibility testing for Pseudomonas aeruginosa that provides results within 3 h. The drug susceptibility testing microfluidic (DSTM) device was prepared using soft lithography. It consisted of five sets of four microfluidic channels sharing one inlet slot, and the four channels are gathered in a small area, permitting simultaneous microscopic observation. Antimicrobials were pre-introduced into each channel and dried before use. Bacterial suspensions in cation-adjusted Mueller-Hinton broth were introduced from the inlet slot and incubated for 3 h. Susceptibilities were microscopically evaluated on the basis of differences in cell numbers and shapes between drug-treated and control cells, using dedicated software. The results of 101 clinically isolated strains of P. aeruginosa obtained using the DSTM method strongly correlated with results obtained using the ordinary microbroth dilution method. Ciprofloxacin, meropenem, ceftazidime, and piperacillin caused elongation in susceptible cells, while meropenem also induced spheroplast and bulge formation. Morphological observation could alternatively be used to determine the susceptibility of P. aeruginosa to these drugs, although amikacin had little effect on cell shape. The rapid determination of bacterial drug susceptibility using the DSTM method could also be applicable to other pathogenic species, and it could easily be introduced into clinical laboratories without the need for expensive instrumentation.
Collapse
Affiliation(s)
- Yoshimi Matsumoto
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
- * E-mail:
| | - Shouichi Sakakihara
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrey Grushnikov
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kazuma Kikuchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Akihito Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryota Iino
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Yasushi Yagi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Arais LR, Barbosa AV, Carvalho CA, Cerqueira AMF. Antimicrobial resistance, integron carriage, and gyrA and gyrB mutations in Pseudomonas aeruginosa isolated from dogs with otitis externa and pyoderma in Brazil. Vet Dermatol 2016; 27:113-7e31. [PMID: 26833540 DOI: 10.1111/vde.12290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is associated with otitis and pyoderma in dogs and is frequently resistant to several antimicrobial drugs. Resistance genes can be carried by integrons with quinolone resistance mainly due to mutations in DNA topoisomerases II and IV. OBJECTIVE To evaluate the antimicrobial susceptibility, integron carriage, and gyrA and gyrB mutations in P. aeruginosa isolates from canine otitis and pyoderma. ANIMALS One hundred and four P. aeruginosa strains isolated from dogs with otitis externa (n = 93) and pyoderma (n = 11). METHODS Antimicrobial susceptibility against 16 antibacterial agents was evaluated through agar diffusion tests. Integron carriage, class and gyrA and gyrB mutations were analysed by PCR, restriction fragment length polymorphism (RFLP)-PCR and genetic sequencing assays. RESULTS Isolates were mostly resistant to enrofloxacin (72.2%) and ticarcillin (59.7%). Lower resistance to ciprofloxacin (7.7%), tobramycin (3.8%) and polymixin B (0.0%) was detected. Ten (9.6%) multidrug-resistant (MDR) strains were detected. Eight (7.7%) strains carried class 1 integrons and this was associated with MDR (three isolates, P ≤ 0.05). Five of the integron-carrying strains exhibited aminoglycoside resistance genes. Mutations of gyrA and gyrB were observed in 10 isolates, seven of them resistant to all fluoroquinolones tested. CONCLUSIONS AND CLINICAL IMPORTANCE Enrofloxacin and ticarcilin resistance was widespread in P. aeruginosa isolated from dogs in Brazil. Pseudomonas aeruginosa carrying integrons may present a significant challenge for treatment.
Collapse
Affiliation(s)
- Lavicie R Arais
- Department of Microbiology and Parasitology, Federal Fluminense University (UFF), Rua Hernani Mello, 101, Niterói, 24210130, RJ, Brazil
| | - André V Barbosa
- Department of Microbiology and Parasitology, Federal Fluminense University (UFF), Rua Hernani Mello, 101, Niterói, 24210130, RJ, Brazil
| | - Cristiane A Carvalho
- Department of Microbiology and Parasitology, Federal Fluminense University (UFF), Rua Hernani Mello, 101, Niterói, 24210130, RJ, Brazil
| | - Aloysio M F Cerqueira
- Department of Microbiology and Parasitology, Federal Fluminense University (UFF), Rua Hernani Mello, 101, Niterói, 24210130, RJ, Brazil
| |
Collapse
|
41
|
Hu R, Du N, Chen N, Lin L, Zhai Y, Gu Z. Molecular analysis of type II topoisomerases of Aeromonas hydrophila isolated from fish and levofloxacin-induced resistant isolates in vitro. Folia Microbiol (Praha) 2015; 61:249-53. [DOI: 10.1007/s12223-015-0432-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
42
|
Belotti PT, Thabet L, Laffargue A, André C, Coulange-Mayonnove L, Arpin C, Messadi A, M'Zali F, Quentin C, Dubois V. Description of an original integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron proteins in Pseudomonas aeruginosa. J Antimicrob Chemother 2015; 70:2237-40. [PMID: 25977399 DOI: 10.1093/jac/dkv103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/28/2015] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES A burn unit of a hospital in Tunis underwent an endemic situation caused by imipenem-resistant Pseudomonas aeruginosa. For nine non-repetitive isolates of a clonal VIM-2-producing strain, the blaVIM-2 genetic background was characterized and the associated qnrVC1 gene molecularly analysed. METHODS The imipenem resistance mechanism was investigated by phenotypic and molecular tests, and resistance transfer was studied by conjugation and transformation experiments. The integron's structure was characterized by sequencing, and qnrVC1 expression was explored after cloning experiments. RESULTS The nine VIM-2-producing strains were collected from eight patients and one environmental sample. All transfer assays failed, suggesting a chromosomal location of blaVIM-2. This latter was found to be part of a class 1 integron of ∼7500 bp, which also contains blaOXA-2, aadA1 and two copies of the aadB, arr-6 and qnrVC1 genes. qnrVC1 exhibited higher homology with the chromosomally encoded qnr genes of Vibrionaceae than with plasmid-mediated qnr genes of Enterobacteriaceae. The qnrVC1 gene cassette possesses a promoter allowing its expression, and it conferred decreased fluoroquinolone susceptibility to Escherichia coli. Additionally, on the same integron, genes encoding an uncommon group IIC-attC intron were detected. CONCLUSIONS A VIM-2-producing P. aeruginosa outbreak led us to characterize an integron harbouring a qnrVC1 cassette and a new group IIC-attC intron. This is the first known description of a qnr determinant in a P. aeruginosa strain. Its presence conferred a low level of resistance to quinolones in E. coli, which might favour the emergence of highly resistant mutants.
Collapse
Affiliation(s)
- P T Belotti
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - L Thabet
- Laboratory of Biology, Aziza Othmana Hospital, Tunis, Tunisia
| | - A Laffargue
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - C André
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - L Coulange-Mayonnove
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - C Arpin
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - A Messadi
- Laboratory of Biology, Aziza Othmana Hospital, Tunis, Tunisia
| | - F M'Zali
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - C Quentin
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - V Dubois
- UMR 5234 CNRS, University Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux, France
| |
Collapse
|
43
|
Yang X, Xing B, Liang C, Ye Z, Zhang Y. Prevalence and fluoroquinolone resistance of pseudomonas aeruginosa in a hospital of South China. Int J Clin Exp Med 2015; 8:1386-1390. [PMID: 25785142 PMCID: PMC4358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a threat in clinical settings. This study aimed to investigate the molecular characterization and epidemiology of fluoroquinolones (FQs) resistance in P. aeruginosa isolated from South China. A total of 256 P. aeruginosa strains isolated from outpatients, emergency patients and inpatients were collected from January 2010 to December 2010 in the hospital of South China. The resistance profile of all isolated strains was screened by antibiotic-susceptibility testing, and the molecular characteristics of plasmid-mediated quinolone resistance (PMQR) and the quinolone resistance determining region (QRDR) were determined using PCR in combination with DNA sequencing. The result of antibiotic-susceptibility tests showed that most strains were sensitive to polymyxin B, piperacillin, piperacillin/tazobactam, ceftazidime and amikacin. Moreover, 65 isolates were identified as resistant to ciprofloxacin. Further analysis of QRDR revealed that the resistant strains carried at least one mutation in the gyrA (The83Ile), gyrB (Ser467Phe, Gln468His) and parC (Ser87Leu) genes, but no mutation was detected in parE. For the first time, we report here that the qnrA1 gene is associated with low levels of resistance to ciprofloxacin from clinical P. aeruginosa isolates in South China. The mutation of gyrA (at position 83) is clearly linked to the FQs resistance of P. aeruginosa. Moreover, FQs resistance of P. aeruginosa may be due to the chromosome-mediated resistance mechanism rather than PMQR.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Emergency, the Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, P R China
| | - Bangrong Xing
- Department of Emergency, the Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, P R China
| | - Caiqian Liang
- Department of Emergency, the Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, P R China
| | - Zhuopeng Ye
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-Sen UniversitGuangzhou 510630, Guangdong Province, P R China
| | - Yongbiao Zhang
- Department of Emergency, the Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, P R China
| |
Collapse
|
44
|
Stockmann C, Hillyard B, Ampofo K, Spigarelli MG, Sherwin CMT. Levofloxacin inhalation solution for the treatment of chronic Pseudomonas aeruginosa infection among patients with cystic fibrosis. Expert Rev Respir Med 2014; 9:13-22. [PMID: 25417708 DOI: 10.1586/17476348.2015.986469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic pulmonary infections are common among patients with cystic fibrosis. By 10 years of age, Pseudomonas aeruginosa is the predominant pathogen. Inhaled levofloxacin solution (MP-376) is a promising new therapy that exhibits rapid antibacterial activity and excellent biofilm penetration against P. aeruginosa. In the largest trial to date, 151 patients were randomized to receive MP-376 or placebo. At the end of the 28-day treatment period, patients who received MP-376 had decreased P. aeruginosa density in sputum, improved lung function parameters and improved respiratory symptoms. MP-376 also appeared to be safe and well tolerated. The results of two recently completed Phase III trials have not yet been released; however, these data will be critical in determining whether MP-376 is a safe and effective maintenance therapy for chronic pulmonary P. aeruginosa infections among patients with cystic fibrosis.
Collapse
Affiliation(s)
- Chris Stockmann
- Department of Pediatrics, Division of Clinical Pharmacology, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | | | | | | | | |
Collapse
|
45
|
Target-based resistance in Pseudomonas aeruginosa and Escherichia coli to NBTI 5463, a novel bacterial type II topoisomerase inhibitor. Antimicrob Agents Chemother 2014; 59:331-7. [PMID: 25348539 DOI: 10.1128/aac.04077-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In a previous report (T. J. Dougherty, A. Nayar, J. V. Newman, S. Hopkins, G. G. Stone, M. Johnstone, A. B. Shapiro, M. Cronin, F. Reck, and D. E. Ehmann, Antimicrob Agents Chemother 58:2657-2664, 2014), a novel bacterial type II topoisomerase inhibitor, NBTI 5463, with activity against Gram-negative pathogens was described. First-step resistance mutations in Pseudomonas aeruginosa arose exclusively in the nfxB gene, a regulator of the MexCD-OprJ efflux pump system. The present report describes further resistance studies with NBTI 5463 in both Pseudomonas aeruginosa and Escherichia coli. Second-step mutations in P. aeruginosa arose at aspartate 82 of the gyrase A subunit and led to 4- to 8-fold increases in the MIC over those seen in the parental strain with a first-step nfxB efflux mutation. A third-step mutant showed additional GyrA changes, with no changes in topoisomerase IV. Despite repeated efforts, resistance mutations could not be selected in E. coli. Genetic introduction of the Asp82 mutations observed in P. aeruginosa did not significantly increase the NBTI MIC in E. coli. However, with the aspartate 82 mutation present, it was possible to select second-step mutations in topoisomerase IV that did lead to MIC increases of 16- and 128-fold. As with the gyrase aspartate 82 mutation, the mutations in topoisomerase IV did not by themselves raise the NBTI MIC in E. coli. Only the presence of mutations in both targets of E. coli led to an increase in NBTI MIC values. This represents a demonstration of the value of balanced dual-target activity in mitigating resistance development.
Collapse
|
46
|
Sequence types 235, 111, and 132 predominate among multidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob Agents Chemother 2014; 58:6277-83. [PMID: 25070098 DOI: 10.1128/aac.03116-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A population analysis of 103 multidrug-resistant Pseudomonas aeruginosa isolates from Croatian hospitals was performed. Twelve sequence types (STs) were identified, with a predominance of international clones ST235 (serotype O11 [41%]), ST111 (serotype O12 [15%]), and ST132 (serotype O6 [11%]). Overexpression of the natural AmpC cephalosporinase was common (42%), but only a few ST235 or ST111 isolates produced VIM-1 or VIM-2 metallo-β-lactamases or PER-1 or GES-7 extended-spectrum β-lactamases.
Collapse
|
47
|
Lv L, Jiang T, Zhang S, Yu X. Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8188-95. [PMID: 24933271 DOI: 10.1021/es501646n] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial antibiotic resistance (BAR) in drinking water has become a global issue because of its risks on the public health. Usually, the antibiotic concentrations in drinking water are too low to select antibiotic resistant strains effectively, suggesting that factors other than antibiotics would contribute to the emergence of BAR. In the current study, the impacts of mutagenic disinfection byproducts (DBPs) on BAR were explored, using four typical DBPs: dibromoacetic acid, dichloroacetonitrile, potassium bromate, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). After exposure to DBPs, resistances to 10 individual antibiotics and multiple antibiotics were both raised by various levels, norfloxacin and polymycin B resistances were enhanced even greater than 10-fold compared with control. MX increased the resistance most observably in the selected DBPs, which was consistent with its mutagenic activity. The resistant mutants showed hereditary stability during 5-day culturing. The increase of BAR was caused by the mutagenic activities of DBPs, since mutation frequency declined by adding ROS scavenger. Mutagenesis was further confirmed by sequencing of the related genes. Our study indicated that mutagenic activities of the selected DBPs could induce antibiotic resistance, even multidrug resistance, which may partially explain the lack of agreement between BAR and antibiotic levels in drinking water.
Collapse
Affiliation(s)
- Lu Lv
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen, 361021, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med 2014; 34:286-92. [PMID: 24982833 PMCID: PMC4071185 DOI: 10.3343/alm.2014.34.4.286] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/22/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a clinically important pathogen that causes opportunistic infections and nosocomial outbreaks. Recently, the type III secretion system (TTSS) has been shown to play an important role in the virulence of P. aeruginosa. ExoU, in particular, has the greatest impact on disease severity. We examined the relationship among the TTSS effector genotype (exoS and exoU), fluoroquinolone resistance, and target site mutations in 66 carbapenem-resistant P. aeruginosa strains. METHODS Sixty-six carbapenem-resistant P. aeruginosa strains were collected from patients in a university hospital in Daejeon, Korea, from January 2008 to May 2012. Minimum inhibitory concentrations (MICs) of fluoroquinolones (ciprofloxacin and levofloxacin) were determined by using the agar dilution method. We used PCR and sequencing to determine the TTSS effector genotype and quinolone resistance-determining regions (QRDRs) of the respective target genes gyrA, gyrB, parC, and parE. RESULTS A higher proportion of exoU+ strains were fluoroquinolone-resistant than exoS+ strains (93.2%, 41/44 vs. 45.0%, 9/20; P≤0.0001). Additionally, exoU+ strains were more likely to carry combined mutations than exoS+ strains (97.6%, 40/41 vs. 70%, 7/10; P=0.021), and MIC increased as the number of active mutations increased. CONCLUSIONS The recent overuse of fluoroquinolone has led to both increased resistance and enhanced virulence of carbapenem-resistant P. aeruginosa. These data indicate a specific relationship among exoU genotype, fluoroquinolone resistance, and resistance-conferring mutations.
Collapse
Affiliation(s)
- Hye Hyun Cho
- Department of Biomedical Laboratory Science, Jeonju Kijeon College, Jeonju, Korea
| | - Kye Chul Kwon
- Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Semi Kim
- Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Sun Hoe Koo
- Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
49
|
Wang YT, Lee MF, Peng CF. Mutations in the quinolone resistance-determining regions associated with ciprofloxacin resistance in Pseudomonas aeruginosa isolates from Southern Taiwan. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Jiang X, Yu T, Jiang X, Zhang W, Zhang L, Ma J. Emergence of plasmid-mediated quinolone resistance genes in clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa in Henan, China. Diagn Microbiol Infect Dis 2014; 79:381-3. [PMID: 24805186 DOI: 10.1016/j.diagmicrobio.2014.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/05/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
A total of 216 clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa were collected from a general hospital in Henan, China, and screened for the plasmid-mediated quinolone resistance (PMQR) determinants. The presence of β-lactamase genes and mutations in quinolone resistance-determining regions were investigated among the PMQR-positive isolates.
Collapse
Affiliation(s)
- Xiaobing Jiang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tao Yu
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453000, China.
| | - Xiaojie Jiang
- College of Chemistry and Molecular Engineering, Henan Provincial Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Wei Zhang
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453000, China
| | - Laiping Zhang
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453000, China
| | - Jianmin Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|