1
|
Zarske M, Werckenthin C, Golz JC, Stingl K. The point mutation A1387G in the 16S rRNA gene confers aminoglycoside resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2024; 68:e0083324. [PMID: 39404347 DOI: 10.1128/aac.00833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Thermotolerant Campylobacter spp. are the most frequent cause of foodborne bacterial diarrhea and high-priority antibiotic-resistant pathogens, according to the World Health Organization (WHO). Monitoring revealed current low prevalence of gentamicin resistance in European Campylobacter spp. isolates but substantial presence of gentamicin modifying genes circulating globally. Using a combined approach of natural transformation and whole-genome sequencing, we revealed a novel gentamicin resistance mechanism, namely the point mutation A1387G in the 16S rRNA gene, originally identified in a C. coli isolate from turkey caecal content. The transformation rate of the resistance using genomic DNA of the resistant donor to sensitive recipient C. jejuni and C. coli was ~2.5 log10 lower compared to the control rpsL-A128G point mutation conferring streptomycin resistance. Antimicrobial susceptibility tests showed cross-resistance to apramycin, kanamycin, and tobramycin, with transformants exhibiting more than 4- to 8-fold increased MICs to apramycin and tobramycin and over 64-fold higher MICs to kanamycin compared to wild-type isolates. Although transformants showed 177-1,235 variations relative to the recipient, only the A1387G point mutation in the 16S rRNA was in common. This mutation was causal for resistance, as transformation of a 16S rRNA_A1387G PCR fragment into susceptible isolates also led to resistant transformants. Sanger sequencing of the 16S rRNA genes and Oxford nanopore whole-genome sequencing of transformants identified clones harboring either all three copies with A1387G or a mixed population of wild-type and mutated 16S rRNA gene alleles. Within 15 passages on non-selective medium, transformants with mixed populations of the 16S rRNA gene copies partially reverted to wild type, both geno- and phenotypically. In contrast, transformants harboring the A1387G point mutation in all three 16S rRNA gene copies kept full resistance within at least 45 passages. We speculate that partial acquisition and rapid loss of the point mutation limited its spread among C. spp. isolates. In-depth knowledge on resistance mechanisms contributes to optimal diagnosis and preventative measures.
Collapse
Affiliation(s)
- Michael Zarske
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute, Oldenburg, Germany
| | - Julia C Golz
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| |
Collapse
|
2
|
Tafess K, Ng TTL, Tam KKG, Leung KSS, Leung JSL, Lee LK, Lao HY, Chan CTM, Yam WC, Wong SSY, Lau TCK, Siu GKH. Genetic mechanisms of co-emergence of INH-resistant Mycobacterium tuberculosis strains during the standard course of antituberculosis therapy. Microbiol Spectr 2024; 12:e0213323. [PMID: 38466098 PMCID: PMC10986572 DOI: 10.1128/spectrum.02133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.
Collapse
Affiliation(s)
- Ketema Tafess
- Department of Applied Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Siu-Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Samson Sai Yin Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Terrence Chi-Kwong Lau
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Eckartt KA, Delbeau M, Munsamy-Govender V, DeJesus MA, Azadian ZA, Reddy AK, Chandanani J, Poulton NC, Quiñones-Garcia S, Bosch B, Landick R, Campbell EA, Rock JM. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 2024; 628:186-194. [PMID: 38509362 PMCID: PMC10990936 DOI: 10.1038/s41586-024-07206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
Collapse
Affiliation(s)
- Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Abhijna K Reddy
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Joshua Chandanani
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Kumar N, Sharma S, Kaushal PS. Cryo- EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Nat Commun 2024; 15:638. [PMID: 38245551 PMCID: PMC10799931 DOI: 10.1038/s41467-024-44879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Ribosome hibernation is a key survival strategy bacteria adopt under environmental stress, where a protein, hibernation promotion factor (HPF), transitorily inactivates the ribosome. Mycobacterium tuberculosis encounters hypoxia (low oxygen) as a major stress in the host macrophages, and upregulates the expression of RafH protein, which is crucial for its survival. The RafH, a dual domain HPF, an orthologue of bacterial long HPF (HPFlong), hibernates ribosome in 70S monosome form, whereas in other bacteria, the HPFlong induces 70S ribosome dimerization and hibernates its ribosome in 100S disome form. Here, we report the cryo- EM structure of M. smegmatis, a close homolog of M. tuberculosis, 70S ribosome in complex with the RafH factor at an overall 2.8 Å resolution. The N- terminus domain (NTD) of RafH binds to the decoding center, similarly to HPFlong NTD. In contrast, the C- terminus domain (CTD) of RafH, which is larger than the HPFlong CTD, binds to a distinct site at the platform binding center of the ribosomal small subunit. The two domain-connecting linker regions, which remain mostly disordered in earlier reported HPFlong structures, interact mainly with the anti-Shine Dalgarno sequence of the 16S rRNA.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
5
|
Kumar GD, Oguadinma IC, Mishra A, Suh JH, Singh M. Influence of antibiotic-resistance and exudate on peroxyacetic acid tolerance in O157 and non-O157 Shiga toxin producing E. coli. Int J Food Microbiol 2023; 391-393:110144. [PMID: 36842254 DOI: 10.1016/j.ijfoodmicro.2023.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Shiga toxin producing Escherichia coli (STEC) continues to cause foodborne outbreaks associated with beef and beef products despite consistent use of antimicrobial interventions. In this study, the influence of antibiotic resistance (ABR) in E. coli O157:H7 H1730, O157:H7 43,895, O121:H19 and O26:H11 on tolerance to peroxyacetic acid (PAA) was evaluated. Further, bactericidal concentrations of PAA in the presence of nutrient rich media (Tryptic Soy Broth, TSB and beef exudates) and nutrient deficient media (Sterile Deionized Water, SDW and Phosphate Buffered Saline, PBS) were evaluated for all bacterial strains. Antibiotic resistance to ampicillin (amp C), or ampicillin and streptomycin (amp P strep C) was generated in each bacterial strain through incremental exposure to the antibiotics or by plasmid transformation (n = 12 total strains). The mean bactericidal concentrations of PAA were higher (p ≤ 0.05) in nutrient rich media (205.55 ± 31.11 in beef exudate and 195.83 ± 25.00 ppm in TSB) than in nutrient deficient media (57.91 ± 11.97 ppm in SDW and 56.66 ± 9.56 ppm in PBS). Strain O157: H7 ampP strepC was the most tolerant to PAA (p ≤ 0.05). At 200 ppm in nutrient rich media and 60 ppm in nutrient deficient media, all bacterial strains declined in population to below the limit of detection. Analysis of the beef exudates indicated the presence of diverse amino acids that have been associated with acid tolerance. The results from this study indicate that beef exudates could contribute to acid tolerance and suggest that some STEC bacterial strains with certain ABR profiles might be more tolerant to PAA.
Collapse
Affiliation(s)
- Govindaraj Dev Kumar
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA.
| | | | - Abhinav Mishra
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Joon Hyuk Suh
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Manpreet Singh
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Wang S, Hao J, Yang J, Zhang Q, Li A. The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture. J Microbiol Biotechnol 2023; 33:167-179. [PMID: 36734130 PMCID: PMC9998210 DOI: 10.4014/jmb.2210.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.
Collapse
Affiliation(s)
- Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jicheng Yang
- Dalian Ocean University, Dalian 116023, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
8
|
Knecht CA, García Allende N, Álvarez VE, Prack McCormick B, Massó MG, Piekar M, Campos J, Fox B, Camicia G, Gambino AS, Leguina ACDV, Donis N, Fernández-Canigia L, Quiroga MP, Centrón D. Novel insights related to the rise of KPC-producing Enterobacter cloacae complex strains within the nosocomial niche. Front Cell Infect Microbiol 2022; 12:951049. [DOI: 10.3389/fcimb.2022.951049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
According to the World Health Organization, carbapenem-resistant Enterobacteriaceae (CRE) belong to the highest priority group for the development of new antibiotics. Argentina-WHONET data showed that Gram-negative resistance frequencies to imipenem have been increasing since 2010 mostly in two CRE bacteria: Klebsiella pneumoniae and Enterobacter cloacae Complex (ECC). This scenario is mirrored in our hospital. It is known that K. pneumoniae and the ECC coexist in the human body, but little is known about the outcome of these species producing KPC, and colonizing or infecting a patient. We aimed to contribute to the understanding of the rise of the ECC in Argentina, taking as a biological model both a patient colonized with two KPC-producing strains (one Enterobacter hormaechei and one K. pneumoniae) and in vitro competition assays with prevalent KPC-producing ECC (KPC-ECC) versus KPC-producing K. pneumoniae (KPC-Kp) high-risk clones from our institution. A KPC-producing E. hormaechei and later a KPC-Kp strain that colonized a patient shared an identical novel conjugative IncM1 plasmid harboring blaKPC-2. In addition, a total of 19 KPC-ECC and 58 KPC-Kp strains isolated from nosocomial infections revealed that high-risk clones KPC-ECC ST66 and ST78 as well as KPC-Kp ST11 and ST258 were prevalent and selected for competition assays. The competition assays with KCP-ECC ST45, ST66, and ST78 versus KPC-Kp ST11, ST18, and ST258 strains analyzed here showed no statistically significant difference. These assays evidenced that high-risk clones of KPC-ECC and KPC-Kp can coexist in the same hospital environment including the same patient, which explains from an ecological point of view that both species can exchange and share plasmids. These findings offer hints to explain the worldwide rise of KPC-ECC strains based on the ability of some pandemic clones to compete and occupy a certain niche. Taken together, the presence of the same new plasmid and the fitness results that showed that both strains can coexist within the same patient suggest that horizontal genetic transfer of blaKPC-2 within the patient cannot be ruled out. These findings highlight the constant interaction that these two species can keep in the hospital environment, which, in turn, can be related to the spread of KPC.
Collapse
|
9
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Acinetobacter Baumannii: More Ways to Die. Microbiol Res 2022; 261:127069. [DOI: 10.1016/j.micres.2022.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
11
|
Oostvogels S, Ley SD, Heupink TH, Dippenaar A, Streicher EM, De Vos E, Meehan CJ, Dheda K, Warren R, Van Rie A. Transmission, distribution and drug resistance-conferring mutations of extensively drug-resistant tuberculosis in the Western Cape Province, South Africa. Microb Genom 2022; 8. [PMID: 35471145 PMCID: PMC9453078 DOI: 10.1099/mgen.0.000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Extensively drug-resistant tuberculosis (XDR-TB), defined as resistance to at least isoniazid (INH), rifampicin (RIF), a fluoroquinolone (FQ) and a second-line injectable drug (SLID), is difficult to treat and poses a major threat to TB control. The transmission dynamics and distribution of XDR Mycobacterium tuberculosis (Mtb) strains have not been thoroughly investigated. Using whole genome sequencing data on 461 XDR-Mtb strains, we aimed to investigate the geographical distribution of XDR-Mtb strains in the Western Cape Province of South Africa over a 10 year period (2006–2017) and assess the association between Mtb sub-lineage, age, gender, geographical patient location and membership or size of XDR-TB clusters. First, we identified transmission clusters by excluding drug resistance-conferring mutations and using the 5 SNP cutoff, followed by merging clusters based on their most recent common ancestor. We then consecutively included variants conferring resistance to INH, RIF, ethambutol (EMB), pyrazinamide (PZA), SLIDs and FQs in the cluster definition. Cluster sizes were classified as small (2–4 isolates), medium (5–20 isolates), large (21–100 isolates) or very large (>100 isolates) to reflect the success of individual strains. We found that most XDR-TB strains were clustered and that including variants conferring resistance to INH, RIF, EMB, PZA and SLIDs in the cluster definition did not significantly reduce the proportion of clustered isolates (85.5–82.2 %) but increased the number of patients belonging to small clusters (4.3–12.4 %, P=0.56). Inclusion of FQ resistance-conferring variants had the greatest effect, with 11 clustered isolates reclassified as unique while the number of clusters increased from 17 to 37. Lineage 2 strains (lineage 2.2.1 typical Beijing or lineage 2.2.2 atypical Beijing) showed the large clusters which were spread across all health districts of the Western Cape Province. We identified a significant association between residence in the Cape Town metropole and cluster membership (P=0.016) but no association between gender, age and cluster membership or cluster size (P=0.39). Our data suggest that the XDR-TB epidemic in South Africa probably has its origin in the endemic spread of MDR Mtb and pre-XDR Mtb strains followed by acquisition of FQ resistance, with more limited transmission of XDR Mtb strains. This only became apparent with the inclusion of drug resistance-conferring variants in the definition of a cluster. In addition to the prevention of amplification of resistance, rapid diagnosis of MDR, pre-XDR and XDR-TB and timely initiation of appropriate treatment is needed to reduce transmission of difficult-to-treat TB.
Collapse
Affiliation(s)
- Selien Oostvogels
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Selien Oostvogels,
| | - Serej D. Ley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
- Present address: Sefunda AG, Muttenz, Switzerland
| | - Tim H. Heupink
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Elizabeth M. Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Elise De Vos
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Conor J. Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute, South Africa
- South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Herren CM, Baym M. Decreased thermal niche breadth as a trade-off of antibiotic resistance. THE ISME JOURNAL 2022; 16:1843-1852. [PMID: 35422477 PMCID: PMC9213455 DOI: 10.1038/s41396-022-01235-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 01/24/2023]
Abstract
Evolutionary theory predicts that adaptations, including antibiotic resistance, should come with associated fitness costs; yet, many resistance mutations seemingly contradict this prediction by inducing no growth rate deficit. However, most growth assays comparing sensitive and resistant strains have been performed under a narrow range of environmental conditions, which do not reflect the variety of contexts that a pathogenic bacterium might encounter when causing infection. We hypothesized that reduced niche breadth, defined as diminished growth across a diversity of environments, can be a cost of antibiotic resistance. Specifically, we test whether chloramphenicol-resistant Escherichia coli incur disproportionate growth deficits in novel thermal conditions. Here we show that chloramphenicol-resistant bacteria have greater fitness costs at novel temperatures than their antibiotic-sensitive ancestors. In several cases, we observed no resistance cost in growth rate at the historic temperature but saw diminished growth at warmer and colder temperatures. These results were consistent across various genetic mechanisms of resistance. Thus, we propose that decreased thermal niche breadth is an under-documented fitness cost of antibiotic resistance. Furthermore, these results demonstrate that the cost of antibiotic resistance shifts rapidly as the environment changes; these context-dependent resistance costs should select for the rapid gain and loss of resistance as an evolutionary strategy.
Collapse
Affiliation(s)
- Cristina M Herren
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.,Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA. .,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.
| |
Collapse
|
13
|
Hertz FB, Marvig RL, Frimodt-Møller N, Nielsen KL. In vitro Relative Fitness, in vivo Intestinal Colonization and Genomic Differences of Escherichia coli of ST131 Carrying blaCTX–M–15. Front Microbiol 2022; 12:798473. [PMID: 35250906 PMCID: PMC8894762 DOI: 10.3389/fmicb.2021.798473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Extended-spectrum beta-lactamase (ESBL) producing Escherichia coli have become prevalent worldwide, with E. coli of sequence type 131 (ST131) as the dominant genotype. E. coli ST131 predominantly exhibits the serotype O25, is associated with the ESBL CTX-M-15 and belongs to a well-defined subclade within the FimH30-R clade, FimH30-Rx/C2. Multidrug resistance may have fitness costs for the bacteria. The aim of the current study was to investigate the fitness burden compared to a susceptible ST131 isolate without resistance genes in vitro and in vivo and describe genetic differences between fit and less fit isolates. Materials and methods From a collection of clinical ESBL and non-ESBL E. coli isolates from urinary tract infection, we selected 16 blaCTX–M–15-positive isolates of ST131. The in vitro fitness was examined, and relative bacterial fitness (fitt) was determined by direct competition with a fully susceptible ST131 isolate and illustrated in percent, with <100% resulting in a lower fitness, compared to the susceptible reference isolate. The isolates were subjected to whole-genome sequencing and analyzed for resistance markers, plasmids, phage content, and serotype. In vivo competition was tested in a mouse colonization model. Results The majority (12 out of 16) of the CTX-M-15-producing isolates had a slightly lower relative fitness compared to the susceptible ST131 isolate (mean, 97.6%; range, 82.6–108%) in vitro. Three isolates had a better fitness than the susceptible ST131 isolate, and one isolate had an identical fitness to the susceptible ST131 isolate. The in vitro fitness showed no correlation to the number of plasmids, number of phages, number of resistances, or genome size. For the in vivo competition assays, all three ESBL-producing isolates showed better colonization of the ESBL-resistant ST131 isolates compared to the susceptible ST131 isolate. Conclusion This study shows that ESBL-producing ST131/H30-Rx are not necessarily burdened by multidrug resistance, however, have a better in vitro fitness than the susceptible isolate. These data contribute to the understanding of the success of ST131/H30-Rx, although they do not indicate ways to overcome this highly fit, virulent, and antimicrobial-resistant clone.
Collapse
Affiliation(s)
| | - Rasmus L. Marvig
- Department of Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Niels Frimodt-Møller,
| | - Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Yan W, Hall AB, Jiang X. Bacteroidales species in the human gut are a reservoir of antibiotic resistance genes regulated by invertible promoters. NPJ Biofilms Microbiomes 2022; 8:1. [PMID: 35013297 PMCID: PMC8748976 DOI: 10.1038/s41522-021-00260-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic-resistance genes (ARGs) regulated by invertible promoters can mitigate the fitness cost of maintaining ARGs in the absence of antibiotics and could potentially prolong the persistence of ARGs in bacterial populations. However, the origin, prevalence, and distribution of these ARGs regulated by invertible promoters remains poorly understood. Here, we sought to assess the threat posed by ARGs regulated by invertible promoters by systematically searching for ARGs regulated by invertible promoters in the human gut microbiome and examining their origin, prevalence, and distribution. Through metagenomic assembly of 2227 human gut metagenomes and genomic analysis of the Unified Human Gastrointestinal Genome (UHGG) collection, we identified ARGs regulated by invertible promoters and categorized them into three classes based on the invertase-regulating phase variation. In the human gut microbiome, ARGs regulated by invertible promoters are exclusively found in Bacteroidales species. Through genomic analysis, we observed that ARGs regulated by invertible promoters have convergently originated from ARG insertions into glycan-synthesis loci that were regulated by invertible promoters at least three times. Moreover, all three classes of invertible promoters regulating ARGs are located within integrative conjugative elements (ICEs). Therefore, horizontal transfer via ICEs could explain the wide taxonomic distribution of ARGs regulated by invertible promoters. Overall, these findings reveal that glycan-synthesis loci regulated by invertible promoters in Bacteroidales species are an important hotspot for the emergence of clinically-relevant ARGs regulated by invertible promoters.
Collapse
Affiliation(s)
- Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Characterization of Mutations Associated with Streptomycin Resistance in Multidrug-Resistant Mycobacterium tuberculosis in Zambia. Antibiotics (Basel) 2021; 10:antibiotics10101169. [PMID: 34680750 PMCID: PMC8532810 DOI: 10.3390/antibiotics10101169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Streptomycin (STR) is recommended for the management of multidrug-resistant tuberculosis (MDR-TB). Streptomycin resistance-conferring mutation types and frequency are shown to be influenced by genotypes of circulating strains in a population. This study aimed to characterize the mutations in MDR-TB isolates and examine their relationship with the genotypes in Zambia. A total of 138 MDR-TB isolates stored at the University Teaching Hospital Tuberculosis Reference Laboratory in Zambia were analyzed using spoligotyping and sequencing of STR resistance-associated genes. Streptomycin resistance was observed in 65.9% (91/138) of MDR-TB isolates. Mutations in rpsL, rrs, and gidB accounted for 33%, 12.1%, and 49.5%, respectively. Amino acid substitution K43R in rpsL was strongly associated with the CAS1_Kili genotype (p < 0.0001). The combination of three genes could predict 91.2% of STR resistance. Clustering of isolates based on resistance-conferring mutations and spoligotyping was observed. The clustering of isolates suggests that the increase in STR-resistant MDR-TB in Zambia is largely due to the spread of resistant strains from inadequate treatment. Therefore, rapid detection of STR resistance genetically is recommended before its use in MDR-TB treatment in Zambia.
Collapse
|
16
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
17
|
Kumar N, Sharma S, Kaushal PS. Protein synthesis in Mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021; 81:101002. [PMID: 34344520 DOI: 10.1016/j.mam.2021.101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of humankind's deadliest diseases, tuberculosis. Mtb protein synthesis machinery possesses several unique species-specific features, including its ribosome that carries two mycobacterial specific ribosomal proteins, bL37 and bS22, and ribosomal RNA segments. Since the protein synthesis is a vital cellular process that occurs on the ribosome, a detailed knowledge of the structure and function of mycobacterial ribosomes is essential to understand the cell's proteome by translation regulation. Like in many bacterial species such as Bacillus subtilis and Streptomyces coelicolor, two distinct populations of ribosomes have been identified in Mtb. Under low-zinc conditions, Mtb ribosomal proteins S14, S18, L28, and L33 are replaced with their non-zinc binding paralogues. Depending upon the nature of physiological stress, species-specific modulation of translation by stress factors and toxins that interact with the ribosome have been reported. In addition, about one-fourth of messenger RNAs in mycobacteria have been reported to be leaderless, i.e., without 5' UTR regions. However, the mechanism by which they are recruited to the Mtb ribosome is not understood. In this review, we highlight the mycobacteria-specific features of the translation apparatus and propose exploiting these features to improve the efficacy and specificity of existing antibiotics used to treat tuberculosis.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
18
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 129:102091. [PMID: 34090078 DOI: 10.1016/j.tube.2021.102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
For tuberculosis to be eradicated, the transmission of Multi-Drug-Resistant and eXtensively Drug Resistant strains of Mycobacterium tuberculosis (MDR and XDR-TB) must be considerably reduced. Drug resistant strains were initially thought to have reduced fitness, and the majority of resistant strains may actually have compromised fitness because they are found in only one or a few patients. In contrast, some MDR/XDR-TB strains are highly transmitted and cause large outbreaks. Most antibiotics target essential bacterial functions and the mutations that confer resistance to anti-TB drugs can incur fitness costs manifested as slower growth and reduced viability. The fitness costs vary with different resistance mutations and the bacilli can also accumulate secondary mutations that compensate for the compromised functions and partially or fully restore lost fitness. The compensatory mutations (CM) are different for each antibiotic, as they mitigate the deleterious effects of the specific functions compromised by the resistance mutations. CM are generally more common in strains with resistance mutations incurring the greatest fitness costs, but for RIF resistance, CM are most frequent in strains with the mutation carrying the least fitness cost, Ser450Leu. Here, we review what is known about fitness costs, CM and mechanisms of resistance to the drugs that define a strain as MDR or XDR-TB. The relative fitness costs of the resistance mutations and the mitigating effects of CM largely explain why certain mutations are frequently found in highly transmitted clusters while others are less frequently, rarely or never found in clinical isolates. The CM illustrate how drug resistance affects bacteria and how bacteria evolve to overcome the effects of the antibiotics, and thus a paradigm for how mycobacteria can evolve in response to stress.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
19
|
HIV Coinfection Is Associated with Low-Fitness rpoB Variants in Rifampicin-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2020; 64:AAC.00782-20. [PMID: 32718966 PMCID: PMC7508592 DOI: 10.1128/aac.00782-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
We analyzed 312 drug-resistant genomes of Mycobacterium tuberculosis isolates collected from HIV-coinfected and HIV-negative TB patients from nine countries with a high tuberculosis burden. We found that rifampicin-resistant M. tuberculosis strains isolated from HIV-coinfected patients carried disproportionally more resistance-conferring mutations in rpoB that are associated with a low fitness in the absence of the drug, suggesting these low-fitness rpoB variants can thrive in the context of reduced host immunity.
Collapse
|
20
|
Yu X, Zheng B, Xiao F, Jin Y, Guo L, Xu H, Luo Q, Xiao Y. Effect of Short-Term Antimicrobial Therapy on the Tolerance and Antibiotic Resistance of Multidrug-Resistant Staphylococcus capitis. Infect Drug Resist 2020; 13:2017-2026. [PMID: 32636655 PMCID: PMC7335296 DOI: 10.2147/idr.s254141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Bacteria undergo adaptive mutation in the host. However, the specific effect of antimicrobial use on bacterial evolution and genome mutations related to bacterial survival within a patient is unclear. MATERIALS AND METHODS Three S. capitis strains were sequentially isolated from cerebrospinal fluid of a clinical inpatient. Antimicrobial susceptibility, growth rate, biofilm formation and whole blood survival of these strains were measured. Relative fitness was calculated. The virulence was examined in the Galleria mellonella model. Whole-genome sequencing and in silico analysis were performed to explore the genetic mechanisms of the changes in antimicrobial resistance phenotype. Hypothetical proteins are cloned, expressed and characterized by detection the susceptibility to gentamycin. RESULTS The first isolate was susceptible to rifampin (MIC=0.25 μg/mL), resistant to gentamicin (MIC=16 μg/mL), while the later two isolates were resistant to rifampin (MIC >64 μg/mL), susceptible to gentamicin (MIC=4 μg/mL). For the latter two strains, compared to the first, frameshift mutation in a hypothetical protein encoding gene and base substitutions (in genes saeR, moaA and rpoB) were discovered. The mutation of rpoB gene caused rifampicin resistance. Mutations in saeR, moaA and hypothetical gene are associated with changes in other biological traits. Amino acid sequence-based structure and function identification of the hypothetical protein indicated that a mutation in the encoding gene might be associated with altered aminoglycoside susceptibility. Growth curve showed that the later two isolates grew faster than the first isolate with a positive fitness advantage of 13.5%, and 14.8%, accordingly. Biofilm form ability and whole blood survival of the derivative mutants were also enhanced. No significant differences of virulence in the G. mellonella model were observed. CONCLUSION We report here for the first time that short-term clinical antibiotic use was associated with resistance mutations, collateral sensitivity, and positive in vivo fitness advantages to S. capitis during infection.
Collapse
Affiliation(s)
- Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Feng Xiao
- Neurosurgery Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lihua Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
21
|
Álvarez VE, Quiroga MP, Galán AV, Vilacoba E, Quiroga C, Ramírez MS, Centrón D. Crucial Role of the Accessory Genome in the Evolutionary Trajectory of Acinetobacter baumannii Global Clone 1. Front Microbiol 2020; 11:342. [PMID: 32256462 PMCID: PMC7093585 DOI: 10.3389/fmicb.2020.00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is one of the most important nosocomial pathogens able to rapidly develop extensive drug resistance. Here, we study the role of accessory genome in the success of the globally disseminated clone 1 (GC1) with functional and genomic approaches. Comparative genomics was performed with available GC1 genomes (n = 106) against other A. baumannii high-risk and sporadic clones. Genetic traits related to accessory genome were found common and conserved along time as two novel regions of genome plasticity, and a CRISPR-Cas system acquired before clonal diversification located at the same loci as “sedentary” modules. Although identified within hotspot for recombination, other block of accessory genome was also “sedentary” in lineage 1 of GC1 with signs of microevolution as the AbaR0-type genomic island (GI) identified in A144 and in A155 strains which were maintained one month in independent experiments without antimicrobial pressure. The prophage YMC/09/02/B1251_ABA_BP was found to be “mobile” since, although it was shared by all GC1 genomes, it showed high intrinsic microevolution as well as mobility to different insertion sites. Interestingly, a wide variety of Insertion Sequences (IS), probably acquired by the flow of plasmids related to Rep_3 superfamily was found. These IS showed dissimilar genomic location amongst GC1 genomes presumably associated with promptly niche adaptation. On the other hand, a type VI secretion system and three efflux pumps were subjected to deep processes of genomic loss in A. baumannii but not in GC1. As a whole, these findings suggest that preservation of some genetic modules of accessory genome harbored by strains from different continents in combination with great plasticity of IS and varied flow of plasmids, may be central features of the genomic structure of GC1. Competition of A144 and A155 versus A118 (ST 404/ND) without antimicrobial pressure suggested a higher ability of GC1 to grow over a clone with sporadic behavior which explains, from an ecological perspective, the global achievement of this successful pandemic clone in the hospital habitat. Together, these data suggest an essential role of still unknown properties of “mobile” and “sedentary” accessory genome that is preserved over time under different antibiotic or stress conditions.
Collapse
Affiliation(s)
- Verónica Elizabeth Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Angélica Viviana Galán
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Elisabet Vilacoba
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Cecilia Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
22
|
Choudhury A, Fenster JA, Fankhauser RG, Kaar JL, Tenaillon O, Gill RT. CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli. Mol Syst Biol 2020; 16:e9265. [PMID: 32175691 PMCID: PMC7073797 DOI: 10.15252/msb.20199265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high-throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9-mediated recombineering to introduce a library of mutations, created by error-prone PCR, within a gene fragment on the genome using a single gRNA pre-validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non-essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
- IAMEINSERMUniversité de ParisParisFrance
| | - Jacob A Fenster
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
| | | | - Joel L Kaar
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
| | | | - Ryan T Gill
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
- Renewable & Sustainable Energy InstituteUniversity of ColoradoBoulderCOUSA
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityCopenhagenDenmark
| |
Collapse
|
23
|
Ma Y, Fan J, Li S, Dong L, Li Y, Wang F, Huo F, Pang Y, Qin S. Comparison of Lowenstein-Jensen medium and MGIT culture system for recovery of Mycobacterium tuberculosis from abscess samples. Diagn Microbiol Infect Dis 2020; 96:114969. [PMID: 31973887 DOI: 10.1016/j.diagmicrobio.2019.114969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/23/2019] [Accepted: 12/14/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE In this study, our aim was to assess Lowenstein-Jensen (L-J) medium and MGIT culture system for recovery of Mycobacterium tuberculosis (MTB) from abscess samples in skeletal tuberculosis (TB) cases. METHODS Abscess samples were collected from patients suggestive of skeletal TB in Beijing Chest Hospital for laboratory examination, including smear microscopy, L-J culture and MGIT culture. RESULTS Of the 232 abscess samples, 72 (31.0%) were culture-positive for mycobacteria. Of 72 isolates recovered, 94.4% were detected in MGIT 960 and 75.0% on L-J medium. MGIT could recover significantly higher rate of MTB isolates from smear-positive specimens than L-J medium. The mean time to detection of MTB in MGIT 960 was significantly lower than that on L-J medium. CONCLUSION The BACTEC MGIT 960 outperforms the conventional L-J medium in recovering MTB from abscess samples. The combination of MGIT and L-J method also increases the overall recovery rate of MTB in culture.
Collapse
Affiliation(s)
- Yifeng Ma
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Jun Fan
- Department of Orthopedics, Beijing Bone and Joint Tuberculosis Diagnosis and Treatment Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Shanshan Li
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yunxu Li
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| | - Shibing Qin
- Department of Orthopedics, Beijing Bone and Joint Tuberculosis Diagnosis and Treatment Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| |
Collapse
|
24
|
Hernando-Amado S, Sanz-García F, Martínez JL. Antibiotic Resistance Evolution Is Contingent on the Quorum-Sensing Response in Pseudomonas aeruginosa. Mol Biol Evol 2020; 36:2238-2251. [PMID: 31228244 DOI: 10.1093/molbev/msz144] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Different works have explored independently the evolution toward antibiotic resistance and the role of eco-adaptive mutations in the adaptation to a new habitat (as the infected host) of bacterial pathogens. However, knowledge about the connection between both processes is still limited. We address this issue by comparing the evolutionary trajectories toward antibiotic resistance of a Pseudomonas aeruginosa lasR defective mutant and its parental wild-type strain, when growing in presence of two ribosome-targeting antibiotics. Quorum-sensing lasR defective mutants are selected in P. aeruginosa populations causing chronic infections. Further, we observed they are also selected in vitro as a first adaptation for growing in culture medium. By using experimental evolution and whole-genome sequencing, we found that the evolutionary trajectories of P. aeruginosa in presence of these antibiotics are different in lasR defective and in wild-type backgrounds, both at the phenotypic and the genotypic levels. Recreation of a set of mutants in both genomic backgrounds (either wild type or lasR defective) allowed us to determine the existence of negative epistatic interactions between lasR and antibiotic resistance determinants. These epistatic interactions could lead to mutual contingency in the evolution of antibiotic resistance when P. aeruginosa colonizes a new habitat in presence of antibiotics. If lasR mutants are selected first, this would constraint antibiotic resistance evolution. Conversely, when resistance mutations (at least those studied in the present work) are selected, lasR mutants may not be selected in presence of antibiotics. These results underlie the importance of contingency and epistatic interactions in modulating antibiotic resistance evolution.
Collapse
|
25
|
Resman F. Antimicrobial stewardship programs; a two-part narrative review of step-wise design and issues of controversy. Part II: Ten questions reflecting knowledge gaps and issues of controversy in the field of antimicrobial stewardship. Ther Adv Infect Dis 2020; 7:2049936120945083. [PMID: 32913648 PMCID: PMC7443983 DOI: 10.1177/2049936120945083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Regardless of one's opinion on antimicrobial stewardship programs (ASPs), it is hardly possible to work in hospital care and not be exposed to the term or its practical effects. Despite the term being relatively new, the number of publications in the field is vast, including several excellent reviews of general and specific aspects. Work in antimicrobial stewardship is complex, and include aspects not only of infectious disease and microbiology, but also of epidemiology, genetics, behavioural psychology, systems science, economics and ethics, to name but a few. This review aims to take several of these aspects and the scientific evidence from antimicrobial stewardship studies and merge them into two questions: How should we design ASPs based on what we know today? and Which are the most essential unanswered questions regarding antimicrobial stewardship on a broader scale? This narrative review is written in two separate parts aiming to provide answers to the two questions. The first part, published separately, is written as a step-wise approach to designing a stewardship intervention based on the pillars of unmet need, feasibility, scientific evidence and necessary core elements. It is written mainly as a guide to someone new to the field. It is sorted into five distinct steps; (a) focusing on designing aims; (b) assessing performance and local barriers to rational antimicrobial use; (c) deciding on intervention technique; (d) practical, tailored design including core element inclusion; and (e) evaluation and sustainability. This second part formulates 10 critical questions on controversies in the field of antimicrobial stewardship. It is aimed at clinicians and researchers with stewardship experience and strives to promote discussion, not to provide answers.
Collapse
Affiliation(s)
- Fredrik Resman
- Clinical Infection Medicine, Department of
Translational Medicine, Lund University, Rut Lundskogs gata 3, plan 6, Malmö,
20502, Sweden
| |
Collapse
|
26
|
Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA. Molecules 2019; 25:molecules25010159. [PMID: 31906077 PMCID: PMC6983231 DOI: 10.3390/molecules25010159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 02/04/2023] Open
Abstract
To understand a structural basis for the fitness cost of the A1408G antibiotic-resistance mutation in the ribosomal A-site RNA, we have determined crystal structures of its A1408C and A1408U lethal mutants, and made comparison with previously solved structures of the wild type and the antibiotic-resistant mutant. The A-site RNA containing an asymmetric internal loop functions as a molecular switch to discriminate a single cognate tRNA from several near-cognate tRNAs by its conformational ON/OFF switching. Overall structures of the “off” states of the A1408C/U lethal mutants are very similar to those of the wild type and the A1408G antibiotic-resistant mutant. However, significant differences are found in local base stacking interactions including the functionally important A1492 and A1493 residues. In the wild type and the A1408G antibiotic-resistant mutant “off” states, both adenines are exposed to the solvent region. On the other hand, one of the corresponding adenines of the lethal A1408C/U mutants stay deeply inside their A-site helices by forming a purine-pyrimidine AoC or A-U base pair and is sandwiched between the upper and lower bases. Therefore, the ON/OFF switching might unfavorably occur in the lethal mutants compared to the wild type and the A1408G antibiotic-resistant mutant. It is probable that bacteria manage to acquire antibiotic resistance without losing the function of the A-site molecular switch by mutating the position 1408 only from A to G, but not to pyrimidine base C or U.
Collapse
|
27
|
Yoshida M, Nakata N, Miyamoto Y, Fukano H, Ato M, Hoshino Y. A rapid and non-pathogenic assay for association of Mycobacterium tuberculosis gyrBA mutations and fluoroquinolone resistance using recombinant Mycobacterium smegmatis. FEMS Microbiol Lett 2019; 365:5173037. [PMID: 30418577 DOI: 10.1093/femsle/fny266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
We developed a method involving recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) and recombinant Mycobacterium smegmatis to determine which mutations in Mycobacterium tuberculosis (Mtb) gyrBA are associated with fluoroquinolone (FQ) resistance. The minimal inhibitory concentration (MIC) for FQ for recombinant strains with wild-type Mtb gyrBA was equivalent to that for strains with intrinsic gyrBA. Among 27 gyrBA mutations, the fold-changes in FQ MIC for M. smegmatis and M. bovis BCG backgrounds were comparable and were in part equivalent to those previously reported for recombinant Mtb strains. Mutations at position 90 or 94 of gyrA conferred strong and synergistic FQ resistance, which may be associated with the clinical observation that isolates carrying these mutations are the most or second most frequent. Sitafloxacin hydrate had the lowest MIC among the FQs tested in this study, which is similar to findings from a previous in vivo animal study. Most gyrBA mutations detected in clinical Mtb isolates could confer FQ resistance, but several mutations reduced bacterial growth rates. Overall, recombinant M. smegmatis appears to be a beneficial surrogate system to evaluate FQ susceptibility of virulent mycobacteria.
Collapse
Affiliation(s)
- Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
28
|
Lin W, Wan K, Zeng J, Li J, Li X, Yu X. Low nutrient levels as drinking water conditions can reduce the fitness cost of efflux pump-mediated ciprofloxacin resistance in Pseudomonas aeruginosa. J Environ Sci (China) 2019; 83:123-132. [PMID: 31221375 DOI: 10.1016/j.jes.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The long-term persistence of antibiotic resistance in the environment, especially in drinking water, is a public health concern. Expression of an efflux pump, an important mechanism of resistance to antibiotics, usually confers a fitness cost in bacteria. In this study, we aimed to determine why antibiotic resistance conferred by overexpression of an efflux pump persisted in low-nutrient environments (TOC < 10 mg/L) such as drinking and source water in which antibiotic selective pressure might be very low or even absent. Competition experiments between wild-type Pseudomonas aeruginosa and ciprofloxacin-resistant mutants revealed that the fitness cost of ciprofloxacin resistance significantly decreased (p < 0.05) under low-nutrient (0.5 mg/L total organic carbon (TOC)) relative to high-nutrient (500 mg/L TOC) conditions. Mechanisms underlying this fitness cost were analyzed. The mexD gene expression in resistant bacteria (cip_3 strain) was significantly lower (p < 0.05) in low-nutrient conditions, with 10 mg/L TOC ((8.01 ± 0.82)-fold), than in high-nutrient conditions, with 500 mg/L TOC ((48.89 ± 4.16)-fold). Moreover, rpoS gene expression in resistant bacteria ((1.36 ± 0.13)-fold) was significantly lower (p < 0.05) than that in the wild-type strain ((2.78 ± 0.29)-fold) under low-nutrient conditions (10 mg/L TOC), suggesting a growth advantage. Furthermore, the difference in metabolic activity between the two competing strains was significantly smaller (p < 0.05) in low-nutrient conditions (5 and 0.5 mg/L TOC). These results suggest that nutrient levels are a key factor in determining the persistence of antibiotic resistance conferred by efflux pumps in the natural environment with trace amounts or no antibiotics.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
29
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
30
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Sun J, Zhu D, Xu J, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Wang M, Cheng A. Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiol 2019; 19:107. [PMID: 31122209 PMCID: PMC6533769 DOI: 10.1186/s12866-019-1478-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
Background Riemerella anatipestifer (R. anatipestifer) is one of the most important poultry pathogens worldwide, with associated infections causing significant economic losses. Rifampin Resistance is an important mechanism of drug resistance. However, there is no information about rpoB mutations conferring rifampin resistance and its fitness cost in Riemerella anatipestifer. Results Comparative analysis of 18 R.anatipestifer rpoB sequences and the determination of rifampin minimum inhibitory concentrations showed that five point mutations, V382I, H491N, G502K, R494K and S539Y, were related to rifampin resistance. Five overexpression strains were constructed using site-directed mutagenesis to validate these sites. To investigate the origin and fitness costs of the rpoB mutations, 15 types of rpoB mutations were isolated from R. anatipestifer ATCC 11845 by using spontaneous mutation in which R494K was identical to the type of mutation detected in the isolates. The mutation frequency of the rpoB gene was calculated to be 10− 8. A total of 98.8% (247/250) of the obtained mutants were located in cluster I of the rifampin resistance-determining region of the rpoB gene. With the exception of D481Y, I537N and S539F, the rifampin minimum inhibitory concentrations of the remaining mutants were at least 64 μg/mL. The growth performance and competitive experiments of the mutant strains in vitro showed that H491D and 485::TAA exhibit growth delay and severely impaired fitness. Finally, the colonization abilities and sensitivities of the R494K and H491D mutants were investigated. The sensitivity of the two mutants to hydrogen peroxide (H2O2) and sodium nitroprusside (SNP) increased compared to the parental strain. The number of live colonies colonized by the two mutants in the duckling brain and trachea were lower than that of the parental strain within 24 h. Conclusions Mutations of rpoB gene in R. anatipestifer mediate rifampin resistance and result in fitness costs. And different single mutations confer different levels of fitness costs. Our study provides, to our knowledge, the first estimates of the fitness cost associated with the R. anatipestifer rifampin resistance in vitro and in vivo. Electronic supplementary material The online version of this article (10.1186/s12866-019-1478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiakai Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Jinge Xu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang, 550005, Guizhou, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu You
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
32
|
Bespyatykh JA, Vinogradova ТI, Manicheva OA, Zabolotnykh NV, Dogonadze MZ, Vitovskaya ML, Guliaev AS, Zhuravlev VY, Shitikov EA, Ilina EN. In vivo virulence of Beijing genotype Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2019. [DOI: 10.15789/2220-7619-2019-1-173-182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | | | | | | | | | | | - A. S. Guliaev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | | | - E. A. Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | - E. N. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| |
Collapse
|
33
|
Davies R, Wales A. Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Compr Rev Food Sci Food Saf 2019; 18:753-774. [PMID: 33336931 DOI: 10.1111/1541-4337.12438] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Resistance to therapeutic antimicrobial agents is recognized as a growing problem for both human and veterinary medicine, and the need to address the issue in both of these linked domains is a current priority in public policy. Efforts to limit antimicrobial resistance (AMR) on farms have so far focused on control of the supply and use of antimicrobial drugs, plus husbandry measures to reduce infectious disease. In the United Kingdom and some other countries, substantial progress has been made recently against targets on agricultural antimicrobial drug use. However, evidence suggests that resistant pathogenic and commensal bacteria can persist and spread within and between premises despite declining or zero antimicrobial drug use. Reasons for this are likely complex and varied but may include: bacterial adaptations to ameliorate fitness costs associated with maintenance and replication of resistance genes and associated proteins, horizontal transmission of genetic resistance determinants between bacteria, physical transfer of bacteria via movement (of animals, workers, and equipment), ineffective cleaning and disinfection, and co-selection of resistance to certain drugs by use of other antimicrobials, heavy metals, or biocides. Areas of particular concern for public health include extended-spectrum cephalosporinases and fluoroquinolone resistance among Enterobacteriaceae, livestock-associated methicillin-resistant Staphylococcus aureus, and the emergence of transmissible colistin resistance. Aspects of biosecurity have repeatedly been identified as risk factors for the presence of AMR on farm premises, but there are large gaps in our understanding of the most important risk factors and the most effective interventions. The present review aims to summarize the present state of knowledge in this area, from a European perspective.
Collapse
Affiliation(s)
- Robert Davies
- Bacteriology and Food Safety Dept., Animal and Plant Health Agency (APHA - Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Andrew Wales
- Pathology and Infectious Diseases Dept., School of Veterinary Medicine, Faculty of Health and Medical Sciences, Vet School Main Building, Daphne Jackson Rd., Univ. of Surrey, Guildford, GU2 7AL, UK
| |
Collapse
|
34
|
Vats S, Shanker A. Groups of coevolving positions provide drug resistance to Mycobacterium tuberculosis: A study using targets of first-line antituberculosis drugs. Int J Antimicrob Agents 2019; 53:197-202. [DOI: 10.1016/j.ijantimicag.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023]
|
35
|
Ghaddar N, Hashemidahaj M, Findlay BL. Access to high-impact mutations constrains the evolution of antibiotic resistance in soft agar. Sci Rep 2018; 8:17023. [PMID: 30451932 PMCID: PMC6242871 DOI: 10.1038/s41598-018-34911-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/27/2018] [Indexed: 01/21/2023] Open
Abstract
Despite widespread resistance to many important antibiotics, the factors that govern the emergence and prevalence of antibiotic-resistant bacteria are still unclear. When exposed to antibiotic gradients in soft agar plates measuring as little as 1.25 × 11 cm we found that Escherichia coli rapidly became resistant to representatives from every class of antibiotics active against Gram-negative bacteria. Evolution kinetics were independent of the frequency of spontaneous mutations that confer antibiotic resistance or antibiotic dose-response curves, and were only loosely correlated to maximal antibiotic concentrations. Instead, rapid evolution required unrealized mutations that could markedly decrease antibiotic susceptibility. When bacteria could not evolve through these “high-impact” mutations, populations frequently bottlenecked, reducing the number of cells from which mutants could arise and prolonging evolution times. This effect was independent of the antibiotic’s mechanism of action, and may affect the evolution of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Nour Ghaddar
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada.,Lady Davis Institute for Medical Research, McGill University, Montreal, Québec, Canada
| | - Mona Hashemidahaj
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada.
| |
Collapse
|
36
|
Lin W, Zeng J, Wan K, Lv L, Guo L, Li X, Yu X. Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. ENVIRONMENT INTERNATIONAL 2018; 120:63-71. [PMID: 30064056 DOI: 10.1016/j.envint.2018.07.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The prevalence of antibiotic resistance in drinking water system is pressing public health risk. Antibiotic resistance conferred by chromosomal mutations often produces fitness cost, which may affect its spread and persistence. In this study, the rifampin-resistant strains were competed with their wild-type counterparts at different nutrient levels. It was observed that the ratio of the absolute number between resistant and wild-type cells quickly decreased under rich nutrient conditions, but it slowly reduced or remained stable in the poor nutrient medium. This finding suggested that poor nutrient conditions resulted in the reduction of fitness cost of antibiotic resistance, i.e. the resistant bacteria became more competitive. Implying mechanisms analysis found that the differences of metabolic activity between wild-type and rifampin-resistant strains was significant smaller (P < 0.05) at low nutrient levels. Additionally, distinguishable large colony size rifampin-resistant strains were observed during competition assay. DNA sequencing of RNA polymerase subunit genes further revealed that these colonies could be adaptive mutants from wild-type strain in rpoB gene. To our knowledge, this is the first study to reveal that the oligotrophic conditions facilitate the persistence of antibiotic resistance in drinking water by reducing the fitness cost of the resistant strains.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Lv
- Institute of Quality and Standard for Agricultural products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
37
|
A 10-Year Comparative Analysis Shows that Increasing Prevalence of Rifampin-Resistant Mycobacterium tuberculosis in China Is Associated with the Transmission of Strains Harboring Compensatory Mutations. Antimicrob Agents Chemother 2018; 62:AAC.02303-17. [PMID: 29378712 DOI: 10.1128/aac.02303-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/20/2018] [Indexed: 11/20/2022] Open
Abstract
In this work, we conducted bacterial population profile studies to assess trends of rifampin (RIF) resistance of Mycobacterium tuberculosis isolates collected across China from 2005 to 2015. Totals of 273 and 269 randomly selected M. tuberculosis isolates from 2005 and 2015, respectively, were analyzed. The rates of RIF resistance (36.4%), isoniazid resistance (39.0%), and levofloxacin resistance (25.7%) in 2015 were significantly higher than those in 2005 (28.2%, 30.0%, and 15.4%, respectively; P < 0.05). Genotypic data revealed 256 (95.2%) Beijing-type isolates in 2015, a rate significantly higher than that in 2005 (86.4%) (P < 0.01). A higher proportion of mutations was identified within the rifampin resistance-determining region (RRDR) of rpoB in isolates from 2015 (99.0%) than in 2005 isolates (85.7%, P < 0.01). In addition, a significantly higher proportion of RIF-resistant isolates carrying compensatory mutations was observed in 2015 (31.6%) than in 2005 (7.8%). Notably, the great majority of these compensatory mutations (91.9%) were observed in isolates that harbored a mutation of codon 531 of the rpoB gene. In conclusion, our data demonstrate that resistance to RIF, isoniazid, and levofloxacin has become significantly more prevalent during the past decade. In addition, the prevalence of the Beijing genotype significantly increased from 2005 to 2015. Notably, a significantly increased frequency of strains with mutations in rpoC or rpoA is observed among those that have codon 531 mutations, which suggests that they may be compensatory and may play a role in facilitating transmission.
Collapse
|
38
|
Hornsey M, Wareham DW. Effects of In vivo Emergent Tigecycline Resistance on the Pathogenic Potential of Acinetobacter baumannii. Sci Rep 2018. [PMID: 29523824 PMCID: PMC5844891 DOI: 10.1038/s41598-018-22549-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multidrug-resistant lineages of Acinetobacter baumannii (MDRAB) are important nosocomial pathogens. As tigecycline remains active against most MDRAB we sought to investigate whether tigecycline resistance impacts biological fitness. The effects of treatment-emergent tigecycline resistance were investigated in vitro and in vivo using two pre- (AB210; W6976) and post-therapy (AB211; W7282) clinical pairs, recovered from individual patients, where tigecycline resistance was associated with up-regulated efflux activity. All isolates belonged to the same epidemic UK lineage. Significant differences were observed in end-point survival proportions between AB210 and AB211, but not between W6976 and W7282, using the Galleria mellonella infection model. Isolate AB211 outcompeted AB210 in vivo, in contrast to isolate W7282, which was outcompeted by its pre-therapy counterpart, W6972. Whole-genome sequencing of isolates W6976 and W7282 revealed a mutation in the adeABC regulatory gene, adeS in W7282; resulting in a Ser-8 → Arg substitution. Previous whole-genome comparison of AB210 and AB211 also identified a non-synonymous mutation in adeS, among several other lesions in genes involved in biofilm formation and DNA mismatch repair; consistent with the phenotypic differences described here. In conclusion, the differing effects on the wider phenotype were not predictable from the antibiograms or clonal lineage, despite a common mechanism of tigecycline resistance.
Collapse
Affiliation(s)
- Michael Hornsey
- Antimicrobial Research Group, Centre for Immunology and Infectious Disease, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - David W Wareham
- Antimicrobial Research Group, Centre for Immunology and Infectious Disease, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University London, London, UK. .,Division of Infection, Barts & The London NHS Trust, London, UK.
| |
Collapse
|
39
|
Li S, Sun S, Yang C, Chen H, Yin Y, Li H, Zhao C, Wang H. The Changing Pattern of Population Structure of Staphylococcus aureus from Bacteremia in China from 2013 to 2016: ST239-030-MRSA Replaced by ST59-t437. Front Microbiol 2018. [PMID: 29535697 PMCID: PMC5835333 DOI: 10.3389/fmicb.2018.00332] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To investigate the epidemiology and genetic structure of Staphylococcus aureus bacteremia in China, a total of 416 isolates from 22 teaching hospitals in 12 cities from 2013 and 2016 were characterized by antibiogram analysis, multilocus sequence typing (MLST), spa typing and staphylococcal cassette chromosome mec (SCCmec) typing. The predominant meticillin-susceptible (MSSA) genotypes in 2013 were ST188 (19.1%), ST7 (8.7%), and ST398 (7.8%), respectively, and they continued to be the main genotypes in 2016. The prevalence of meticillin-resistant S. aureus (MRSA) were 36.5% (66/181) and 36.6% (86/235) in 2013 and 2016, respectively. Interestingly, the susceptibility rates of MRSA to rifampicin and fluoroquinolones increased significantly from 2013 to 2016 (P < 0.01), and this was associated with changes in genetic structure. ST239-t030-MRSA, the predominant genotype among all MRSAs in 2013 (34.8%), was replaced by ST59-t437-MRSA (15.1%) in 2016. Further analysis revealed that the ST239-t030-MRSA were more resistant to rifampicin, tetracycline and fluoroquinolones than ST59-t437-MRSA (P < 0.01). To further gain insight into the mechanisms underlying the changes of genetic structure, in vitro competition and fitness measurements were performed. Importantly, ST239-t030-MRSA displayed lower growth rate and lower competitive advantage compared to ST59-t437-MRSA. Together, our findings reveal that fitness advantage of ST59-t437-MRSA over ST239-t030-MRSA may lead to changes in genetic structure and increased susceptibility of MRSA to rifampicin and fluoroquinolones in Chinese patients with S. aureus bacteremia. Our study supports temporal dynamics in MRSA clone diversities, further providing critical insights into the importance of continued monitoring of MRSA.
Collapse
Affiliation(s)
- Shuguang Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chentao Yang
- Department of Pharmacology, Xingtai Medical College, Xingtai, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
40
|
|
41
|
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 2018; 41:354-373. [PMID: 28369307 DOI: 10.1093/femsre/fux011] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/17/2017] [Indexed: 11/12/2022] Open
Abstract
Antibiotic-resistant Mycobacterium tuberculosis strains are threatening progress in containing the global tuberculosis epidemic. Mycobacterium tuberculosis is intrinsically resistant to many antibiotics, limiting the number of compounds available for treatment. This intrinsic resistance is due to a number of mechanisms including a thick, waxy, hydrophobic cell envelope and the presence of drug degrading and modifying enzymes. Resistance to the drugs which are active against M. tuberculosis is, in the absence of horizontally transferred resistance determinants, conferred by chromosomal mutations. These chromosomal mutations may confer drug resistance via modification or overexpression of the drug target, as well as by prevention of prodrug activation. Drug resistance mutations may have pleiotropic effects leading to a reduction in the bacterium's fitness, quantifiable e.g. by a reduction in the in vitro growth rate. Secondary so-called compensatory mutations, not involved in conferring resistance, can ameliorate the fitness cost by interacting epistatically with the resistance mutation. Although the genetic diversity of M. tuberculosis is low compared to other pathogenic bacteria, the strain genetic background has been demonstrated to influence multiple aspects in the evolution of drug resistance. The rate of resistance evolution and the fitness costs of drug resistance mutations may vary as a function of the genetic background.
Collapse
Affiliation(s)
- Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
42
|
Li S, Yin Y, Chen H, Wang Q, Wang X, Wang H. Fitness Cost of Daptomycin-Resistant Staphylococcus aureus Obtained from in Vitro Daptomycin Selection Pressure. Front Microbiol 2017; 8:2199. [PMID: 29170657 PMCID: PMC5684181 DOI: 10.3389/fmicb.2017.02199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
Daptomycin-resistant (DAP-R) Staphylococcus aureus strains are well documented, but have not been reported in China. To elucidate the evolution adaptability and fitness cost of DAP-R S. aureus, three DAP susceptible strains, Pre3 (MRSA, ST239-t037), Pre5 (MRSA, ST239-t037), and Pre14b (MSSA, ST188-t189), were isolated from patients with bloodstream infections, and serially passaged in Mueller–Hinton broth with a gradient of DAP concentration to select for resistance. Highly DAP-R mutants were obtained after screening for 34 passages. The DAP minimum inhibitory concentrations increased from 0.5 μg/ml in the parent strains to 16 μg/ml in the mutants, which remained tolerant to 4 μg/ml of DAP for more than 160 generations. The growth of the three mutant strains was slower than that of the parent strains, with relative fitness cost of 34.8%, 19.2%, and 15.0%, respectively. The in vitro serum tolerance of the mutants was decreased, and the lethality and pathogenicity in mice were weakened (P < 0.01). Transmission electron microscopy found that the cell walls of the mutants were significantly thicker (from 38.6% to 75.4%) than those of the parent cells. Mutation L826F of mprF was found in Post14b, G299V, and L473I of mprF and Y225N of walK were found in Post3, while T345A of mprF, S52N of graS, and F473I of walK were found in Post5. Thus, stable DAP-R mutants could be obtained from a middle-short term of in vitro DAP selection, and according to their fitness cost, some prevention and control work may be done to cope with DAP-R S. aureus that may appear in China in the future.
Collapse
Affiliation(s)
- Shuguang Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
43
|
Al-Saeedi M, Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis. Infect Drug Resist 2017; 10:333-342. [PMID: 29075131 PMCID: PMC5648319 DOI: 10.2147/idr.s144446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Mashael Al-Saeedi
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Clinical Characteristics and Treatment Outcomes of Patients with Acquired Macrolide-Resistant Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother 2017; 61:AAC.01146-17. [PMID: 28739795 DOI: 10.1128/aac.01146-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023] Open
Abstract
Macrolide antibiotics are mainstays in the treatment of lung disease due to the Mycobacterium abscessus complex. Although previous studies have reported development of acquired macrolide resistance in this species, limited data are available on the outcomes of lung disease due to macrolide-resistant Mycobacterium abscessus subsp. abscessus This study evaluated the clinical features, treatment outcomes, and molecular characteristics of macrolide-resistant isolates of M. abscessus subsp. abscessus We performed a retrospective review of medical records and genetic analysis of clinical isolates from 13 patients who had acquired macrolide-resistant M. abscessus subsp. abscessus lung disease between November 2006 and March 2016. Eleven (85%) patients had the nodular bronchiectatic form of the disease, and two (15%) patients had the fibrocavitary form. When acquired macrolide resistance was detected, 10 (77%) patients were on antibiotic therapy for M. abscessus subsp. abscessus, and three (23%) patients were on therapy for lung disease due to other nontuberculous mycobacteria. The median treatment duration after detecting resistance was 24.0 months (interquartile range, 16.0 to 43.0 months). Treatment outcomes were poor, and final sputum culture conversion was achieved in only one (8%) patient, after resectional surgery. All 13 clinical isolates demonstrated point mutations at position 2058 (n = 10) or 2059 (n = 3) of the 23S rRNA gene, which resulted in acquired macrolide resistance. This study indicates that treatment outcomes are very poor after the development of acquired macrolide resistance in patients with M. abscessus subsp. abscessus lung disease. Thus, more effective measures are needed to prevent development and effectively treat macrolide-resistant M. abscessus subsp. abscessus lung disease.
Collapse
|
45
|
Affiliation(s)
- Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
46
|
Sommer MOA, Munck C, Toft-Kehler RV, Andersson DI. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat Rev Microbiol 2017; 15:689-696. [DOI: 10.1038/nrmicro.2017.75] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Evolution of Cost-Free Resistance under Fluctuating Drug Selection in Pseudomonas aeruginosa. mSphere 2017; 2:mSphere00158-17. [PMID: 28744479 PMCID: PMC5518267 DOI: 10.1128/msphere.00158-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022] Open
Abstract
Antibiotic resistance is a global problem that greatly impacts human health. How resistance persists, even in the absence of antibiotic treatment, is thus a public health problem of utmost importance. In this study, we explored the antibiotic treatment conditions under which cost-free resistance arises, using experimental evolution of the bacterium Pseudomonas aeruginosa and the quinolone antibiotic ciprofloxacin. We found that intermittent antibiotic treatment led to the evolution of cost-free resistance and demonstrate that compensatory evolution is the mechanism responsible for cost-free resistance. Our results suggest that discontinuous administration of antibiotic may be contributing to the high levels of antibiotic resistance currently found worldwide. Antibiotic resistance evolves rapidly in response to drug selection, but it can also persist at appreciable levels even after the removal of the antibiotic. This suggests that many resistant strains can both be resistant and have high fitness in the absence of antibiotics. To explore the conditions under which high-fitness, resistant strains evolve and the genetic changes responsible, we used a combination of experimental evolution and whole-genome sequencing to track the acquisition of ciprofloxacin resistance in the opportunistic pathogen Pseudomonas aeruginosa under conditions of constant and fluctuating antibiotic delivery patterns. We found that high-fitness, resistant strains evolved readily under fluctuating but not constant antibiotic conditions and that their evolution was underlain by a trade-off between resistance and fitness. Whole-genome sequencing of evolved isolates revealed that resistance was gained through mutations in known resistance genes and that second-site mutations generally compensated for costs associated with resistance in the fluctuating treatment, leading to the evolution of cost-free resistance. Our results suggest that current therapies involving intermittent administration of antibiotics are contributing to the maintenance of antibiotic resistance at high levels in clinical settings. IMPORTANCE Antibiotic resistance is a global problem that greatly impacts human health. How resistance persists, even in the absence of antibiotic treatment, is thus a public health problem of utmost importance. In this study, we explored the antibiotic treatment conditions under which cost-free resistance arises, using experimental evolution of the bacterium Pseudomonas aeruginosa and the quinolone antibiotic ciprofloxacin. We found that intermittent antibiotic treatment led to the evolution of cost-free resistance and demonstrate that compensatory evolution is the mechanism responsible for cost-free resistance. Our results suggest that discontinuous administration of antibiotic may be contributing to the high levels of antibiotic resistance currently found worldwide.
Collapse
|
48
|
Stamatiou K, Pierris N. Mounting resistance of uropathogens to antimicrobial agents: A retrospective study in patients with chronic bacterial prostatitis relapse. Investig Clin Urol 2017; 58:271-280. [PMID: 28681038 PMCID: PMC5494352 DOI: 10.4111/icu.2017.58.4.271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Despite recent progress in the management of chronic bacterial prostatitis (CBP), many cases relapse. Increased drug resistance patterns of responsible bacteria have been proposed as the most probable causative factor. Driven by the limited number of previous studies addressing this topic, we aimed to study whether antibiotic resistance increases in patients with CBP when relapse occurs. A secondary aim of this study was to determine the resistance patterns of responsible bacteria from patients with CBP. Materials and Methods The study material consisted of bacterial isolates from urine and/or prostatic secretions obtained from patients with CBP. Bacterial identification was performed by using the Vitek 2 Compact system and susceptibility testing was performed by disc diffusion and/or the Vitek 2 system. Interpretation of susceptibility results was based on Clinical and Laboratory Standards Institute guidelines. Results A total of 253 samples from patients diagnosed with CBP for the first time (group A) and 137 samples from relapsing patients with a history of CBP and previous antibiotic treatment (group B) were analyzed. A significant reduction in bacterial resistance to the less used antibiotics (TMP-SMX, tetracyclines, aminoglycosides, penicillins, and macrolides) was noted. An increase in resistance to quinolones of many bacteria that cause CBP was also noted with the increase in resistance of enterococcus strains being alarming. Conclusions Comparison of the resistance profile of CBP-responsible bacteria between samples from first-time-diagnosed patients and samples from relapsing patients revealed notable differences that could be attributed to previous antibiotic treatment.
Collapse
Affiliation(s)
| | - Nikolaos Pierris
- Department of Urology, Tzaneio General Hospital of Piraeus, Piraeus, Greece
| |
Collapse
|
49
|
Durhan E, Korcan SE, Altindis M, Konuk M. Fitness and competitive growth comparison of methicillin resistant and methicillin susceptible Staphylococcus aureus colonies. Microb Pathog 2017; 106:69-75. [DOI: 10.1016/j.micpath.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
50
|
Chantziaras I, Smet A, Haesebrouck F, Boyen F, Dewulf J. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers. J Antimicrob Chemother 2017; 72:1991-2001. [DOI: 10.1093/jac/dkx104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
|