1
|
Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 2015; 47:81-97. [PMID: 26157586 PMCID: PMC4495280 DOI: 10.3947/ic.2015.47.2.81] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/18/2022] Open
Abstract
Metallo-β-lactamase-producing Pseudomonas aeruginosa (MPPA) is an important nosocomial pathogen that shows resistance to all β-lactam antibiotics except monobactams. There are various types of metallo-β-lactamases (MBLs) in carbapenem-resistant P. aeruginosa including Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), Sao Paulo metallo-β-lactamase (SPM), Germany imipenemase (GIM), New Delhi metallo-β-lactamase (NDM), Florence imipenemase (FIM). Each MBL gene is located on specific genetic elements including integrons, transposons, plasmids, or on the chromosome, in which they carry genes encoding determinants of resistance to carbapenems and other antibiotics, conferring multidrug resistance to P. aeruginosa. In addition, these genetic elements are transferable to other Gram-negative species, increasing the antimicrobial resistance rate and complicating the treatment of infected patients. Therefore, it is essential to understand the epidemiology, resistance mechanism, and molecular characteristics of MPPA for infection control and prevention of a possible global health crisis. Here, we highlight the characteristics of MPPA.
Collapse
Affiliation(s)
- Duck Jin Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, Silla University, Busan, Korea
| | - In-Ho Jang
- Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University, Wonju, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Kyung Kang
- Department of Dental Hygiene, Silla University, Busan, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
[Epidemic outbreak of Pseudomonas aeruginosa carbepenem-resistant producing metallo-beta-lactamase]. Rev Clin Esp 2011; 211:187-91. [PMID: 21429485 DOI: 10.1016/j.rce.2010.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/14/2010] [Accepted: 12/24/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To describe the nosocomial outbreak of multiresistant Pseudomonas aeruginosa producing metallo-beta-lactamase (MBL) in Cartagena (Murcia, Spain). MATERIAL AND METHODS In May 2009, six consecutive isolations of multiresistant Pseudomonas aeruginosa were detected. These were characterized by their profile of resistance to imipenem and cephalosporins and sensibility to aztreonam, this suggesting the production of carbapenemases. The isolations were screened for MBL and a PCR for the detection of the VIM gene was performed. Secondary, all of the isolations having the same characteristics in the year 2009 were analyzed retrospectively in order to establish the possibility of an endemic infection. RESULTS The molecular typing of the isolates revealed two clones in Pulsed Field Gel Electrophoresis (PFGE), the most frequent (Type 1) being represented by 4 isolates. All of them came from patients who were in the Intensive Care Unit. All (100%) of the isolates of the outbreak were considered to be multiresistant. PCR confirmed the presence of the VIM gene related with the production of MBL in 100% of the isolates corresponding to pulsotype 1. CONCLUSIONS We detected the existence of an outbreak of carbapenem-resistant Pseudomonas aeruginosa producing metallo-beta-lactamase. Am evident therapeutic problem as well as a problem of nosocomial infection was considered. The isolation means should be maximized and routine controls performed for the presence of MBL given its elevated prevalence in our setting.
Collapse
|
3
|
Vila J, Marco F. Lectura interpretada del antibiograma de bacilos gramnegativos no fermentadores. Enferm Infecc Microbiol Clin 2010; 28:726-36. [DOI: 10.1016/j.eimc.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 12/18/2022]
|
4
|
Jeong JH, Shin KS, Lee JW, Park EJ, Son SY. Analysis of a novel class 1 integron containing metallo-β-lactamase gene VIM-2 in Pseudomonas aeruginosa. J Microbiol 2010; 47:753-9. [DOI: 10.1007/s12275-008-0272-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/13/2009] [Indexed: 10/19/2022]
|
5
|
Nicolau CJ, Oliver A. Carbapenemasas en especies del género Pseudomonas. Enferm Infecc Microbiol Clin 2010; 28 Suppl 1:19-28. [DOI: 10.1016/s0213-005x(10)70004-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Bošnjak Z, Bedenić B, Mazzariol A, Jarža-Davila N, Šuto S, Kalenić S. VIM-2 β-lactamase in Pseudomonas aeruginosa isolates from Zagreb, Croatia. ACTA ACUST UNITED AC 2009; 42:193-7. [DOI: 10.3109/00365540903426582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 54:320-7. [PMID: 19901094 DOI: 10.1128/aac.00783-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of bla(VIM-1) within four different genetic platforms from distinct Enterobacteriaceae and Pseudomonas aeruginosa isolates in an area with a low prevalence of metallo-beta-lactamase producers is reported. Forty-three VIM-1-producing isolates (including 19 Enterobacter cloacae, 2 Escherichia coli, and 2 P. aeruginosa isolates, 18 Klebsiella pneumoniae isolate, and 2 Klebsiella oxytoca isolate) recovered from 2005 to 2007 and corresponding to 15 pulsed-field gel electrophoresis types were studied. The Enterobacteriaceae isolates corresponded to a hospital outbreak, and the P. aeruginosa isolates were sporadically recovered. The genetic context of the integrons carrying bla(VIM-1) (arbitrarily designated types A, B, C, and D) was characterized by PCR mapping based on known Tn402 and mercury transposons and further sequencing. Among Enterobacteriaceae isolates, bla(VIM-1) was part of integrons located either in an In2-Tn402 element linked to Tn21 (type A; In110-bla(VIM-1)-aacA4-aadA1) or in a Tn402 transposon lacking the whole tni module [type B; In113-bla(VIM-1)-aacA4-dhfrII (also called dfrB1)-aadA1-catB2] and the transposon was associated with an IncHI2 or IncI1 plasmid, respectively. Among P. aeruginosa isolates, bla(VIM-1) was part of a new gene cassette array located in a defective Tn402 transposon carrying either tniBDelta3 and tniA (type C; bla(VIM-1)-aadA1) or tniC and DeltatniQ (type D; bla(VIM-1)-aadB), and both Tn402 variants were associated with conjugative plasmids of 30 kb. The dissemination of bla(VIM-1) was associated with different genetic structures and bacterial hosts, depicting a complex emergence and evolutionary network scenario in our facility, Ramón y Cajal University Hospital, Madrid, Spain. Knowledge of the complex epidemiology of bla(VIM-1) is necessary to control this emerging threat.
Collapse
|
8
|
Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM. Beta-lactams and beta-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit Rev Microbiol 2009; 35:81-108. [PMID: 19514910 DOI: 10.1080/10408410902733979] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of successive generations of beta-lactams has selected successive generations of beta-lactamases including CTX-M ESBLs, AmpC beta-lactamases, and KPC carbapenamases in Enterobacteriaceae. Moreover, this cephalosporin resistance, along with rising resistance to fluoroquinolones, is now driving the use of carbapenems and unfortunately the carbapenem resistance has emerged markedly, especially in Acinetobacter spp. due to OXA- and metallo-carbapenemases. The industry responded to the challenge of rising resistance and recently developed some novel beta-lactams such as ceftobiprole, ceftaroline etc. and many beta-lactam compounds, including beta-lactamase-inhibitors, such as BMS-247243, S-3578, RWJ-54428, CS-023, SMP-601, NXL 104, BAL 30376, LK 157, and so on are under trials. This review provides the comprehensive accounts of the developments in penicillins, cephalosporins, carbapenems, and beta-lactamase-inhibitors, and the insight about medicinal chemistry, mechanism(s) of action and resistance, potential strategies to overcome resistance due to beta-lactamases, and also the recent advancements in the development of newer beta-lactam compounds; some of which are still under trials and yet to be classified. This review will fill the gap since previously published reviews and will serve as a comprehensive update on the current topic.
Collapse
Affiliation(s)
- M Shahid
- Section of Antimicrobial Resistance Researches and Molecular Biology, Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
9
|
Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 2009; 58:1133-1148. [PMID: 19528173 DOI: 10.1099/jmm.0.009142-0] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is one of the leading nosocomial pathogens worldwide. Nosocomial infections caused by this organism are often hard to treat because of both the intrinsic resistance of the species (it has constitutive expression of AmpC beta-lactamase and efflux pumps, combined with a low permeability of the outer membrane), and its remarkable ability to acquire further resistance mechanisms to multiple groups of antimicrobial agents, including beta-lactams, aminoglycosides and fluoroquinolones. P. aeruginosa represents a phenomenon of bacterial resistance, since practically all known mechanisms of antimicrobial resistance can be seen in it: derepression of chromosomal AmpC cephalosporinase; production of plasmid or integron-mediated beta-lactamases from different molecular classes (carbenicillinases and extended-spectrum beta-lactamases belonging to class A, class D oxacillinases and class B carbapenem-hydrolysing enzymes); diminished outer membrane permeability (loss of OprD proteins); overexpression of active efflux systems with wide substrate profiles; synthesis of aminoglycoside-modifying enzymes (phosphoryltransferases, acetyltransferases and adenylyltransferases); and structural alterations of topoisomerases II and IV determining quinolone resistance. Worryingly, these mechanisms are often present simultaneously, thereby conferring multiresistant phenotypes. This review describes the known resistance mechanisms in P. aeruginosa to the most frequently administrated antipseudomonal antibiotics: beta-lactams, aminoglycosides and fluoroquinolones.
Collapse
Affiliation(s)
- Tanya Strateva
- Department of Microbiology, Medical University of Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| | - Daniel Yordanov
- Department of Microbiology, Medical University of Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| |
Collapse
|
10
|
Oliver A. Impacto de la diseminación de Pseudomonas aeruginosa multirresistente productora de metalo-β-lactamasas en los hospitales: presente y futuro. Enferm Infecc Microbiol Clin 2009; 27:255-6. [DOI: 10.1016/j.eimc.2009.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/07/2009] [Indexed: 10/20/2022]
|
11
|
Characterization of the new metallo-beta-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob Agents Chemother 2008; 52:3589-96. [PMID: 18644957 DOI: 10.1128/aac.00465-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a survey conducted to evaluate the incidence of class B carbapenemase (metallo-beta-lactamase [MBL])-producing Pseudomonas aeruginosa strains from hospitals in Majorca, Spain, five clinical isolates showed a positive Etest MBL screening test result. In one of them, strain PA-SL2, the presence of a new bla(VIM) derivative (bla(VIM-13)) was detected by PCR amplification with bla(VIM-1)-specific primers followed by sequencing. The bla(VIM-13)-producing isolate showed resistance to all beta-lactams (except aztreonam), gentamicin, tobramycin, and ciprofloxacin. VIM-13 exhibited 93% and 88% amino acid sequence identities with VIM-1 and VIM-2, respectively. bla(VIM-13) was cloned in parallel with bla(VIM-1), and the resistance profile conferred was analyzed both in Escherichia coli and in P. aeruginosa backgrounds. Compared to VIM-1, VIM-13 conferred slightly higher levels of resistance to piperacillin and lower levels of resistance to ceftazidime and cefepime. VIM-13 and VIM-1 were purified in parallel as well, and their kinetic parameters were compared. The k(cat)/K(m) ratios for the antibiotics mentioned above were in good agreement with the MIC data. Furthermore, EDTA inhibited the activity of VIM-13 approximately 25 times less than it inhibited the activity of VIM-1. VIM-13 was harbored in a class 1 integron, along with a new variant (Ala108Thr) of the aminoglycoside-modifying enzyme encoding gene aacA4, which confers resistance to gentamicin and tobramycin. Finally, the VIM-13 integron was apparently located in the chromosome, since transformation and conjugation experiments consistently yielded negative results and the bla(VIM-13) probe hybridized only with the genomic DNA.
Collapse
|
12
|
Complete Sequence of p07-406, a 24,179-base-pair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 2008; 52:3099-105. [PMID: 18591274 DOI: 10.1128/aac.01093-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An outbreak involving a Pseudomonas aeruginosa strain that was resistant to all tested antimicrobials except polymyxin B occurred in a hospital in Houston, TX. Previous studies on this strain showed that it possesses a novel mobile metallo-beta-lactamase (MBL) gene, designated bla(VIM-7), located on a plasmid (p07-406). Here, we report the complete sequence, annotation, and functional characterization of this plasmid. p07-406 is 24,179 bp in length, and 29 open reading frames were identified related to known or putatively recognized proteins. Analysis of this plasmid showed it to be comprised of four distinct regions: (i) a region of 5,200 bp having a Tn501-like mercuric resistance (mer) transposon upstream of the replication region; (ii) a Tn3-like transposon carrying a truncated integron with a bla(VIM-7) gene and an insertion sequence inserted at the other end of this transposon; (iii) a region of four genes, upstream of the Tn3-like transposon, possessing very high similarity to plasmid pXcB from Xanthomonas campestris pv. citri commonly associated with plants; (iv) a backbone sequence similar to the backbone structure of the IncP group plasmid Rms149, pB10, and R751. This is the first plasmid to be sequenced carrying an MBL gene and highlights the amelioration of DNA segments from disparate origins, most noticeably from plant pathogens.
Collapse
|
13
|
Eliecer Cano M, Ángeles Domínguez M, Ezpeleta C, Padilla B, Ramírez de Arellano E, Martínez-Martínez L. Cultivos de vigilancia epidemiológica de bacterias resistentes a los antimicrobianos de interés nosocomial. Enferm Infecc Microbiol Clin 2008; 26:220-9. [DOI: 10.1016/s0213-005x(08)72694-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 2007; 51:4329-35. [PMID: 17938181 DOI: 10.1128/aac.00810-07] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All (236) Pseudomonas aeruginosa isolates resistant to imipenem and/or meropenem collected during a multicenter (127-hospital) study in Spain were analyzed. Carbapenem-resistant isolates were found to be more frequently resistant to all beta-lactams and non-beta-lactam antibiotics than carbapenem-susceptible isolates (P < 0.001), and up to 46% of the carbapenem-resistant isolates met the criteria used to define multidrug resistance (MDR). Pulsed-field gel electrophoresis revealed remarkable clonal diversity (165 different clones were identified), and with few exceptions, the levels of intra- and interhospital dissemination of clones were found to be low. Carbapenem resistance was driven mainly by the mutational inactivation of OprD, accompanied or not by the hyperexpression of AmpC or MexAB-OprM. Class B carbapenemases (metallo-beta-lactamases [MBLs]) were detected in a single isolate, although interestingly, this isolate belonged to one of the few epidemic clones documented. The MBL-encoding gene (bla(VIM-2)), along with the aminoglycoside resistance determinants, was transferred to strain PAO1 by electroporation, demonstrating its plasmid location. The class 1 integron harboring bla(VIM-2) was characterized as well, and two interesting features were revealed: intI1 was found to be disrupted by a 1.1-kb insertion sequence, and a previously undescribed aminoglycoside acetyltransferase-encoding gene [designated aac(6')-32] preceded bla(VIM-2). AAC(6')-32 showed 80% identity to AAC(6')-Ib' and the recently described AAC(6')-31, and when aac(6')-32 was cloned into Escherichia coli, it conferred resistance to tobramycin and reduced susceptibility to gentamicin and amikacin. Despite the currently low prevalence of epidemic clones with MDR, active surveillance is needed to detect and prevent the dissemination of these clones, particularly those producing integron- and plasmid-encoded MBLs, given their additional capacity for the intra- and interspecies spread of MDR.
Collapse
|
15
|
Peña C, Suarez C, Tubau F, Gutierrez O, Domínguez A, Oliver A, Pujol M, Gudiol F, Ariza J. Nosocomial spread of Pseudomonas aeruginosa producing the metallo-β-lactamase VIM-2 in a Spanish hospital: clinical and epidemiological implications. Clin Microbiol Infect 2007; 13:1026-9. [PMID: 17651449 DOI: 10.1111/j.1469-0691.2007.01784.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thirty-four isolates of pan-resistant Pseudomonas aeruginosa producing VIM-2 metallo-beta-lactamase (MBL) were detected at a university hospital in Spain (July 2004-September 2006). Eleven (32%) patients had clinically significant infections, and three (27%) of these patients died. A single clone of MBL-producing P. aeruginosa was identified by pulsed-field gel electrophoresis. A cluster of isolates associated with the vascular surgery ward involved ten patients and appeared as a series of low-grade, sustained and misdiagnosed endemic infections in the hospital. The identification of MBL-positive P. aeruginosa should be considered mandatory in the surveillance of pan-resistant P. aeruginosa and requires a high index of suspicion in the context of endemic infections with a low attack rate.
Collapse
Affiliation(s)
- C Peña
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Georges B, Conil JM, Dubouix A, Archambaud M, Bonnet E, Saivin S, Lauwers-Cancès V, Cristini C, Cougot P, Decun JF, Mathe O, Chabanon G, Marty N, Seguin T, Houin G. Risk of emergence of Pseudomonas aeruginosa resistance to β-lactam antibiotics in intensive care units. Crit Care Med 2006; 34:1636-41. [PMID: 16557152 DOI: 10.1097/01.ccm.0000215517.51187.ca] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The emergence of Pseudomonas aeruginosa resistance to antimicrobial drugs is frequent in intensive care units and may be correlated with the use of some specific drugs. The purpose of our study was to identify a relationship between the use of various beta-lactam antibiotics and the emergence of resistance and to characterize the mechanism of resistance involved. DESIGN We conducted an open prospective study over a 3-yr period by including all patients in whom P. aeruginosa had been isolated from one or more specimens: bronchial aspiration, blood cultures, catheters, and urinary cultures. SETTING General intensive care unit. PATIENTS One hundred and thirty-two intensive care unit patients. INTERVENTIONS The antibiotics studied were amoxiclav, piperacillin-tazobactam, cefotaxime, ceftazidime, cefepim, and imipenem. The mechanisms of resistance studied were production of penicillinase or cephalosporinase, nonenzymatic mechanisms, and loss of porin OprD2. Analysis was performed using Cox proportional-hazard regression with time-dependant variables. MEASUREMENTS AND MAIN RESULTS Forty-two strains became resistant, 30 to one antibiotic, nine to two, and three to three, leading to the study of 57 resistant strains. Imipenem (hazard ratio 7.8; 95% confidence interval, 3.4-18.1), piperacillin-tazobactam (hazard ratio 3.9; 95% confidence interval, 1.3-11.9), and cefotaxim (hazard ratio 9.3; 95% confidence interval, 2.9-30.2) were strongly linked to the emergence of resistance. The use of imipenem (p<.0001) was associated with the loss of porin OprD2. Thirty-six strains from nine patients, assayed by pulsed-field gel electrophoresis, showed that for any one patient, all the strains were genetically related. CONCLUSIONS Our results show that there is a high risk of the emergence of drug resistance during treatment with cefotaxime, imipenem, and piperacillin-tazobactam. This has to be taken into account in the therapeutic choice and in the patient's surveillance.
Collapse
Affiliation(s)
- Bernard Georges
- Anesthésie Réanimation Polyvalente, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gutiérrez-Urbón O, Requena-Rodríguez MJ, Díaz-Antolín P, Oliver-Palomo A. [Isolation of multi-resistant carbapenemase-producing Pseudomonas aeruginosa (VIM-2) and extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (SHV-2) in a perianal ulcer in a patient with hematological disease]. Enferm Infecc Microbiol Clin 2006; 23:574-5. [PMID: 16324573 DOI: 10.1157/13080272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Walsh TR. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005; 11 Suppl 6:2-9. [PMID: 16209700 DOI: 10.1111/j.1469-0691.2005.01264.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The increase in Gram-negative broad-spectrum antibiotic resistance is worrisome, particularly as there are few, if any, ''pipeline'' antimicrobial agents possessing suitable activity against Pseudomonas spp. or Acinetobacter spp. The increase in resistance will be further enhanced by the acquisition of metallo-beta-lactamase (MBL) genes that can potentially confer broad-spectrum beta-lactam resistance. These genes encode enzymes that can hydrolyse all classes of beta-lactams and the activity of which cannot be neutralised by beta-lactamase inhibitors. MBL genes are often associated with aminoglycoside resistant genes and thus bacteria that possess MBL genes are often co-resistant to aminoglycosides, further compromising therapeutic regimes. Both types of genes can be found as gene cassettes carried by integrons that in turn are embedded within transposons providing a highly ambulatory genetic element. The dissemination of MBL genes is typified by the spread of blaVIM-2, believed to originate from a Portuguese patient in 1995, and is now present in over 20 counties. The increase in international travel is likely to be a contributory factor for the ascendancy of mobile MBL genes as much as the mobility among individual bacteria. Fitness, acquisition and host dependency are key areas that need to be addressed to enhance our understanding of how antibiotic resistance spreads. There is also a pressing need for new, and hopefully novel, compounds active against pan-resistant Gram-negative bacteria--a growing problem that needs to be addressed by both government and industry.
Collapse
Affiliation(s)
- T R Walsh
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
19
|
Tórtola MT, Lavilla S, Miró E, González JJ, Larrosa N, Sabaté M, Navarro F, Prats G. First detection of a carbapenem-hydrolyzing metalloenzyme in two enterobacteriaceae isolates in Spain. Antimicrob Agents Chemother 2005; 49:3492-4. [PMID: 16048967 PMCID: PMC1196258 DOI: 10.1128/aac.49.8.3492-3494.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of Enterobacteriaceae, Escherichia coli and Klebsiella pneumoniae, producing VIM-1 were isolated for the first time in Spain. In both strains, bla(VIM-1) was found to be carried on a gene cassette inserted into a class 1 integron. The bla(VIM-1)-containing integron was located on a transferable plasmid.
Collapse
Affiliation(s)
- M Teresa Tórtola
- Servicio de Microbiología, Hospital Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Aubron C, Poirel L, Fortineau N, Nicolas P, Collet L, Nordmann P. Nosocomial Spread ofPseudomonas aeruginosaIsolates Expressing the Metallo-β-Lactamase VIM-2 in a Hematology Unit of a French Hospital. Microb Drug Resist 2005; 11:254-9. [PMID: 16201928 DOI: 10.1089/mdr.2005.11.254] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dissemination of metallo-beta-lactamases (carbapenemases) was investigated retrospectively among ceftazidimeand imipenem-resistant Pseudomonas aeruginosa isolates in a hematology unit in Marseilles, France, from September, 1995, to March, 1999. Sixteen clinical isolates and 23 environmental strains were identified, with a same bla (VIM-2) gene that encoded a carbapenemase identified in Southern Europe and South Korea. Five different genotypes were identified among clinical and environmental P. aeruginosa isolates all harboring an approximately 45-kb plasmid with bla (VIM-2)-positive class 1 integrons varying in structures. This study identified a hidden reservoir of carbapenemase producers.
Collapse
Affiliation(s)
- Cécile Aubron
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 94275 Le Kremlin-Bicêtre cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18:306-25. [PMID: 15831827 PMCID: PMC1082798 DOI: 10.1128/cmr.18.2.306-325.2005] [Citation(s) in RCA: 1004] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ascendancy of metallo-beta-lactamases within the clinical sector, while not ubiquitous, has nonetheless been dramatic; some reports indicate that nearly 30% of imipenem-resistant Pseudomonas aeruginosa strains possess a metallo-beta-lactamase. Acquisition of a metallo-beta-lactamase gene will invariably mediate broad-spectrum beta-lactam resistance in P. aeruginosa, but the level of in vitro resistance in Acinetobacter spp. and Enterobacteriaceae is less dependable. Their clinical significance is further embellished by their ability to hydrolyze all beta-lactams and by the fact that there is currently no clinical inhibitor, nor is there likely to be for the foreseeable future. The genes encoding metallo-beta-lactamases are often procured by class 1 (sometimes class 3) integrons, which, in turn, are embedded in transposons, resulting in a highly transmissible genetic apparatus. Moreover, other gene cassettes within the integrons often confer resistance to aminoglycosides, precluding their use as an alternative treatment. Thus far, the metallo-beta-lactamases encoded on transferable genes include IMP, VIM, SPM, and GIM and have been reported from 28 countries. Their rapid dissemination is worrisome and necessitates the implementation of not just surveillance studies but also metallo-beta-lactamase inhibitor studies securing the longevity of important anti-infectives.
Collapse
Affiliation(s)
- Timothy R Walsh
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Abstract
The understanding of microbial resistance to the beta-lactam class of antibiotics in the form of beta-lactamases has come a long way since the early discoveries of narrow-spectrum penicillinases. Integron-borne beta-lactamases co-occurring with a wide array of non-beta-lactam resistance genes, particularly pose an increasing threat to the nosocomial environment, giving rise to multi-drug resistant microbes with complex resistance patterns. Selection of potent beta-lactamases through the use of non-beta-lactam agents may be possible through integron-mediated resistance. It has become imperative that we should continuously strive to understand these complex mechanisms of antimicrobial resistance, not only to overcome them, but to avoid them from evolving further.
Collapse
Affiliation(s)
- Gerhard F Weldhagen
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service, P.O. Box 2034, Pretoria 0001, South Africa.
| |
Collapse
|
23
|
Muniesa M, García A, Miró E, Mirelis B, Prats G, Jofre J, Navarro F. Bacteriophages and diffusion of beta-lactamase genes. Emerg Infect Dis 2004; 10:1134-7. [PMID: 15207070 PMCID: PMC3323147 DOI: 10.3201/eid1006.030472] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated the presence of various β-lactamase genes within the bacteriophages in sewage. Results showed the occurrence of phage particles carrying sequences of blaOXA-2, blaPSE-1 or blaPSE-4 and blaPSE-type genes. Phages may contribute to the spread of some β-lactamase genes.
Collapse
Affiliation(s)
| | - Aurora García
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Beatriz Mirelis
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Guillem Prats
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Juan Jofre
- University of Barcelona, Barcelona, Spain
| | - Ferran Navarro
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004; 48:2043-8. [PMID: 15155197 PMCID: PMC415580 DOI: 10.1128/aac.48.6.2043-2048.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bla(OXA-50) gene (formerly known as the PA5514 gene) is an oxacillinase gene identified in silico in the genome of Pseudomonas aeruginosa PAO1. By using a mutant strain of P. aeruginosa PAO1 that had an inactivated bla(AmpC) cephalosporinase gene, the bla(OXA-50) gene was shown to be expressed constitutively in P. aeruginosa. This beta-lactamase gene was cloned onto a multicopy plasmid and expressed in P. aeruginosa and Escherichia coli. It conferred decreased susceptibility to ampicillin and ticarcillin and, interestingly, to moxalactam and meropenem in P. aeruginosa but not in E. coli. Overexpression and purification enabled us to determine the molecular mass (25 kDa), the pI value (8.6), and the hydrolysis spectrum of the OXA-50 beta-lactamase. It is a narrow-spectrum oxacillinase that uncommonly hydrolyzes imipenem, although at a low level. Very similar oxacillinase genes were identified in all P. aeruginosa isolates from various geographical origins tested. The weak variability of the nucleotide sequence of this gene (0 to 2%) corresponded to that found for the naturally occurring bla(AmpC) cephalosporinase gene of P. aeruginosa. The study indicated that P. aeruginosa harbors two naturally encoded beta-lactamase genes, one of which encodes an inducible cephalosporinase and the other of which encodes a constitutively expressed oxacillinase.
Collapse
Affiliation(s)
- Delphine Girlich
- Service de Bactériologie-Virologie, Université Paris XI, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | | | | |
Collapse
|
25
|
Mechanisms and detection of carbapenem resistance in Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. ACTA ACUST UNITED AC 2004. [DOI: 10.1097/01.revmedmi.0000131426.36224.82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Tsakris A, Tassios PT, Polydorou F, Papa A, Malaka E, Antoniadis A, Legakis NJ. Infrequent detection of acquired metallo-beta-lactamases among carbapenem-resistant Pseudomonas isolates in a Greek hospital. Clin Microbiol Infect 2004; 9:846-51. [PMID: 14616706 DOI: 10.1046/j.1469-0691.2003.00642.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the possible distribution of metallo-beta-lactamases among nosocomial Pseudomonas isolates in a Greek hospital with a recent high prevalence of carbapenem-resistant Pseudomonas isolates. METHODS All carbapenem-resistant (imipenem- and/or meropenem-resistant) (MICs > 8 mg/L) Pseudomonas non-replicate isolates recovered from clinical infections in the Microbiology Laboratory of Saint Demetrios Hospital, Thessaloniki, Greece, from April 1998 to November 2000 were studied for the presence of metallo-beta-lactamases. They were tested by a disk diffusion test, PCR analysis, and nucleotide sequencing. DNA fingerprints were obtained by pulsed-field gel electrophoresis (PFGE) of XbaI-digested chromosomal DNA. RESULTS In total, 24 carbapenem-resistant isolates (23 P. aeruginosa and one P. putida) were recovered. The serotypes observed among the P. aeruginosa isolates were, in order of decreasing frequency, O:11 (52%), O:3 and O:12 (17% each), and O:6 (13%). PFGE grouped 17 of the P. aeruginosa isolates into four clusters, each containing from two to seven isolates, while the remaining isolates exhibited unique genotypes. blaVIM-2 was detected in the P. putida isolate and a P. aeruginosa serotype O:3 isolate. The latter strain was genotypically distinct from other contemporaneous or older carbapenem-resistant P. aeruginosa Greek isolates. CONCLUSION These findings suggest that, although the prevalence of metallo-beta-lactamases is low, the integron-associated blaVIM genes can spread to P. aeruginosa serotypes that have not been previously associated with carbapenem resistance in our region, as well as to other pseudomonal species.
Collapse
Affiliation(s)
- A Tsakris
- First Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
27
|
Juan J, Betriu C, Rodríguez-Avial I, Culebras E, Gómez M. Vigilancia de resistencias a los antimicrobianos: estudio VIRA 2004. Enferm Infecc Microbiol Clin 2004. [DOI: 10.1016/s0213-005x(04)73153-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
|
29
|
Nordmann P. [Mechanisms of resistance to betalactam antibiotics in Pseudomonas aeruginosa]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:527-30. [PMID: 12893378 DOI: 10.1016/s0750-7658(03)00170-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- P Nordmann
- Hôpital de Bicêtre, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre cedex, France.
| |
Collapse
|
30
|
Murphy TA, Simm AM, Toleman MA, Jones RN, Walsh TR. Biochemical characterization of the acquired metallo-beta-lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrob Agents Chemother 2003; 47:582-7. [PMID: 12543663 PMCID: PMC151762 DOI: 10.1128/aac.47.2.582-587.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SPM-1 is a new metallo-beta-lactamase recently identified in Pseudomonas aeruginosa strain 48-1997A, isolated in Sao Paulo, Brazil. Kinetic analysis demonstrated that SPM-1 has a broad hydrolytic profile across a wide range of beta-lactam antibiotics. Considerable variation was observed within the penicillin, cephalosporin, and carbapenem subfamilies; however, on the whole, SPM-1 appears to preferentially hydrolyze cephalosporins. The highest k(cat/)K(m) ratios (in micromolar per second) overall were observed for this subgroup. The hydrolytic profile of SPM-1 bears the most similarity to that of the metallo-beta-lactamase IMP-1, yet for the most part, SPM-1 has k(cat)/K(m) values higher than those of IMP-1. Zinc chelator studies established that progressive inhibition of SPM-1 by EDTA, dipicolinic acid, and 1-10-o-phenanthroline demonstrated a biexponential pattern in which none of the chelators completely inhibited SPM-1. A homology model of SPM-1 was developed on the basis of the IMP-1 crystal structure, which showed the protein folding and active-site structure characteristic of metallo-beta-lactamases and which provides an explanation for the kinetic profiles observed.
Collapse
Affiliation(s)
- Tanya A Murphy
- Department of Pathology and Microbiology, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Pournaras S, Tsakris A, Maniati M, Tzouvelekis LS, Maniatis AN. Novel variant (bla(VIM-4)) of the metallo-beta-lactamase gene bla(VIM-1) in a clinical strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2002; 46:4026-8. [PMID: 12435718 PMCID: PMC132756 DOI: 10.1128/aac.46.12.4026-4028.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Pseudomonas aeruginosa isolate highly resistant to carbapenems was collected from a patient with postsurgical cerebrospinal infection in Greece. The isolate carried a class 1 integron that contained as a sole cassette the gene bla(VIM-4), a novel variant of bla(VIM-1), with one nucleotide difference resulting in a Ser-to-Arg change at amino acid position 175 of the VIM-1 enzyme. This is the first detection of a VIM-1 variant after its appearance in Italy.
Collapse
Affiliation(s)
- Spyros Pournaras
- Department of Medical Microbiology, University of Thessaly, Larissa, Greece.
| | | | | | | | | |
Collapse
|
32
|
Lombardi G, Luzzaro F, Docquier JD, Riccio ML, Perilli M, Colì A, Amicosante G, Rossolini GM, Toniolo A. Nosocomial infections caused by multidrug-resistant isolates of pseudomonas putida producing VIM-1 metallo-beta-lactamase. J Clin Microbiol 2002; 40:4051-5. [PMID: 12409373 PMCID: PMC139695 DOI: 10.1128/jcm.40.11.4051-4055.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful carbapenem-based chemotherapy for the treatment of Pseudomonas infections has been seriously hindered by the recent appearance of IMP- and VIM-type metallo-beta-lactamases, which confer high-level resistance to carbapenems and most other beta-lactams. Recently, multidrug-resistant Pseudomonas putida isolates for which carbapenem MICs were >/=32 micro g/ml were recovered from cultures of urine from three inpatients in the general intensive care unit of the Ospedale di Circolo, Varese, Italy. Enzyme assays revealed production of a metallo-beta-lactamase activity, while molecular analysis detected in each isolate a bla(VIM-1) determinant carried by an apparently identical medium-sized plasmid. Conjugation experiments were unsuccessful in transferring the beta-lactamase determinant to Escherichia coli or Pseudomonas aeruginosa. Macrorestriction analysis by pulsed-field gel electrophoresis demonstrated that the isolates were of clonal origin. PCR mapping and sequencing of the variable region of the plasmid-borne class 1 integron carrying the bla(VIM-1) determinant (named In110) showed that the bla(VIM-1)-containing cassette was identical to that previously found in strains of different species from other Italian hospitals and that the cassette array of In110 was not identical but clearly related to that of In70 (a bla(VIM-1)-containing plasmid-borne integron from an Achromobacter xylosoxidans isolate), pointing to a common origin of this cassette and to a related evolutionary history of their cognate integrons.
Collapse
Affiliation(s)
- Gianluigi Lombardi
- Laboratorio di Microbiologia, Ospedale di Circolo, and Università dell'Insubria, I-21100 Varese, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Carbapenemases may be defined as beta-lactamases that significantly hydrolyze at least imipenem or/and meropenem. Carbapenemases involved in acquired resistance are of Ambler molecular classes A, B, and D. Class A, clavulanic acid-inhibited carbapenemases are rare. They are either chromosomally encoded (NMC-A, Sme-1 to Sme-3, IMI-1) in Enterobacter cloacae and Serratia marcescens, or plasmid encoded, such as KPC-1 in Klebsiella pneumoniae and GES-2 in Pseudomonas aeruginosa, the latter being a point-mutant of the clavulanic acid-inhibited extended-spectrum beta-lactamase GES-1. The class B enzymes are the most clinically significant carbapenemases. They are metalloenzymes of the IMP or VIM series. They have been reported worldwide but mostly from South East Asia and Europe. Metalloenzymes, whose genes are plasmid and integron located, hydrolyze virtually all beta-lactams except aztreonam. Finally, the class D carbapenemases are increasingly reported in Acinetobacter baumannii but compromise imipenem and meropenem susceptibility only marginally. The sources of the acquired carbapenemase genes remain unknown, as does the relative importance of the spread of epidemic strains as opposed to the spread of plasmid- or integron-borne genes. Because most of these carbapenemases confer only reduced susceptibility to carbapenems in Enterobacteriaceae, they may remain underestimated as a consequence of the lack of their detection.
Collapse
Affiliation(s)
- P Nordmann
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris and Faculté de Médecine Paris-Sud, Université Paris XI, Paris, France.
| | | |
Collapse
|
34
|
Vila J, Marco F. [Interpretative reading of the non-fermenting gram-negative bacilli antibiogram]. Enferm Infecc Microbiol Clin 2002; 20:304-10; quiz 311-2. [PMID: 12084355 DOI: 10.1016/s0213-005x(02)72803-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among non-fermenting Gram-negative rods, the most clinically important species are Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia, which are frequently multiresistant. P. aeruginosa resistance to beta-lactams depends on the production of chromosomal and plasmid-mediated beta-lactamases, altered permeability (loss of OprD porin is related to carbapenem-resistance) and active efflux pumps, particularly MexAB-OprM. In aminoglycoside-resistant strains the main mechanism of resistance is the production of inactivating enzymes; the efflux pump MexXY-OprM is also involved. Quinolone-resistance in P. aeruginosa is related to changes in topoisomerases, altered permeability and efflux pumps. The mechanisms of resistance of A. baumannii have not been well characterized, which makes interpretative reading of the antibiogram in this organism difficult. Resistance to beta-lactams is associated with the production of beta-lactamases and altered penicillin-binding proteins. Resistance to aminoglycosides has been related to modifying enzymes and resistance to quinolones to altered targets. S. maltophilia is resistant to carbapenems and other beta-lactams because of the production of two beta-lactamases (L-1 and L-2). Aminoglycoside-modifying enzymes have also been described in this species. In contrast to what is observed in other organisms, S. maltophilia resistance to quinolones has been mainly related to active efflux, rather than to target alterations.
Collapse
Affiliation(s)
- Jordi Vila
- Servicio de Microbiología, Institut d'Infeccions i Immunologia, Hospital Clínic i Provincial, Barcelona, España.
| | | |
Collapse
|
35
|
Navarro Risueño F, Miró Cardona E, Mirelis Otero B. [Interpretive reading of the antibiogram of enterobacteria]. Enferm Infecc Microbiol Clin 2002; 20:225-34. [PMID: 12006263 DOI: 10.1016/s0213-005x(02)72796-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many of the resistance mechanisms of enterobacteria to antimicrobial agents are well understood; nevertheless several aspects remain unsolved, particularly with regard to prediction of clinical response. The resistance pattern observed in the antibiogram of a specific organism should be the sum of the natural resistance pattern, characteristic of the species, plus the acquired resistance. In enterobacteria the principal mechanism of resistance to beta lactams and aminoglycosides is enzyme production, Each enzyme recognizes one or more specific beta lactam or aminoglycoside, as a substrate. This translates as a specific resistance phenotype that allows one to infer the enzyme(s) implicated. Enzyme resistance is not, however, the only mechanism of resistance to these agents; often the pattern observed is multifactorial. Resistance to quinolones is due to point and sequence mutations which may be selected by initially active fluoroquinolones and cause a stepwise increase of resistance.
Collapse
Affiliation(s)
- Ferran Navarro Risueño
- Servicio de Microbiología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.
| | | | | |
Collapse
|