1
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Yang C, Huang C, Fang C, Zhang L, Chen S, Zhang Q, Zhang C, Zhang W. Inactivation of Flavoenzyme-Encoding Gene flsO1 in Fluostatin Biosynthesis Leads to Diversified Angucyclinone Derivatives. J Org Chem 2021; 86:11019-11028. [DOI: 10.1021/acs.joc.0c02517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Chunshuai Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Siqiang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Fang Z, Jiang X, Zhang Q, Zhang L, Zhang W, Yang C, Zhang H, Zhu Y, Zhang C. S-Bridged Thioether and Structure-Diversified Angucyclinone Derivatives from the South China Sea-Derived Micromonospora echinospora SCSIO 04089. JOURNAL OF NATURAL PRODUCTS 2020; 83:3122-3130. [PMID: 32970433 DOI: 10.1021/acs.jnatprod.0c00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Angucyclinces belong to the class of aromatic polyketides and display a wide variety of structure diversity and pharmaceutical significance. Herein we report the isolation, structure elucidation, and bioactivity evaluation of structure-diversified angucyclinone derivatives and anthracene from the South China Sea-derived Micromonospora echinospora SCSIO 04089, including a thioether, gephysulfuromycin (1), two new benzo[b]phenanthridines, homophenanthroviridone (2) and homophenanthridonamide (3), a new benzo[b]fluorene, homostealthin D (4), a new naphtho[2,3-b]benzofuran, nenesfuran (5), a new naphthoquinone, WS-5995 D (6) and a new anthracene, nenesophanol (7), together with three known compounds (8-10). Their structures were elucidated by extensive spectroscopic analyses. The structures of 1-3 and 5-8 were confirmed by X-ray crystallographic analyses. Gephysulfuromycin (1) featured a rare single S-bridged 3,12a-epithiotetraphene skeleton. Homophenanthroviridone (2) was found to be cytotoxic to SF-268, MCF-7, and HepG2 cell lines with IC50 values of 5.4 ± 0.4, 6.8 ± 0.3, and 1.4 ± 0.1 μM, respectively. Compound 2 was also active against Gram-positive bacteria with MIC (minimal inhibition concentration) values ranging 2-4 μg mL-1.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
4
|
Abstract
Type II polyketides are a group of secondary metabolites with various biological activities. In nature, biosynthesis of type II polyketides involves multiple enzymatic steps whereby key enzymes, including ketoacyl-synthase (KSα), chain length factor (KSβ), and acyl carrier protein (ACP), are utilized to elongate the polyketide chain through a repetitive condensation reaction. During each condensation, the biosynthesis intermediates are covalently attached to KSα or ACP via a thioester bond and are then cleaved to release an elongated polyketide chain for successive postmodification. Type II polyketides are a group of secondary metabolites with various biological activities. In nature, biosynthesis of type II polyketides involves multiple enzymatic steps whereby key enzymes, including ketoacyl-synthase (KSα), chain length factor (KSβ), and acyl carrier protein (ACP), are utilized to elongate the polyketide chain through a repetitive condensation reaction. During each condensation, the biosynthesis intermediates are covalently attached to KSα or ACP via a thioester bond and are then cleaved to release an elongated polyketide chain for successive postmodification. Despite its critical role in type II polyketide biosynthesis, the enzyme and its corresponding mechanism for type II polyketide chain release through thioester bond breakage have yet to be determined. Here, kinamycin was used as a model compound to investigate the chain release step of type II polyketide biosynthesis. Using a genetic knockout strategy, we confirmed that AlpS is required for the complete biosynthesis of kinamycins. Further in vitro biochemical assays revealed high hydrolytic activity of AlpS toward a thioester bond in an aromatic polyketide-ACP analog, suggesting its distinct role in offloading the polyketide chain from ACP during the kinamycin biosynthesis. Finally, we successfully utilized AlpS to enhance the heterologous production of dehydrorabelomycin in Escherichia coli by nearly 25-fold, which resulted in 0.50 g/liter dehydrorabelomycin in a simple batch-mode shake flask culture. Taken together, our results provide critical knowledge to gain an insightful understanding of the chain-releasing process during type II polyketide synthesis, which, in turn, lays a solid foundation for future new applications in type II polyketide bioproduction.
Collapse
|
5
|
Vicente CM, Girardet JM, Hôtel L, Aigle B. Molecular Dynamics to Elucidate the DNA-Binding Activity of AlpZ, a Member of the Gamma-Butyrolactone Receptor Family in Streptomyces ambofaciens. Front Microbiol 2020; 11:1255. [PMID: 32714286 PMCID: PMC7343708 DOI: 10.3389/fmicb.2020.01255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cláudia M. Vicente
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- *Correspondence: Cláudia M. Vicente,
| | | | | | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Bertrand Aigle,
| |
Collapse
|
6
|
Mining the Biosynthetic Potential for Specialized Metabolism of a Streptomyces Soil Community. Antibiotics (Basel) 2020; 9:antibiotics9050271. [PMID: 32456220 PMCID: PMC7277575 DOI: 10.3390/antibiotics9050271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The diversity and distribution of specialized metabolite gene clusters within a community of bacteria living in the same soil habitat are poorly documented. Here we analyzed the genomes of 8 Streptomyces isolated at micro-scale from a forest soil that belong to the same species or to different species. The results reveal high levels of diversity, with a total of 261 biosynthesis gene clusters (BGCs) encoding metabolites such as terpenes, polyketides (PKs), non-ribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs) with potential bioactivities. A significant part of these BGCs (n = 53) were unique to only one strain when only 5 were common to all strains. The metabolites belong to very diverse chemical families and revealed that a large diversity of metabolites can potentially be produced in the community. Although that analysis of the global metabolome using GC-MS revealed that most of the metabolites were shared between the strains, they exhibited a specific metabolic pattern. We also observed that the presence of these accessory pathways might result from frequent loss and gain of genes (horizontal transfer), showing that the potential of metabolite production is a dynamic phenomenon in the community. Sampling Streptomyces at the community level constitutes a good frame to discover new biosynthetic pathways and it appears as a promising reservoir for the discovery of new bioactive compounds.
Collapse
|
7
|
Tidjani AR, Bontemps C, Leblond P. Telomeric and sub-telomeric regions undergo rapid turnover within a Streptomyces population. Sci Rep 2020; 10:7720. [PMID: 32382084 PMCID: PMC7205883 DOI: 10.1038/s41598-020-63912-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
Genome dynamics was investigated within natural populations of the soil bacterium Streptomyces. The exploration of a set of closely related strains isolated from micro-habitats of a forest soil exhibited a strong diversity of the terminal structures of the linear chromosome, i.e. terminal inverted repeats (TIRs). Large insertions, deletions and translocations could be observed along with evidence of transfer events between strains. In addition, the telomere and its cognate terminal protein complexes required for terminal replication and chromosome maintenance, were shown to be variable within the population probably reflecting telomere exchanges between the chromosome and other linear replicons (i.e., plasmids). Considering the close genetic relatedness of the strains, these data suggest that the terminal regions are prone to a high turnover due to a high recombination associated with extensive horizontal gene transfer.
Collapse
Affiliation(s)
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France.
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France.
| |
Collapse
|
8
|
A Hierarchical Network of Four Regulatory Genes Controlling Production of the Polyene Antibiotic Candicidin in Streptomyces sp. Strain FR-008. Appl Environ Microbiol 2020; 86:AEM.00055-20. [PMID: 32086301 DOI: 10.1128/aem.00055-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
The four regulatory genes fscR1 to fscR4 in Streptomyces sp. strain FR-008 form a genetic arrangement that is widely distributed in macrolide-producing bacteria. Our previous work has demonstrated that fscR1 and fscR4 are critical for production of the polyene antibiotic candicidin. In this study, we further characterized the roles of the other two regulatory genes, fscR2 and fscR3, focusing on the relationship between these four regulatory genes. Disruption of a single or multiple regulatory genes did not affect bacterial growth, but transcription of genes in the candicidin biosynthetic gene cluster decreased, and candicidin production was abolished, indicating a critical role for each of the four regulatory genes, including fscR2 and fscR3, in candicidin biosynthesis. We found that fscR1 to fscR4, although differentially expressed throughout the growth phase, displayed similar temporal expression patterns, with an abrupt increase in the early exponential phase, coincident with initial detection of antibiotic production in the same phase. Our data suggest that the four regulatory genes fscR1 to fscR4 have various degrees of control over structural genes in the biosynthetic cluster under the conditions examined. Extensive transcriptional analysis indicated that complex regulation exists between these four regulatory genes, forming a regulatory network, with fscR1 and fscR4 functioning at a lower level. Comprehensive cross-complementation analysis indicates that functional complementation is restricted among the four regulators and unidirectional, with fscR1 complementing the loss of fscR3 or -4 and fscR4 complementing loss of fscR2 Our study provides more insights into the roles of, and the regulatory network formed by, these four regulatory genes controlling production of an important pharmaceutical compound.IMPORTANCE The regulation of antibiotic biosynthesis by Streptomyces species is complex, especially for biosynthetic gene clusters with multiple regulatory genes. The biosynthetic gene cluster for the polyene antibiotic candicidin contains four consecutive regulatory genes, which encode regulatory proteins from different families and which form a subcluster within the larger biosynthetic gene cluster in Streptomyces sp. FR-008. Syntenic arrangements of these regulatory genes are widely distributed in polyene gene clusters, such as the amphotericin and nystatin gene clusters, suggesting a conserved regulatory mechanism controlling production of these clinically important medicines. However, the relationships between these multiple regulatory genes are unknown. In this study, we determined that each of these four regulatory genes is critical for candicidin production. Additionally, using transcriptional analyses, bioassays, high-performance liquid chromatography (HPLC) analysis, and genetic cross-complementation, we showed that FscR1 to FscR4 comprise a hierarchical regulatory network that controls candicidin production and is likely representative of how expression of other polyene biosynthetic gene clusters is controlled.
Collapse
|
9
|
Wang W, Li J, Li H, Fan K, Liu Y. Crystal structure of AlpK: An essential monooxygenase involved in the biosynthesis of kinamycin. Biochem Biophys Res Commun 2019; 510:601-605. [PMID: 30739782 DOI: 10.1016/j.bbrc.2019.01.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 12/23/2022]
Abstract
AlpK is an essential monooxygenase involved in the biosynthesis of kinamycin. It catalyzes the C5-hyfroxylattion of the crucial benzo[b]-fluorence intermediate in kinamycin synthesis. However, the structure and mechanism of AlpK is unclear. Here, we report the first structure of AlpK in complex with FAD. Our structure sheds light on the catalytic mechanism of AlpK.
Collapse
Affiliation(s)
- Wenpeng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- School of Medicine, Sun Yat-Sen University, Shenzhen, 510080, China
| | - HuanHuan Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqing Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingfang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Fan K, Zhang Q. The functional differentiation of the post-PKS tailoring oxygenases contributed to the chemical diversities of atypical angucyclines. Synth Syst Biotechnol 2018; 3:275-282. [PMID: 30533539 PMCID: PMC6260466 DOI: 10.1016/j.synbio.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
Angucyclines are one of the largest families of aromatic polyketides with various chemical structures and bioactivities. Decades of studies have made it easy for us to depict the picture of their early biosynthetic pathways. Two families of oxygenases, the FAD-dependent oxygenases and the ring opening oxygenases, contribute to the formation of some unique skeletons of atypical angucyclines. The FAD-dependent oxygenases involved in the biosynthetic gene clusters of typical angucyclines catalyze two hydroxylation reactions at C-12 and C-12b of prejadomycin, while their homolog JadH in jadomycin gene cluster catalyze the C-12 hydroxylation and 4a,12b-dehydration reactions of prejadomycin, which leads to the production of dehydrorabelomycin, a common intermediate during the biosynthesis of atypical angucyclines. Ring opening oxygenases of a unique family of oxygenases catalyze the oxidative C—C bond cleavage reaction of dehydrorabelomycin, followed by different rearrangement reactions, resulting in the formation of the various chemical skeletons of atypical angucyclines. These results suggested that the functional differentiation of these oxygenases could apparently enrich the sources of aromatic polyketides with greater structure diversities.
Collapse
Affiliation(s)
- Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Qian Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
11
|
Huang C, Yang C, Zhang W, Zhang L, De BC, Zhu Y, Jiang X, Fang C, Zhang Q, Yuan CS, Liu HW, Zhang C. Molecular basis of dimer formation during the biosynthesis of benzofluorene-containing atypical angucyclines. Nat Commun 2018; 9:2088. [PMID: 29802272 PMCID: PMC5970136 DOI: 10.1038/s41467-018-04487-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Lomaiviticin A and difluostatin A are benzofluorene-containing aromatic polyketides in the atypical angucycline family. Although these dimeric compounds are potent antitumor agents, how nature constructs their complex structures remains poorly understood. Herein, we report the discovery of a number of fluostatin type dimeric aromatic polyketides with varied C−C and C−N coupling patterns. We also demonstrate that these dimers are not true secondary metabolites, but are instead derived from non-enzymatic deacylation of biosynthetic acyl fluostatins. The non-enzymatic deacylation proceeds via a transient quinone methide like intermediate which facilitates the subsequent C–C/C−N coupled dimerization. Characterization of this unusual property of acyl fluostatins explains how dimerization takes place, and suggests a strategy for the assembly of C–C and C–N coupled aromatic polyketide dimers. Additionally, a deacylase FlsH was identified which may help to prevent accumulation of toxic quinone methides by catalyzing hydrolysis of the acyl group. Benzofluorene-containing angucyclines, bacterial natural compounds with potential use as therapeutics/antibiotics, occur as dimers. Here, the authors elucidated the dimerization mechanism which turned out to work spontaneously, without enzymatic catalysis.
Collapse
Affiliation(s)
- Chunshuai Huang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Cheng-Shan Yuan
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and EcologyGuangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
12
|
Dettori L, Ferrari F, Framboisier X, Paris C, Guiavarc'h Y, Hôtel L, Aymes A, Leblond P, Humeau C, Kapel R, Chevalot I, Aigle B, Delaunay S. An aminoacylase activity from Streptomyces ambofaciens catalyzes the acylation of lysine on α-position and peptides on N-terminal position. Eng Life Sci 2018; 18:589-599. [PMID: 32624939 DOI: 10.1002/elsc.201700173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 11/11/2022] Open
Abstract
The presence of aminoacylase activities was investigated in a crude extract of Streptomyces ambofaciens ATCC23877. First activities catalyzing the hydrolysis of N-α or ε-acetyl-L-lysine were identified. Furthermore, the acylation of lysine and different peptides was studied and compared with results obtained with lipase B of Candida antarctica (CALB). Different regioselectivities were demonstrated for the two classes of enzymes. CALB was able to catalyze acylation only on the ε-position whereas the crude extract from S. ambofaciens possessed the rare ability to catalyze the N-acylation on the α-position of the lysine or of the amino-acid in N-terminal position of peptides. Two genes, SAM23877_1485 and SAM23877_1734, were identified in the genome of Streptomyces ambofaciens ATCC23877 whose products show similarities with the previously identified aminoacylases from Streptomyces mobaraensis. The proteins encoded by these two genes were responsible for the major aminoacylase hydrolytic activities. Furthermore, we show that the hydrolysis of N-α-acetyl-L-lysine could be attributed to the product of SAM23877_1734 gene.
Collapse
Affiliation(s)
| | | | | | - Cédric Paris
- Université de Lorraine Plateau d'Analyse Structurale et Métabolomique Nancy France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu X, Liu D, Xu M, Tao M, Bai L, Deng Z, Pfeifer BA, Jiang M. Reconstitution of Kinamycin Biosynthesis within the Heterologous Host Streptomyces albus J1074. JOURNAL OF NATURAL PRODUCTS 2018; 81:72-77. [PMID: 29338229 DOI: 10.1021/acs.jnatprod.7b00652] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diazofluorene compounds such as kinamycin and lomaiviticin feature unique molecular structures and compelling medicinal bioactivities. However, a complete understanding of the biosynthetic details for this family of natural products has yet to be fully elucidated. In addition, a lack of genetically and technically amenable production hosts has limited access to the full medicinal potential of these compounds. Here, we report the capture of the complete kinamycin gene cluster from Streptomyces galtieri Sgt26 by bacterial artificial chromosome cloning, confirmed by successful production of kinamycin in the heterologous host Streptomyces albus J1074. Sequence analysis and a series of gene deletion experiments revealed the boundary of the cluster, which spans 75 kb DNA. To probe the last step in biosynthesis, acetylation of kinamcyin F to kinamycin D, gene knockout, and complementation experiments identified a single gene product involved with final acetylation conversions. This study provides full genetic information for the kinamycin gene cluster from S. galtieri Sgt26 and establishes heterologous biosynthesis as a production platform for continued mechanistic assessment of compound formation and utilization.
Collapse
Affiliation(s)
- Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Dongxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Buffalo, New York 14260, United States
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| |
Collapse
|
14
|
Isolation, structure elucidation and biosynthesis of benzo[b]fluorene nenestatin A from deep-sea derived Micromonospora echinospora SCSIO 04089. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Pan G, Gao X, Fan K, Liu J, Meng B, Gao J, Wang B, Zhang C, Han H, Ai G, Chen Y, Wu D, Liu ZJ, Yang K. Structure and Function of a C-C Bond Cleaving Oxygenase in Atypical Angucycline Biosynthesis. ACS Chem Biol 2017; 12:142-152. [PMID: 28103689 DOI: 10.1021/acschembio.6b00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
C-C bond ring cleaving oxygenases represent a unique family of enzymes involved in the B ring cleavage reaction only observed in atypical angucycline biosynthesis. B ring cleavage is the key reaction leading to dramatic divergence in the final structures of atypical angucyclines. Here, we present the crystal structure of AlpJ, the first structure of this family of enzymes. AlpJ has been verified as the enzyme catalyzing C-C bond cleavage in kinamycin biosynthesis. The crystal structure of the AlpJ monomer resembles the dimeric structure of ferredoxin-like proteins. The N- and C-terminal halves of AlpJ are homologous, and both contain a putative hydrophobic substrate binding pocket in the "closed" and "open" conformations, respectively. Structural comparison of AlpJ with ActVA-Orf6 and protein-ligand docking analysis suggest that the residues including Asn60, Trp64, and Trp181 are possibly involved in substrate recognition. Site-directed mutagenesis results supported our hypothesis, as mutation of these residues led to nearly a complete loss of the activity of AlpJ. Structural analysis also revealed that AlpJ possesses an intramolecular domain-domain interface, where the residues His50 and Tyr178 form a hydrogen bond that probably stabilizes the three-dimensional structure of AlpJ. Site-directed mutagenesis showed that the two residues, His50 and Tyr178, were vital for the activity of AlpJ. Our findings shed light on the structure and catalytic mechanism of the AlpJ family of oxygenases, which presumably involves two active sites that might function in a cooperative manner.
Collapse
Affiliation(s)
- Guohui Pan
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xiaoqin Gao
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Keqiang Fan
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Junlin Liu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Bing Meng
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Jinmin Gao
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Bin Wang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Chaobo Zhang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hui Han
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Guomin Ai
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yihua Chen
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhi-Jie Liu
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Institute
of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Keqian Yang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
16
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
17
|
Biarnes-Carrera M, Breitling R, Takano E. Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 2015; 28:91-8. [PMID: 26164547 DOI: 10.1016/j.cbpa.2015.06.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 01/14/2023]
Abstract
Signalling circuits based on quorum sensing mechanisms have been popular tools for synthetic biology. Recent advances in our understanding of the analogous systems regulating antibiotics production in soil bacteria suggest that these might provide useful complementary tools to increase the complexity of possible circuit designs. Here we discuss the diversity of these natural circuits, which use γ-butyrolactones (GBLs) as their main inter-cellular signal, highlighting the range of new building blocks they could provide, as well as a number of exciting recent applications of GBL-based circuits in heterologous systems. We conclude by presenting examples of the novel circuit complexity that could become accessible through the use of GBL-based designs.
Collapse
Affiliation(s)
- Marc Biarnes-Carrera
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
18
|
Identification of Alp1U and Lom6 as epoxy hydrolases and implications for kinamycin and lomaiviticin biosynthesis. Nat Commun 2015; 6:7674. [PMID: 26134788 PMCID: PMC4506494 DOI: 10.1038/ncomms8674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/01/2015] [Indexed: 01/19/2023] Open
Abstract
The naturally occurring diazobenzofluorenes, kinamycins, fluostatins and lomaiviticins, possess highly oxygenated A-rings, via which the last forms a dimeric pharmacophore. However, neither the A-ring transformation nor the dimerization mechanisms have been explored thus far. Here we propose a unified biosynthetic logic for the three types of antibiotics and verify one key reaction via detailed genetic and enzymatic experiments. Alp1U and Lom6 from the kinamycin and lomaiviticin biosynthesis, respectively, are shown to catalyse epoxy hydrolysis on a substrate that is obtained by chemical deacetylation of a kinamycin-pathway-derived intermediate. Thus, our study provides the first evidence for the existence of an epoxy intermediate in lomaiviticin biosynthesis. Furthermore, our results suggest that the dimerization in the lomaiviticin biosynthesis proceeds after dehydration of a product generated by Lom6. Kinamycins, fluostatins and lomaiviticins are naturally occurring antibiotics that possess unique diazofluorene structures and exhibit potent anti-tumour activity. Here the authors identify the epoxy hydrolases in the biosynthetic pathways of kinamycins and lomaiviticins, suggesting the existence of epoxy-intermediates in their biosynthesis.
Collapse
|
19
|
Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B, Asenjo JA, Bibb MJ. The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 2015; 16:485. [PMID: 26122045 PMCID: PMC4487206 DOI: 10.1186/s12864-015-1652-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Next Generation DNA Sequencing (NGS) and genome mining of actinomycetes and other microorganisms is currently one of the most promising strategies for the discovery of novel bioactive natural products, potentially revealing novel chemistry and enzymology involved in their biosynthesis. This approach also allows rapid insights into the biosynthetic potential of microorganisms isolated from unexploited habitats and ecosystems, which in many cases may prove difficult to culture and manipulate in the laboratory. Streptomyces leeuwenhoekii (formerly Streptomyces sp. strain C34) was isolated from the hyper-arid high-altitude Atacama Desert in Chile and shown to produce novel polyketide antibiotics. Results Here we present the de novo sequencing of the S. leeuwenhoekii linear chromosome (8 Mb) and two extrachromosomal replicons, the circular pSLE1 (86 kb) and the linear pSLE2 (132 kb), all in single contigs, obtained by combining Pacific Biosciences SMRT (PacBio) and Illumina MiSeq technologies. We identified the biosynthetic gene clusters for chaxamycin, chaxalactin, hygromycin A and desferrioxamine E, metabolites all previously shown to be produced by this strain (J Nat Prod, 2011, 74:1965) and an additional 31 putative gene clusters for specialised metabolites. As well as gene clusters for polyketides and non-ribosomal peptides, we also identified three gene clusters encoding novel lasso-peptides. Conclusions The S. leeuwenhoekii genome contains 35 gene clusters apparently encoding the biosynthesis of specialised metabolites, most of them completely novel and uncharacterised. This project has served to evaluate the current state of NGS for efficient and effective genome mining of high GC actinomycetes. The PacBio technology now permits the assembly of actinomycete replicons into single contigs with >99 % accuracy. The assembled Illumina sequence permitted not only the correction of omissions found in GC homopolymers in the PacBio assembly (exacerbated by the high GC content of actinomycete DNA) but it also allowed us to obtain the sequences of the termini of the chromosome and of a linear plasmid that were not assembled by PacBio. We propose an experimental pipeline that uses the Illumina assembled contigs, in addition to just the reads, to complement the current limitations of the PacBio sequencing technology and assembly software. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1652-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo Gomez-Escribano
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Jean Franco Castro
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom. .,Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, Universidad de Chile, Beauchef 850, Santiago, Chile.
| | - Valeria Razmilic
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom. .,Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, Universidad de Chile, Beauchef 850, Santiago, Chile.
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Barbara Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, Universidad de Chile, Beauchef 850, Santiago, Chile.
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, Universidad de Chile, Beauchef 850, Santiago, Chile.
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
20
|
Li J, Xie Z, Wang M, Ai G, Chen Y. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115. PLoS One 2015; 10:e0120542. [PMID: 25822496 PMCID: PMC4425429 DOI: 10.1371/journal.pone.0120542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
The paulomycins are a group of glycosylated compounds featuring a unique paulic
acid moiety. To locate their biosynthetic gene clusters, the genomes of two
paulomycin producers, Streptomyces paulus NRRL 8115 and
Streptomyces sp. YN86, were sequenced. The paulomycin
biosynthetic gene clusters were defined by comparative analyses of the two
genomes together with the genome of the third paulomycin producer
Streptomyces albus J1074. Subsequently, the identity of the
paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes
involved in biosynthesis of the paulomycose branched chain
(pau11) and the ring A moiety (pau18) in
Streptomyces paulus NRRL 8115. After determining the gene
cluster boundaries, a convergent biosynthetic model was proposed for paulomycin
based on the deduced functions of the pau genes. Finally, a
paulomycin high-producing strain was constructed by expressing an
activator-encoding gene (pau13) in S.
paulus, setting the stage for future investigations.
Collapse
Affiliation(s)
- Jine Li
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Zhoujie Xie
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
- * E-mail:
| |
Collapse
|
21
|
Yekkour A, Meklat A, Bijani C, Toumatia O, Errakhi R, Lebrihi A, Mathieu F, Zitouni A, Sabaou N. A novel hydroxamic acid-containing antibiotic produced by a Saharan soil-living Streptomyces strain. Lett Appl Microbiol 2015; 60:589-96. [PMID: 25754683 DOI: 10.1111/lam.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/31/2015] [Accepted: 03/02/2015] [Indexed: 02/04/2023]
Abstract
During screening for potentially antimicrobial actinobacteria, a highly antagonistic strain, designated WAB9, was isolated from a Saharan soil of Algeria. A polyphasic approach characterized the strain taxonomically as a member of the genus Streptomyces. The strain WAB9 exhibited a broad spectrum of antimicrobial activity toward various multidrug-resistant micro-organisms. A PCR-based assay of genomic potential for producing bioactive metabolites revealed the presence of PKS-II gene. After 6 days of strain fermentation, one bioactive compound was extracted from the remaining aqueous phase and then purified by HPLC. The chemical structure of the compound was determined by spectroscopic (UV-visible, and (1)H and (13)C NMR) and spectrometric analysis. The compound was identified to be 2-amino-N-(2-amino-3-phenylpropanoyl)-N-hydroxy-3-phenylpropanamide, a novel hydroxamic acid-containing molecule. The pure molecule showed appreciable minimum inhibitory concentration values against a selection of drug-resistant bacteria, filamentous fungi and yeasts. Significance and impact of the study: This study presents the isolation of a Streptomyces strain, named WAB9, from a Saharan soil in Algeria. This strain was found to produce a new hydroxamic acid-containing molecule with interesting antimicrobial activities towards various multidrug-resistant micro-organisms. Although hydroxamic acid-containing molecules are known to exhibit low toxicities in general, only real evaluations of the toxicity levels could decide on the applications for which this new molecule is potentially most appropriate. Thus, this article provides a new framework of research.
Collapse
Affiliation(s)
- A Yekkour
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria.,Centre de Recherche Polyvalent, Institut National de la Recherche Agronomique d'Algérie, Alger, Algeria
| | - A Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - C Bijani
- Laboratoire de Chimie de Coordination (LCC), CNRS, Université de Toulouse, UPS, INPT, Toulouse, France
| | - O Toumatia
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - R Errakhi
- Université Moulay Ismail, Meknès, Morocco
| | - A Lebrihi
- Université Moulay Ismail, Meknès, Morocco
| | - F Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), INP de Toulouse/ENSAT, Castanet-Tolosan Cedex, France
| | - A Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - N Sabaou
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| |
Collapse
|
22
|
Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens. Appl Environ Microbiol 2015; 81:3132-41. [PMID: 25724953 DOI: 10.1128/aem.03520-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022] Open
Abstract
Iron is essential in many biological processes. However, its bioavailability is reduced in aerobic environments, such as soil. To overcome this limitation, microorganisms have developed different strategies, such as iron chelation by siderophores. Some bacteria have even gained the ability to detect and utilize xenosiderophores, i.e., siderophores produced by other organisms. We illustrate an example of such an interaction between two soil bacteria, Pseudomonas fluorescens strain BBc6R8 and Streptomyces ambofaciens ATCC 23877, which produce the siderophores pyoverdine and enantiopyochelin and the siderophores desferrioxamines B and E and coelichelin, respectively. During pairwise cultures on iron-limiting agar medium, no induction of siderophore synthesis by P. fluorescens BBc6R8 was observed in the presence of S. ambofaciens ATCC 23877. Cocultures with a Streptomyces mutant strain that produced either coelichelin or desferrioxamines, as well as culture in a medium supplemented with desferrioxamine B, resulted in the absence of pyoverdine production; however, culture with a double mutant deficient in desferrioxamines and coelichelin production did not. This strongly suggests that P. fluorescens BBbc6R8 utilizes the ferrioxamines and ferricoelichelin produced by S. ambofaciens as xenosiderophores and therefore no longer activates the production of its own siderophores. A screening of a library of P. fluorescens BBc6R8 mutants highlighted the involvement of the TonB-dependent receptor FoxA in this process: the expression of foxA and genes involved in the regulation of its biosynthesis was induced in the presence of S. ambofaciens. In a competitive environment, such as soil, siderophore piracy could well be one of the driving forces that determine the outcome of microbial competition.
Collapse
|
23
|
Nindita Y, Cao Z, Yang Y, Arakawa K, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Kinashi H. The tap-tpg gene pair on the linear plasmid functions to maintain a linear topology of the chromosome in Streptomyces rochei. Mol Microbiol 2015; 95:846-58. [PMID: 25495952 DOI: 10.1111/mmi.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
Abstract
Streptomyces rochei 7434AN4 carries three linear plasmids, pSLA2-L (211 kb), pSLA2-M (113 kb) and pSLA2-S (18 kb), their complete nucleotide sequences having been determined. Restriction and sequencing analysis revealed that the telomere sequences at both ends of the linear chromosome are identical to each other, are 98.5% identical to the right end sequences of pSLA2-L and pSLA2-M up to 3.1 kb from the ends and have homology to those of typical Streptomyces species. Mutant 2-39, which lost all the three linear plasmids, was found to carry a circularized chromosome. Sequence comparison of the fusion junction and both deletion ends revealed that chromosomal circularization occurred by terminal deletions followed by nonhomologous recombination. Curing of pSLA2-L from strain 51252, which carries only pSLA2-L, also resulted in terminal deletions in newly obtained mutants. The tap-tpg gene pair, which encodes a telomere-associated protein and a terminal protein for end patching, is located on pSLA2-L and pSLA2-M but has not hitherto been found on the chromosome. These results led us to the idea that the tap-tpg of pSLA2-L or pSLA2-M functions to maintain a linear chromosome in strain 7434AN4. This hypothesis was finally confirmed by complementation and curing experiments of the tap-tpg of pSLA2-M.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang B, Ren J, Li L, Guo F, Pan G, Ai G, Aigle B, Fan K, Yang K. Kinamycin biosynthesis employs a conserved pair of oxidases for B-ring contraction. Chem Commun (Camb) 2015; 51:8845-8. [DOI: 10.1039/c5cc01986a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A conserved pair of oxidases is characterized as nature's machinery for benzofluorenone formation.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Jinwei Ren
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Liyuan Li
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Fang Guo
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Bertrand Aigle
- Université de Lorraine
- Dynamique des Génomes et Adaptation Microbienne
- Vandœuvre-lès-Nancy
- France
- INRA
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| |
Collapse
|
25
|
Zhang P, Wu H, Chen XL, Deng Z, Bai L, Pang X. Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. Microbiology (Reading) 2014; 160:1379-1392. [DOI: 10.1099/mic.0.076901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclothiazomycin is a member of the thiopeptide antibiotics, which are usually complicated derivatives of ribosomally synthesized peptides. A gene cluster containing 12 ORFs identical to the clt cluster encoding cyclothiazomycin from Streptomyces hygroscopicus 10-22 was revealed by genome sequencing in S. hygroscopicus 5008. Genes SHJG8833 and SHJG8837 of the cluster and flanking gene SHJG8838 were predicted to encode regulatory proteins from different families. In this study, we showed that the newly identified cluster is functional and we investigated the roles of these regulatory genes in the regulation of cyclothiazomycin biosynthesis. We determined that SHJG8833, but not SHJG8837 or SHJG8838, is critical for cyclothiazomycin biosynthesis. The transcriptional start point of SHJG8833 was located to a thymidine 54 nt upstream of the start codon. Inactivation of SHJG8833 abrogated the production of cyclothiazomycin, and synthesis could be restored by reintroducing SHJG8833 into the mutant strain. Gene expression analyses indicated that SHJG8833 regulates a consecutive set of seven genes from SHJG8826 to SHJG8832, whose products are predicted to be involved in different steps in the construction of the main framework of cyclothiazomycin. Transcriptional analysis indicated that these seven genes may form two operons, SHJG8826–27 and SHJG8828–32. Gel-shift analysis demonstrated that the DNA-binding domain of SHJG8833 binds the promoters of SHJG8826 and SHJG8828 and sequences internal to SHJG8826 and SHJG8829, and a conserved binding sequence was deduced. These results indicate that SHJG8833 is a positive regulator that controls cyclothiazomycin biosynthesis by activating structural genes in the clt cluster.
Collapse
Affiliation(s)
- Peipei Zhang
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, PR China
| | - Xiu-Lan Chen
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Zixin Deng
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Linquan Bai
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiuhua Pang
- Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| |
Collapse
|
26
|
Ian E, Malko DB, Sekurova ON, Bredholt H, Rückert C, Borisova ME, Albersmeier A, Kalinowski J, Gelfand MS, Zotchev SB. Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential. PLoS One 2014; 9:e96719. [PMID: 24819608 PMCID: PMC4018334 DOI: 10.1371/journal.pone.0096719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022] Open
Abstract
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts.
Collapse
Affiliation(s)
- Elena Ian
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dmitry B. Malko
- N.I. Vavilov Institute of General Genetics, Department of Computational Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Sekurova
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Harald Bredholt
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Rückert
- Institut fuer Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universitaet Bielefeld, Bielefeld, Germany
| | - Marina E. Borisova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Andreas Albersmeier
- Institut fuer Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universitaet Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Institut fuer Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universitaet Bielefeld, Bielefeld, Germany
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Sergey B. Zotchev
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
27
|
Bunet R, Riclea R, Laureti L, Hôtel L, Paris C, Girardet JM, Spiteller D, Dickschat JS, Leblond P, Aigle B. A single Sfp-type phosphopantetheinyl transferase plays a major role in the biosynthesis of PKS and NRPS derived metabolites in Streptomyces ambofaciens ATCC23877. PLoS One 2014; 9:e87607. [PMID: 24498152 PMCID: PMC3909215 DOI: 10.1371/journal.pone.0087607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/31/2023] Open
Abstract
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.
Collapse
Affiliation(s)
- Robert Bunet
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Ramona Riclea
- Institute of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Luisa Laureti
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Laurence Hôtel
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Cédric Paris
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires, Vandœuvre-lès-Nancy, France
| | - Jean-Michel Girardet
- Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (URAFPA), Vandœuvre-lès-Nancy Cedex, France
- INRA,URAFPA, USC 340, Vandœuvre-lès-Nancy, France
| | - Dieter Spiteller
- Department of Biology, Chemical Ecology/Biological Chemistry, University of Konstanz, Konstanz, Germany
| | | | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Bertrand Aigle
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
28
|
Kormanec J, Novakova R, Mingyar E, Feckova L. Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Appl Microbiol Biotechnol 2013; 98:45-60. [PMID: 24265028 DOI: 10.1007/s00253-013-5373-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces bacteria are major producers of bioactive natural products, including many antibiotics. We identified a gene cluster, aur1, in a large linear plasmid of Streptomyces aureofaciens CCM3239. The cluster is responsible for the production of a new angucycline polyketide antibiotic auricin. Several tailoring biosynthetic genes were scatted in rather distant aur1 flanking regions. Auricin was produced in a very narrow growth phase interval of several hours after entry into stationary phase, after which it was degraded to non-active metabolites because of its instability at the high pH values reached after the production stage. Strict transcriptional regulation of the auricin biosynthetic gene cluster has been demonstrated, including feed-forward and feedback control by auricin intermediates via several of the huge number of regulatory genes present in the aur1 cluster. The complex mechanism may ensure strict confinement of auricin production to a specific growth stage.
Collapse
Affiliation(s)
- Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic,
| | | | | | | |
Collapse
|
29
|
Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet JL. Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 2013; 41:251-63. [PMID: 24258629 DOI: 10.1007/s10295-013-1379-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/30/2013] [Indexed: 02/04/2023]
Abstract
Since the discovery of the streptomycin produced by Streptomyces griseus in the middle of the last century, members of this bacterial genus have been largely exploited for the production of secondary metabolites with wide uses in medicine and in agriculture. They have even been recognized as one of the most prolific producers of natural products among microorganisms. With the onset of the genomic era, it became evident that these microorganisms still represent a major source for the discovery of novel secondary metabolites. This was highlighted with the complete genome sequencing of Streptomyces coelicolor A3(2) which revealed an unexpected potential of this organism to synthesize natural products undetected until then by classical screening methods. Since then, analysis of sequenced genomes from numerous Streptomyces species has shown that a single species can carry more than 30 secondary metabolite gene clusters, reinforcing the idea that the biosynthetic potential of this bacterial genus is far from being fully exploited. This review highlights our knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products. This industrial strain was known for decades to only produce the drug spiramycin and another antibacterial compound, congocidine. Mining of its genome allowed the identification of 23 clusters potentially involved in the production of other secondary metabolites. Studies of some of these clusters resulted in the characterization of novel compounds and of previously known compounds but never characterized in this Streptomyces species. In addition, genome mining revealed that secondary metabolite gene clusters of phylogenetically closely related Streptomyces are mainly species-specific.
Collapse
Affiliation(s)
- Bertrand Aigle
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, 54506, Vandœuvre-lès-Nancy, France,
| | | | | | | | | | | | | |
Collapse
|
30
|
Fan K, Pan G, Peng X, Zheng J, Gao W, Wang J, Wang W, Li Y, Yang K. Identification of JadG as the B ring opening oxygenase catalyzing the oxidative C-C bond cleavage reaction in jadomycin biosynthesis. ACTA ACUST UNITED AC 2013. [PMID: 23177193 DOI: 10.1016/j.chembiol.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Jadomycin B is a member of atypical angucycline antibiotics whose biosynthesis involves a unique ring opening C-C bond cleavage reaction. Here, we firmly identified JadG as the enzyme responsible for the B ring opening reaction in jadomycin biosynthesis. In vitro analysis of the JadG catalyzed reaction revealed that it requires FMNH(2) or FADH(2) as cofactors in the conversion of dehydrorabelomycin to jadomycin A. The cofactors could be supplied by either a cluster-situated flavin reductase JadY or the Escherichia coli Fre. JadY was characterized as a NAD(P)H-dependent FMN/FAD reductase, with FMN as the preferred substrate. Disruption mutant of jadY still produced jadomycin, indicating that the function of JadY could be substituted by other enzymes in the host. JadG represents the biochemically verified member of an enzyme class catalyzing an unprecedented C-C bond cleavage reaction.
Collapse
Affiliation(s)
- Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gullón S, Vicente RL, Mellado RP. A novel two-component system involved in secretion stress response in Streptomyces lividans. PLoS One 2012; 7:e48987. [PMID: 23155440 PMCID: PMC3498368 DOI: 10.1371/journal.pone.0048987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Background Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. Methodology/Principal Findings Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155) that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. Conclusions/Significance To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.
Collapse
|
32
|
Kutas P, Feckova L, Rehakova A, Novakova R, Homerova D, Mingyar E, Rezuchova B, Sevcikova B, Kormanec J. Strict control of auricin production in Streptomyces aureofaciens CCM 3239 involves a feedback mechanism. Appl Microbiol Biotechnol 2012; 97:2413-21. [PMID: 23081778 DOI: 10.1007/s00253-012-4505-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
The polyketide gene cluster aur1 is responsible for the production of the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Auricin production is regulated in a complex manner involving several regulators, including a key pathway-specific positive regulator Aur1P that belongs to the family of 'atypical' response regulators. Production of auricin is induced after entry into stationary phase. However, auricin was produced in only a short time interval of several hours. We found that the decrease of auricin production was due to a strict regulation of auricin biosynthetic genes at the transcriptional level by a feedback mechanism; auricin and/or its intermediate(s) inhibited binding of Aur1P to its cognate biosynthetic promoter aur1Ap and consequently stopped its activation. In addition, we also determined that synthesised auricin is unstable during growth of S. aureofaciens CCM3239 in the production medium even though purified auricin is stable for days in various organic solvents. The critical parameter affecting its stability was pH. Auricin is stable at acid pH and unstable at neutral and alkaline pH. The drop in auricin concentration was due to an increase of pH shortly after induction of auricin production during cultivation of S. aureofaciens CCM3239.
Collapse
Affiliation(s)
- Peter Kutas
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans. J Biotechnol 2012; 160:112-22. [DOI: 10.1016/j.jbiotec.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/17/2022]
|
34
|
Rozas D, Gullón S, Mellado RP. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS One 2012; 7:e31760. [PMID: 22347508 PMCID: PMC3276577 DOI: 10.1371/journal.pone.0031760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. METHODOLOGY/PRINCIPALFINDINGS: The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. CONCLUSIONS/SIGNIFICANCE Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production.
Collapse
Affiliation(s)
- Daniel Rozas
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Sonia Gullón
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | | |
Collapse
|
35
|
Aigle B, Corre C. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol 2012; 517:343-66. [PMID: 23084947 DOI: 10.1016/b978-0-12-404634-4.00017-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptomycete bacteria are renowned as a prolific source of natural products with diverse biological activities. Production of these metabolites is often subject to transcriptional regulation: the biosynthetic genes remain silent until the required environmental and/or physiological signals occur. Consequently, in the laboratory environment, many gene clusters that direct the biosynthesis of natural products with clinical potential are not expressed or at very low level preventing the production/detection of the associated metabolite. Genetic engineering of streptomycetes can unleash the production of many new natural products. This chapter describes the overexpression of pathway-specific activators, the genetic disruption of pathway-specific repressors, and the main strategy used to identify and characterize new natural products from these engineered Streptomyces strains.
Collapse
Affiliation(s)
- Bertrand Aigle
- Génétique et Microbiologie, UMR UL-INRA 1128, IFR110 EFABA, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
36
|
Novakova R, Rehakova A, Kutas P, Feckova L, Kormanec J. The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (Reading) 2011; 157:1629-1639. [DOI: 10.1099/mic.0.047795-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two regulators, Aur1P and Aur1R, have been previously found to control expression of the aur1 polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239 in a cascade mechanism. Here, we describe the characterization of two additional regulatory genes, aur1PR2 and aur1PR3, encoding homologues of the SARP family of transcriptional activators that were identified in the upstream part of the aur1 cluster. Expression of both genes is directed by a single promoter, aur1PR2p and aur1Pr3p, respectively, induced in late exponential phase. Disruption of aur1PR2 in S. aureofaciens CCM 3239 had no effect on auricin production. However, the disruption of aur1PR3 dramatically reduced auricin compared with its parental wild-type strain. Transcription from the aur1Ap promoter, directing expression of the first biosynthetic gene in the auricin gene cluster, was similarly decreased in the S. aureofaciens CCM 3239 aur1PR3 mutant. Transcription from the aur1PR3p promoter increased in the S. aureofaciens CCM 3239 aur1R mutant strain, and the TetR family negative regulator Aur1R was shown to specifically bind the aur1PR3p promoter. These results indicate a complex regulation of the auricin cluster by the additional SARP family transcriptional activator Aur1PR3.
Collapse
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Alena Rehakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Peter Kutas
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| |
Collapse
|
37
|
Novakova R, Rehakova A, Feckova L, Kutas P, Knischova R, Kormanec J. Genetic manipulation of pathway regulation for overproduction of angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. Folia Microbiol (Praha) 2011; 56:276-82. [DOI: 10.1007/s12223-011-0033-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/19/2011] [Indexed: 11/28/2022]
|
38
|
Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 2011; 108:6258-63. [PMID: 21444795 DOI: 10.1073/pnas.1019077108] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a constant need for new and improved drugs to combat infectious diseases, cancer, and other major life-threatening conditions. The recent development of genomics-guided approaches for novel natural product discovery has stimulated renewed interest in the search for natural product-based drugs. Genome sequence analysis of Streptomyces ambofaciens ATCC23877 has revealed numerous secondary metabolite biosynthetic gene clusters, including a giant type I modular polyketide synthase (PKS) gene cluster, which is composed of 25 genes (nine of which encode PKSs) and spans almost 150 kb, making it one of the largest polyketide biosynthetic gene clusters described to date. The metabolic product(s) of this gene cluster are unknown, and transcriptional analyses showed that it is not expressed under laboratory growth conditions. The constitutive expression of a regulatory gene within the cluster, encoding a protein that is similar to Large ATP binding of the LuxR (LAL) family proteins, triggered the expression of the biosynthetic genes. This led to the identification of four 51-membered glycosylated macrolides, named stambomycins A-D as metabolic products of the gene cluster. The structures of these compounds imply several interesting biosynthetic features, including incorporation of unusual extender units into the polyketide chain and in trans hydroxylation of the growing polyketide chain to provide the hydroxyl group for macrolide formation. Interestingly, the stambomycins possess promising antiproliferative activity against human cancer cell lines. Database searches identify genes encoding LAL regulators within numerous cryptic biosynthetic gene clusters in actinomycete genomes, suggesting that constitutive expression of such pathway-specific activators represents a powerful approach for novel bioactive natural product discovery.
Collapse
|
39
|
Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J Bacteriol 2010; 193:1142-53. [PMID: 21193612 DOI: 10.1128/jb.01269-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of Streptomyces ambofaciens, a species known to produce the congocidine and spiramycin antibiotics, has revealed the presence of numerous gene clusters predicted to be involved in the biosynthesis of secondary metabolites. Among them, the type II polyketide synthase-encoding alp cluster was shown to be responsible for the biosynthesis of a compound with antibacterial activity. Here, by means of a deregulation approach, we gained access to workable amounts of the antibiotics for structure elucidation. These compounds, previously designated as alpomycin, were shown to be known members of kinamycin family of antibiotics. Indeed, a mutant lacking AlpW, a member of the TetR regulator family, was shown to constitutively produce kinamycins. Comparative transcriptional analyses showed that expression of alpV, the essential regulator gene required for activation of the biosynthetic genes, is strongly maintained during the stationary growth phase in the alpW mutant, a stage at which alpV transcripts and thereby transcripts of the biosynthetic genes normally drop off. Recombinant AlpW displayed DNA binding activity toward specific motifs in the promoter region of its own gene and that of alpV and alpZ. These recognition sequences are also targets for AlpZ, the γ-butyrolactone-like receptor involved in the regulation of the alp cluster. However, unlike that of AlpZ, the AlpW DNA-binding ability seemed to be insensitive to the signaling molecules controlling antibiotic biosynthesis. Together, the results presented in this study reveal S. ambofaciens to be a new producer of kinamycins and AlpW to be a key late repressor of the cellular control of kinamycin biosynthesis.
Collapse
|
40
|
Novakova R, Kutas P, Feckova L, Kormanec J. The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (Reading) 2010; 156:2374-2383. [DOI: 10.1099/mic.0.037895-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two regulatory genes, aur1P and aur1R, have been previously identified upstream of the aur1 polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. The aur1P gene encodes a protein similar to the response regulators of bacterial two-component signal transduction systems and has been shown to specifically activate expression of the auricin biosynthetic genes. The aur1R gene encodes a protein homologous to transcriptional repressors of the TetR family. Here we describe the characterization of the aur1R gene. Expression of the gene is directed by a single promoter, aur1Rp, which is induced just before stationary phase. Disruption of aur1R in S. aureofaciens CCM 3239 had no effect on growth and differentiation. However, the disrupted strain produced more auricin than its parental wild-type S. aureofaciens CCM 3239 strain. Transcription from the aur1Ap and aur1Pp promoters, directing expression of the first biosynthetic gene in the auricin gene cluster and the pathway-specific transcriptional activator, respectively, was increased in the S. aureofaciens CCM 3239 aur1R mutant strain. However, Aur1R was shown to bind specifically only to the aur1Pp promoter in vitro. This binding was abolished by the addition of auricin and/or its intermediates. The results indicate that the Aur1R regulator specifically represses expression of the aur1P gene, which encodes a pathway-specific activator of the auricin biosynthetic gene cluster in S. aureofaciens CCM 3239, and that this repression is relieved by auricin or its intermediates.
Collapse
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Peter Kutas
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| |
Collapse
|
41
|
Kang M, Jones BD, Mandel AL, Hammons JC, DiPasquale AG, Rheingold AL, La Clair JJ, Burkart MD. Isolation, Structure Elucidation, and Antitumor Activity of Spirohexenolides A and B. J Org Chem 2009; 74:9054-61. [DOI: 10.1021/jo901826d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- MinJin Kang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Brian D. Jones
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Alexander L. Mandel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Justin C. Hammons
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Antonio G. DiPasquale
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| |
Collapse
|
42
|
Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 2009; 26:1362-84. [PMID: 19844637 PMCID: PMC3063060 DOI: 10.1039/b817069j] [Citation(s) in RCA: 552] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora . These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references.
Collapse
Affiliation(s)
- Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 228-8555, Japan.
| | - Bradley S. Moore
- Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
43
|
Characterization and analysis of the regulatory network involved in control of lipomycin biosynthesis in Streptomyces aureofaciens Tü117. Appl Microbiol Biotechnol 2009; 85:1069-79. [DOI: 10.1007/s00253-009-2108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/19/2009] [Accepted: 06/21/2009] [Indexed: 11/27/2022]
|
44
|
Juguet M, Lautru S, Francou FX, Nezbedová S, Leblond P, Gondry M, Pernodet JL. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. ACTA ACUST UNITED AC 2009; 16:421-31. [PMID: 19389628 DOI: 10.1016/j.chembiol.2009.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/16/2009] [Accepted: 03/06/2009] [Indexed: 11/30/2022]
Abstract
Congocidine (netropsin) is a pyrrole-amide (oligopyrrole, oligopeptide) antibiotic produced by Streptomyces ambofaciens. We have identified, in the right terminal region of the S. ambofaciens chromosome, the gene cluster that directs congocidine biosynthesis. Heterologous expression of the cluster and in-frame deletions of 8 of the 22 genes confirm the involvement of this cluster in congocidine biosynthesis. Nine genes can be assigned specific functions in regulation, resistance, or congocidine assembly. In contrast, the biosynthetic origin of the precursors cannot be easily inferred from in silico analyses. Congocidine is assembled by a nonribosomal peptide synthetase (NRPS) constituted of a free-standing module and several single-domain proteins encoded by four genes. The iterative use of its unique adenylation domain, the utilization of guanidinoacetyl-CoA as a substrate by a condensation domain, and the control of 4-aminopyrrole-2-carboxylate polymerization constitute the most original features of this NRPS.
Collapse
Affiliation(s)
- Maud Juguet
- Institut de Génétique et Microbiologie, University Paris Sud 11, CNRS, UMR 8621, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 2008; 190:3293-305. [PMID: 18296523 DOI: 10.1128/jb.01989-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (alpV, previously shown to be an essential activator gene; alpT; and alpU) and TetR family receptors (alpZ and alpW) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to gamma-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp-located regulatory genes and of two representative biosynthetic structural genes (alpA and alpR) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ, alpV, and alpXW, suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of gamma-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating gamma-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group.
Collapse
|
46
|
Karray F, Darbon E, Oestreicher N, Dominguez H, Tuphile K, Gagnat J, Blondelet-Rouault MH, Gerbaud C, Pernodet JL. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. MICROBIOLOGY-SGM 2008; 153:4111-4122. [PMID: 18048924 DOI: 10.1099/mic.0.2007/009746-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.
Collapse
Affiliation(s)
- Fatma Karray
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Emmanuelle Darbon
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Nathalie Oestreicher
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Hélène Dominguez
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Karine Tuphile
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Josette Gagnat
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | | | - Claude Gerbaud
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Jean-Luc Pernodet
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| |
Collapse
|
47
|
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 2007; 24:162-90. [PMID: 17268612 DOI: 10.1039/b507395m] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers advances in understanding of the biosynthesis of polyketides produced by type II PKS systems at the genetic, biochemical and structural levels.
Collapse
Affiliation(s)
- Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
48
|
Choulet F, Gallois A, Aigle B, Mangenot S, Gerbaud C, Truong C, Francou FX, Borges F, Fourrier C, Guérineau M, Decaris B, Barbe V, Pernodet JL, Leblond P. Intraspecific variability of the terminal inverted repeats of the linear chromosome of Streptomyces ambofaciens. J Bacteriol 2006; 188:6599-610. [PMID: 16952952 PMCID: PMC1595491 DOI: 10.1128/jb.00734-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequences of the terminal inverted repeats (TIRs) ending the linear chromosomal DNA of two Streptomyces ambofaciens strains, ATCC23877 and DSM40697 (198 kb and 213 kb, respectively), were determined from two sets of recombinant cosmids. Among the 215 coding DNA sequences (CDSs) predicted in the TIRs of strain DSM40697, 65 are absent in the TIRs of strain ATCC23877. Reciprocally, 45 of the 194 predicted CDSs are specific to the ATCC23877 strain. The strain-specific CDSs are located mainly at the terminal end of the TIRs. Indeed, although TIRs appear almost identical over 150 kb (99% nucleotide identity), large regions of DNA of 60 kb (DSM40697) and 48 kb (ATCC23877), mostly spanning the ends of the chromosome, are strain specific. These regions are rich in plasmid-associated genes, including genes encoding putative conjugal transfer functions. The strain-specific regions also share a G+C content (68%) lower than that of the rest of the genome (from 71% to 73%), a percentage that is more typical of Streptomyces plasmids and mobile elements. These data suggest that exchanges of replicon extremities have occurred, thereby contributing to the terminal variability observed at the intraspecific level. In addition, the terminal regions include many mobile genetic element-related genes, pseudogenes, and genes related to adaptation. The results give insight into the mechanisms of evolution of the TIRs: integration of new information and/or loss of DNA fragments and subsequent homogenization of the two chromosomal extremities.
Collapse
Affiliation(s)
- Frédéric Choulet
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128, IFR 110, Faculté des Sciences et Techniques, Université Henri Poincaré - Nancy 1, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jian X, Pang X, Yu Y, Zhou X, Deng Z. Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie van Leeuwenhoek 2006; 90:29-39. [PMID: 16680521 DOI: 10.1007/s10482-006-9058-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
A series of large chromosomal deletions in Streptomyces hygroscopicus 10-22 were aligned on the physical map of the wild-type strain and the mutants were assessed for their ability to produce the aminocyclitol antibiotic 5102-I (jinggangmycin). Twenty-eight mutants were blocked for jinggangmycin production and all of them were found to lack a 300 kb AseI-F fragment of the wild-type chromosome. An ordered cosmid library of the 300 kb AseI-F fragment was made and one of the cosmids conferred jinggangmycin productivity to Streptomyces lividans ZX1. Three of the overlapping cosmids (18G7, 5H3 and 9A2) also hybridized to the valA gene of the validamycin pathway from S. hygroscopicus 5008 as a probe. This gene resembles acbC from Actinoplanes sp. 50/110, which encodes a C7-cyclitol synthase that catalyses the transformation of sedoheptulose 7-phosphate into 2-5-epi-valiolone for acarbose biosynthesis. The valA/acbC-homolog (orf1) of S. hygroscopicus 10-22 was shown to be essential for jinggangmycin biosynthesis as an engineered mutant with a specific in-frame deletion removing a 609 bp sequence internal to orf1 completely abolished jinggangmycin production and the corresponding knock-out mutant (JXH4) could be complemented for jinggangmycin production by the introduction of an orf1-containing construct. Concurrently, the identities of the genes common to S. hygroscopicus strains 10-22 and 5008 prompted a comparison of the chemical structures of jinggangmycin and validamycin, which led to a clear demonstration that they are identical.
Collapse
Affiliation(s)
- Xiaohong Jian
- Bio-X Life Science Research Center and School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai, 200030, China
| | | | | | | | | |
Collapse
|
50
|
Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 2006; 9:287-94. [PMID: 16675291 DOI: 10.1016/j.mib.2006.04.003] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 04/20/2006] [Indexed: 12/31/2022]
Abstract
Small signalling molecules called gamma-butyrolactones are mainly produced by Streptomyces species in which they regulate antibiotic production and morphological differentiation. Their molecular mechanism of action has recently been unravelled in several streptomycetes, revealing a diverse and complex system. Gamma-butyrolactones and their receptors also occur in some other Actinobacteria, suggesting that this is a general regulatory system for antibiotic production. The gamma-butyrolactones bind to receptors, many of which are involved in regulation of specific antibiotic biosynthesis clusters. The importance of understanding how secondary metabolites are regulated and how environmental and physiological signals are sensed highlights the relevance of studying this system.
Collapse
Affiliation(s)
- Eriko Takano
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Elfriede-Aulhorn Str 6, 72076 Tübingen, Germany.
| |
Collapse
|