1
|
Bi F, Bao Q, Liu H, Sun J, Dai W, Li A, Zhang J, He P. Molecular mechanisms underlying the effects of antibiotics on the growth and development of green tide algae Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117128. [PMID: 39432985 DOI: 10.1016/j.marpolbul.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Different types of algae exhibit varied sensitivities to antibiotics, influencing their growth by eradicating epiphytic bacteria. This study explored the impact of co-culturing neomycin sulfate, polymyxin B, and penicillin G on the growth and development of Ulva prolifera gametophytes. The findings revealed a significant influence of antibiotics on the morphology, growth, chlorophyll fluorescence parameters, and CAT activity of U. prolifera. The 16S rDNA sequencing revealed a significant decrease in the abundance of Maribacter spp. after antibiotic treatment of U. prolifera. Antibiotic treatment caused up-regulation of genes related to cellulose synthase, tubulin, and ribosomal protein. Conversely, key genes in the DNA replication pathway, such as mcm and Polε, were down-regulated, influencing cell division and resulting in irregular algal shapes. The up-regulation of enzyme genes in the C3 and C4 pathways, CAT, and drug metabolism genes enhanced the antioxidant and photosynthetic capacities of U. prolifera, providing a certain resilience to stress.
Collapse
Affiliation(s)
- Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qunjing Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Wang LJ, Wen F, Li LX, Xia ZF. Antifungal activity and mechanism of oxanthromicin against Verticillium dahliae. Arch Microbiol 2024; 206:83. [PMID: 38296859 DOI: 10.1007/s00203-023-03815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 02/02/2024]
Abstract
Oxanthromicin is an anthranone-type natural product isolated from Streptomyces sp. TRM 15522, which exhibits antifungal activity. However, the underlying mechanisms remain unclear. This study, therefore, aimed at investigating the mode of action of oxanthromicin against the phytopathogen Verticillium dahliae. We found that oxanthromicin substantially suppressed spore germination and mycelial growth in V. dahliae. Further, electron microscopy and staining with propidium iodide and Rhodamine 123 indicated that oxanthromicin causes cell membrane damage and induces changes in mitochondrial membrane potential. These findings suggest that oxanthromicin exhibits its antifungal activity by damaging fungal cell membranes. This discovery could potentially facilitate the development of oxanthromicin as a biological pesticide.
Collapse
Affiliation(s)
- Li-Jun Wang
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China
- Instrumental Analysis Center of Tarim University, Alar, 843300, China
| | - Feng Wen
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China
| | - Li-Xia Li
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China
| | - Zhan-Feng Xia
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China.
| |
Collapse
|
3
|
Abd El-Razek MH, Eissa IH, Al-Karmalawy AA, Elrashedy AA, El-Desoky AH, Aboelmagd M, Mohamed TA, Hegazy MEF. epi-Magnolin, a tetrahydrofurofuranoid lignan from the oleo-gum resin of Commiphora wightii, as inhibitor of pancreatic cancer cell proliferation, in-vitro and in-silico study. J Biomol Struct Dyn 2024:1-13. [PMID: 38265952 DOI: 10.1080/07391102.2024.2308767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Five known furofuran lignans, dia-sesamin (1), 5-methoxysesamin (2), epi-magnolin (3), kobusin (4) and yangambin (5) were isolated for the first-time from the oleo-gum resin of Commiphora wightii. This is the first report on the 13C NMR assignments for epi-magnolin (3). Each of the isolated compounds was evaluated for its ability to inhibit MIA PaCa-2 pancreatic cancer cell line. Among them, epi-magnolin (3) displayed potential activity (IC50 = 29 nM) compared to colchicine (IC50 = 56 nM). 3D-flexible alignment revealed that epi-magnolin (3) has great matching with the tubulin polymerization inhibitor, colchicine. Meanwhile, docking studies exhibited that compounds 1-5 displayed good binding free energies against colchicine binding site (CBS) of tubulin with binding modes that were highly comparable to that of colchicine. Compounds 2, 3, and 5 showed superior binding free energies than colchicine (-24.37 kcal/mol). epi-Magnolin (3) showed the highest binding score against CBS. MD simulation studies confirmed the stability of epi-magnolin (3) in the active site for 200 ns. Furthermore, four online servers (Swiss ADME, pkCSM pharmacokinetics, AdmetSAR, and ProTox-II) were utilized to predict the ADMET parameters. The in-silico pharmacokinetics predictions reveled that epi-magnolin (3) has significant oral bioavailability and drug-like capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed H Abd El-Razek
- Chemistry of Natural Compounds Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Ahmed A Elrashedy
- Department of the Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre (NRC), Giza, Egypt
| | - Ahmed H El-Desoky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Mohamed Aboelmagd
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
4
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Zou G, Xiao M, Chai S, Zhu Z, Wang Y, Zhou Z. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents. Microb Biotechnol 2021; 14:2343-2355. [PMID: 32841542 PMCID: PMC8601184 DOI: 10.1111/1751-7915.13652] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand break (DSB) repair induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing. Direct genome editing via Cas9-CRISPR gRNA (guide RNA) ribonucleoprotein (RNP) complexes assembled in vitro has also been successful in some fungi. However, the efficiency of direct RNP transformation into fungal protoplasts is currently too low. Here, we report an optimized genome editing approach for filamentous fungi based on RNPs facilitated by adding chemical reagents. We increased the transformation efficiency of RNPs significantly by adding Triton X-100 and prolonging the incubation time, and the editing efficiency reached 100% in Trichoderma reesei and Cordyceps militaris. The optimized RNP-based method also achieved efficient (56.52%) homologous recombination integration with short homology arms (20 bp) and gene disruption (7.37%) that excludes any foreign DNA (selection marker) in T. reesei. In particular, after adding reagents related to mitosis and cell division, the further optimized protocol showed an increased ratio of edited homokaryotic transformants (from 0% to 40.0% for inositol and 71.43% for benomyl) from Aspergillus oryzae, which contains multinucleate spores and protoplasts. Furthermore, the multi-target engineering efficiency of the optimized RNP transformation method was similar to those of methods based on in vivo expression of Cas9. This newly established genome editing system based on RNPs may be widely applicable to construction of genome-edited fungi for the food and medical industries, and has good prospects for commercialization.
Collapse
Affiliation(s)
- Gen Zou
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- Shanghai Key Laboratory of Agricultural Genetics and BreedingInstitute of Edible FungiShanghai Academy of Agriculture Science1000 Jinqi Rd, FengxianShanghai201403China
| | - Meili Xiao
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shunxing Chai
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihua Zhu
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and BreedingInstitute of Edible FungiShanghai Academy of Agriculture Science1000 Jinqi Rd, FengxianShanghai201403China
| | - Zhihua Zhou
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
| |
Collapse
|
6
|
Synthesis and Molecular Docking of Some Grossgemin Amino Derivatives as Tubulin Inhibitors Targeting Colchicine Binding Site. J CHEM-NY 2021. [DOI: 10.1155/2021/5586515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Six amino derivatives of grossgemin (2–7) were synthesized according to the reported essential pharmacophoric features of colchicine binding site inhibitors (CBSIs). The derivatives 4–6 were obtained for the first time. The pharmacophoric features of 2–7 as CBSIs were studied to be almost identical. Furthermore, the 3D-flexible alignment of compound 5 as a representative example with colchicine showed a very good overlapping. In agreement, compounds 2–7 docked into CBS with binding modes very similar to that of colchicine and exhibited binding free energies of −24.57, −25.05, −32.16, −29.34, −26.38, and −26.86 (kcal/mol), respectively. The binding free energies of 4–7 were better than that of colchicine (−26.13 kcal/mol) with a noticeable superiority to compound 4.
Collapse
|
7
|
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:362-375. [PMID: 33369502 DOI: 10.1094/mpmi-07-20-0206-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiang Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
8
|
De La Chapa J, Singha PK, Sallaway M, Self K, Nasreldin R, Dasari R, Hart M, Kornienko A, Just J, Smith JA, Bissember AC, Gonzales CB. Novel polygodial analogs P3 and P27: Efficacious therapeutic agents disrupting mitochondrial function in oral squamous cell carcinoma. Int J Oncol 2018; 53:2627-2636. [PMID: 30320372 PMCID: PMC6203145 DOI: 10.3892/ijo.2018.4585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Polygodial, a drimane sesquiterpenoid dialdehyde isolated as a pungent component of the water pepper Persicaria hydropiper, exhibits antifeedant, antimicrobial, anti-inflammatory and anticancer effects. Polygodial also activates transient receptor potential vanilloid subtype 1 (TRPV1) channels. Previously, we described the synthesis of a C12-Wittig derivative of polygodial, termed P3, with significant antiproliferative effects against multiple cancer types including oral squamous cell carcinoma (OSCC). In the present study, a more potent derivative, P27, with superior anti-proliferative effects in vitro and antitumor effects in Cal-27 derived xenografts is described. Polygodial, P3, and P27 all significantly decreased OSCC tumor growth, with P27 being equipotent with polygodial and P3 being the least efficacious. However, neither analog elicited the adverse effect observed with polygodial: Profound transient inflammation. Although P3 and P27 pharmacophores are based on polygodial, novel effects on OSCC cell cycle distribution were identified and shared anticancer effects that are independent of TRPV1 activity were observed. Polygodial elicits an S-phase block, whereas P3 and P27 lead to G2/M phase arrest. Pretreatment of OSCC cells with the TRPV1 antagonist capsazepine does not affect the antiproliferative activity of P3 or P27, indicating that TRPV1 interactions do not regulate OSCC cell proliferation. Indeed, calcium imaging studies identified that the analogs neither activate nor antagonize TRPV1. Behavioral studies using a rat model for orofacial pain confirmed that these analogs fail to induce nocifensive responses, indicating that they are non-noxious in vivo. All compounds induced a significant concentration-dependent decrease in the mitochondrial transmembrane potential and corresponding apoptosis. Considering that P27 is equipotent to polygodial with no TRPV1-associated adverse effects, P27 may serve as an efficacious novel therapy for OSCC.
Collapse
Affiliation(s)
- Jorge De La Chapa
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX 78229-3900, USA
| | - Prajjal Kanti Singha
- Department of Pathology, University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, TX 78229-3900, USA
| | - Mckay Sallaway
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX 78229-3900, USA
| | - Kristen Self
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX 78229-3900, USA
| | - Ranna Nasreldin
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX 78229-3900, USA
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666-4684, USA
| | - Matthew Hart
- Center for Innovation in Drug Discovery High Throughput Facility, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666-4684, USA
| | - Jeremy Just
- School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jason A Smith
- School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C Bissember
- School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX 78229-3900, USA
| |
Collapse
|
9
|
Mangiatordi GF, Trisciuzzi D, Iacobazzi R, Denora N, Pisani L, Catto M, Leonetti F, Alberga D, Nicolotti O. Automated identification of structurally heterogeneous and patentable antiproliferative hits as potential tubulin inhibitors. Chem Biol Drug Des 2018; 92:1161-1170. [PMID: 29633572 DOI: 10.1111/cbdd.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 03/03/2018] [Indexed: 12/27/2022]
Abstract
By employing a recently developed hierarchical computational platform, we identified 37 novel and structurally diverse tubulin targeting compounds. In particular, hierarchical molecular filters, based on molecular shape similarity, structure-based pharmacophore, and molecular docking, were applied on a large chemical collection of commercial compounds to identify unexplored and patentable microtubule-destabilizing candidates. The herein proposed 37 novel hits, showing new molecular scaffolds (such as 1,3,3a,4-tetraaza-1,2,3,4,5,6,7,7a-octahydroindene or dihydropyrrolidin-2-one fused to a chromen-4-one), are provided with antiproliferative activity in the μm range toward MCF-7 (human breast cancer lines). Importantly, there is a likely causative relationship between cytotoxicity and the inhibition of tubulin polymerization at the colchicine binding site, assessed through fluorescence polymerization assays.
Collapse
Affiliation(s)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | | | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
10
|
Zhou Y, Zhu Y, Li Y, Duan Y, Zhang R, Zhou M. β1 Tubulin Rather Than β2 Tubulin Is the Preferred Binding Target for Carbendazim in Fusarium graminearum. PHYTOPATHOLOGY 2016; 106:978-985. [PMID: 27135676 DOI: 10.1094/phyto-09-15-0235-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tubulins are the proposed target of anticancer drugs, anthelminthics, and fungicides. In Fusarium graminearum, β2 tubulin has been reported to be the binding target of methyl benzimidazole carbamate (MBC) fungicides. However, the function of F. graminearum β1 tubulin, which shares 76% amino acid sequence identity with β2 tubulin, in MBC sensitivity has been unclear. In this study, MBC sensitivity relative to that of a parental strain (2021) was significantly reduced in a β1 tubulin deletion strain but increased in a β2 tubulin deletion strain, suggesting that β1 tubulin was involved in the MBC sensitivity of F. graminearum. When strain 2021 was grown in a medium with a low or high concentration of the MBC fungicide carbendazim (0.5 or 1.4 μg/ml), the protein accumulation levels were reduced by 47 and 87%, respectively, for β1 tubulin but only by 6 and 24%, respectively, for β2 tubulin. This result was consistent with observations that MBC fungicides are more likely to disrupt β1 tubulin microtubules rather than β2 tubulin microtubules in GFP-β tubulin fusion mutants in vivo. Furthermore, sequence analysis indicated that a difference in tubulin amino acid 240 (240L in β1 versus 240F in β2) may explain the difference in MBC binding affinity; this result was consistent with the result that an F240L mutation in β2 tubulin greatly increased sensitivity to carbendazim in F. graminearum. We suggest that β1 tubulin rather than β2 tubulin is the preferred binding target for MBC fungicides in F. graminearum.
Collapse
Affiliation(s)
- Yujun Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yuanye Zhu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yanjun Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Rongsheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
11
|
Murata W, Kinpara S, Kitahara N, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Cytoskeletal impairment during isoamyl alcohol-induced cell elongation in budding yeast. Sci Rep 2016; 6:31127. [PMID: 27507042 PMCID: PMC4979020 DOI: 10.1038/srep31127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
Isoamyl alcohol (IAA) induces pseudohyphae including cell elongation in the budding yeast Saccharomyces cerevisiae. Detailed regulation of microtubules and actin in developmental transition during cell elongation is poorly understood. Here, we show that although IAA did not affect the intracellular actin level, it reduced the levels of both α- and β-tubulins. In budding yeast, cytoplasmic microtubules are linked to actin via complexes consisting of at least Kar9, Bim1, and Myo2, and reach from the spindle pole body to the cortical attachment site at the bud tip. However, IAA did not affect migration of Myo2 to the bud tip and kept Kar9 in the interior portion of the cell. In addition, bud elongation was observed in Kar9-overexpressing cells in the absence of IAA. These results indicate that impairment of the link between cytoplasmic microtubules and actin is possibly involved in the lowered interaction of Myo2 with Kar9. Our study might explain the reason for delayed cell cycle during IAA-induced cell elongation.
Collapse
Affiliation(s)
- Wakae Murata
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.,Department of Materials Science, National Institute of Technology, Yonago College, Tottori 683-8502, Japan
| | - Satoko Kinpara
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Nozomi Kitahara
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yoshihiro Yamaguchi
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan
| | - Akira Ogita
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka 558-8585, Japan
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Ken-Ichi Fujita
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
12
|
Abstract
Parkinson’s disease (PD) is characterized by the selective loss of nigral dopaminergic (DA) neurons, which have long axons enriched with microtubules. Depolymerization of microtubules by PD toxins such as rotenone disrupts vesicular transport. The ensuing accumulation of vesicles in the cell body leads to increased cytosolic concentration of dopamine due to leakage of the vesicles. Elevated oxidative stress induced by dopamine oxidation may thus trigger the selective demise of DA neurons. Many strategies have been developed to protect DA neurons by stabilizing microtubules either directly or through intracellular signaling cascades. On the other hand, parkin, one of the most frequently mutated genes in PD, encodes for a protein-ubiquitin E3 ligase that strongly binds to microtubules. Parkin stabilizes microtubules through three domains that provide strong and independent interactions with tubulin and microtubules. These interactions anchor parkin on microtubules and may facilitate its E3 ligase activity on misfolded proteins transported along microtubules. Thus, parkin and rotenone, two prominent genetic and environmental factors linked to PD, act in an opposing manner on the same molecular target in the cell, microtubules, whose destruction underlies the selective vulnerability of dopaminergic neurons.
Collapse
Affiliation(s)
- Jian Feng
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
13
|
Wang B, Li K, Jin M, Qiu R, Liu B, Oakley BR, Xiang X. The Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors. Fungal Genet Biol 2015; 82:51-5. [PMID: 26117688 DOI: 10.1016/j.fgb.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Centrosome amplification is a hallmark of many types of cancer cells, and clustering of multiple centrosomes is critical for cancer cell survival and proliferation. Human kinesin-14 HSET/KFIC1 is essential for centrosome clustering, and its inhibition leads to the specific killing of cancer cells with extra centrosomes. Since kinesin-14 motor domains are conserved evolutionarily, we conceived a strategy of obtaining kinesin-14 inhibitors using Aspergillus nidulans, based on the previous result that loss of the kinesin-14 KlpA rescues the non-viability of the bimC4 kinesin-5 mutant at 42 °C. However, it was unclear whether alteration of BimC or any other non-KlpA protein would be a major factor reversing the lethality of the bimC4 mutant. Here we performed a genome-wide screen for bimC4 suppressors and obtained fifteen suppressor strains. None of the suppressor mutations maps to bimC. The vast majority of them contain mutations in the klpA gene, most of which are missense mutations affecting the C-terminal motor domain. Our study confirms that the bimC4 mutant is suitable for a cell-based screen for chemical inhibitors of kinesin-14. Since the selection is based on enhanced growth rather than diminished growth, cytotoxic compounds can be excluded.
Collapse
Affiliation(s)
- Betsy Wang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States; Richard Montgomery High School, Rockville, MD, United States
| | - Kristin Li
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States; River Hill High School, Clarksville, MD, United States; USU Summer Research Training Program (USRTP), United States
| | - Max Jin
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States; Wootton High School, Rockville, MD, United States
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | - Bo Liu
- Department of Plant Biology, UC Davis, Davis, CA, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, College of Liberal Arts and Sciences, The University of Kansas, Lawrence, KS, United States
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States.
| |
Collapse
|
14
|
Leonard CM, Viljoen AM. Warburgia: a comprehensive review of the botany, traditional uses and phytochemistry. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:260-285. [PMID: 25698247 DOI: 10.1016/j.jep.2015.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Warburgia (Canellaceae) is represented by several medicinal trees found exclusively on the African continent. Traditionally, extracts and products produced from Warburgia species are regarded as important natural African antibiotics and have been used extensively as part of traditional healing practices for the treatment of fungal, bacterial and protozoal infections in both humans and animals. We here aim to collate and review the fragmented information on the ethnobotany, phytochemistry and biological activities of ethnomedicinally important Warburgia species and present recommendations for future research. MATERIALS AND METHODS Peer-reviewed articles using "Warburgia" as search term ("all fields") were retrieved from Scopus, ScienceDirect, SciFinder and Google Scholar with no specific time frame set for the search. In addition, various books were consulted that contained botanical and ethnopharmacological information. RESULTS The ethnopharmacology, phytochemistry and biological activity of Warburgia are reviewed. Most of the biological activities are attributed to the drimane sesquiterpenoids, including polygodial, warburganal, muzigadial, mukaadial and ugandensial, flavonoids and miscellaneous compounds present in the various species. In addition to anti-infective properties, Warburgia extracts are also used to treat a wide range of ailments, including stomach aches, fever and headaches, which may also be a manifestation of infections. The need to record anecdotal evidence is emphasised and conservation efforts are highlighted to contribute to the protection and preservation of one of Africa's most coveted botanical resources.
Collapse
Affiliation(s)
- Carmen M Leonard
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
15
|
Chen YH, Yeh TF, Chu FH, Hsu FL, Chang ST. Proteomics investigation reveals cell death-associated proteins of basidiomycete fungus Trametes versicolor treated with Ferruginol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:85-91. [PMID: 25485628 DOI: 10.1021/jf504717x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.
Collapse
|
16
|
Centrosome-declustering drugs mediate a two-pronged attack on interphase and mitosis in supercentrosomal cancer cells. Cell Death Dis 2014; 5:e1538. [PMID: 25412316 PMCID: PMC4260758 DOI: 10.1038/cddis.2014.505] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022]
Abstract
Classical anti-mitotic drugs have failed to translate their preclinical efficacy into clinical response in human trials. Their clinical failure has challenged the notion that tumor cells divide frequently at rates comparable to those of cancer cells in vitro and in xenograft models. Given the preponderance of interphase cells in clinical tumors, we asked whether targeting amplified centrosomes, which cancer cells carefully preserve in a tightly clustered conformation throughout interphase, presents a superior chemotherapeutic strategy that sabotages interphase-specific cellular activities, such as migration. Herein we have utilized supercentrosomal N1E-115 murine neuroblastoma cells as a test-bed to study interphase centrosome declustering induced by putative declustering agents, such as Reduced-9-bromonoscapine (RedBr-Nos), Griseofulvin and PJ-34. We found tight ‘supercentrosomal' clusters in the interphase and mitosis of ~80% of patients' tumor cells with excess centrosomes. RedBr-Nos was the strongest declustering agent with a declustering index of 0.36 and completely dispersed interphase centrosome clusters in N1E-115 cells. Interphase centrosome declustering caused inhibition of neurite formation, impairment of cell polarization and Golgi organization, disrupted cellular protrusions and focal adhesion contacts—factors that are crucial prerequisites for directional migration. Thus our data illustrate an interphase-specific potential anti-migratory role of centrosome-declustering agents in addition to their previously acknowledged ability to induce spindle multipolarity and mitotic catastrophe. Centrosome-declustering agents counter centrosome clustering to inhibit directional cell migration in interphase cells and set up multipolar mitotic catastrophe, suggesting that disbanding the nuclear–centrosome–Golgi axis is a potential anti-metastasis strategy.
Collapse
|
17
|
Dostál V, Libusová L. Microtubule drugs: action, selectivity, and resistance across the kingdoms of life. PROTOPLASMA 2014; 251:991-1005. [PMID: 24652407 DOI: 10.1007/s00709-014-0633-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
Microtubule drugs such as paclitaxel, colchicine, vinblastine, trifluralin, or oryzalin form a chemically diverse group that has been reinforced by a large number of novel compounds over time. They all share the ability to change microtubule properties. The profound effects of disrupted microtubule systems on cell physiology can be used in research as well as anticancer treatment and agricultural weed control. The activity of microtubule drugs generally depends on their binding to α- and β-tubulin subunits. The microtubule drugs are often effective only in certain taxonomic groups, while other organisms remain resistant. Available information on the molecular basis of this selectivity is summarized. In addition to reviewing published data, we performed sequence data mining, searching for kingdom-specific signatures in plant, animal, fungal, and protozoan tubulin sequences. Our findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction. The issue of microtubule network properties in plant cells producing microtubule drugs is also addressed.
Collapse
Affiliation(s)
- V Dostál
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague 2, Czech Republic
| | | |
Collapse
|
18
|
Synthesis and antimicrobial evaluation of pogostone and its analogues. Fitoterapia 2012; 84:135-9. [PMID: 23160088 DOI: 10.1016/j.fitote.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/30/2012] [Accepted: 11/04/2012] [Indexed: 11/23/2022]
Abstract
Pogostone (PO) is one of the secondary metabolites from Pogostemon cablin (Blanco) Benth. (Lamiaceae), serving as the effective component of the antimicrobial activity. In this study, PO and a series of its analogues were synthesized by the reaction of dehydroacetate and aldehydes in tetrahydrofuran under a nitrogen atmosphere. Their activities against Candida albicans, Gram positive bacteria and Gram negative bacteria were evaluated. The antifungal results demonstrated that PO (MIC ranged from 12 to 97μg/mL against all strains, MFC ranged from 49 to 97μg/mL against all strains) and A3 (MIC ranged from 12 to 49, MFC over 195μg/mL) showed a strong activity against Candida albicans. While A1 (MIC ranged from 49 to 97μg/mL) and A2 (MIC ranged from 24 to 49μg/mL) have only shown effect against Guangzhou clinical isolates, the antibacterial results demonstrated that PO and its analogues showed no effects against the tested bacteria strains. This study suggests that pogostone analogues, with the appropriated structure modification, represented a kind of promising antifungal agents.
Collapse
|
19
|
Andrioli NB, Soloneski S, Larramendy ML, Mudry MD. Cytogenetic and microtubule array effects of the zineb-containing commercial fungicide formulation Azzurro® on meristematic root cells of Allium cepa L. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:48-53. [DOI: 10.1016/j.mrgentox.2011.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 01/07/2023]
|
20
|
Crawford JM, Mahlstedt SA, Malcolmson SJ, Clardy J, Walsh CT. Dihydrophenylalanine: a prephenate-derived Photorhabdus luminescens antibiotic and intermediate in dihydrostilbene biosynthesis. ACTA ACUST UNITED AC 2012; 18:1102-12. [PMID: 21944749 DOI: 10.1016/j.chembiol.2011.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/21/2011] [Accepted: 07/12/2011] [Indexed: 11/28/2022]
Abstract
2,5-Dihydrophenylalanine (H(2)Phe) is a multipotent nonproteinogenic amino acid produced by various Actinobacteria and Gammaproteobacteria. Although the metabolite was discovered over 40 years ago, details of its biosynthesis have remained largely unknown. We show here that L-H(2)Phe is a secreted metabolite in Photorhabdus luminescens cultures and a precursor of a recently described 2,5-dihydrostilbene. Bioinformatic analysis suggested a candidate gene cluster for the processing of prephenate to H(2)Phe, and gene knockouts validated that three adjacent genes plu3042-3044 were required for H(2)Phe production. Biochemical experiments validated Plu3043 as a nonaromatizing prephenate decarboxylase generating an endocyclic dihydro-hydroxyphenylpyruvate. Plu3042 acted next to transaminate the Plu3043 product, precluding spontaneous exocyclic double-bond isomerization and yielding 2,5-dihydrotyrosine. The enzymatic products most plausibly on path to H(2)Phe illustrate the versatile metabolic rerouting of prephenate from aromatic amino acid synthesis to antibiotic synthesis.
Collapse
Affiliation(s)
- Jason M Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Song TT, Ying SH, Feng MG. High resistance of Isaria fumosorosea to carbendazim arises from the overexpression of an ATP-binding cassette transporter (ifT1) rather than tubulin mutation. J Appl Microbiol 2011; 112:175-84. [DOI: 10.1111/j.1365-2672.2011.05188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Mizuhara N, Kuroda M, Ogita A, Tanaka T, Usuki Y, Fujita KI. Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg Med Chem 2011; 19:5300-10. [PMID: 21885289 DOI: 10.1016/j.bmc.2011.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.
Collapse
Affiliation(s)
- Naoko Mizuhara
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Kock JLF, Swart CW, Pohl CH. The anti-mitochondrial antifungal assay for the discovery and development of new drugs. Expert Opin Drug Discov 2011; 6:671-81. [PMID: 22646155 DOI: 10.1517/17460441.2011.575358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION New targets and drugs are constantly searched for to effectively combat fungal infections and diseases such as cancer. Mitochondria, as the main powerhouses of eukaryotic cells, must be regarded as important targets for the development of new therapies. This has lead to the development of a fungal assay that shows potential in the selection of new antifungal and anticancer drugs as well as the identification of compounds that are toxic to human mitochondria. AREAS COVERED In this review the authors discuss the development of a potential method of drug discovery that targets mitochondrial function. The authors cover the application of new nanotechnology as well as fungal systematic research where the link between fungal fruiting structures, cell growth, increased mitochondrial activity and susceptibility to a variety of anti-mitochondrial drugs is assessed. EXPERT OPINION This assay shows potential to select anti-mitochondrial drugs as a first screen. This should be followed up by more specific in vitro and in vivo tests to pinpoint the type of anti-mitochondrial activity exerted by these drugs, if any. This is because the possibility exists that compounds regarded as anti-mitochondrial may not inhibit mitochondrial function but other fruiting structure developmental stages and therefore yield false positives. To enhance our knowledge on how these drugs act at the structural level, the authors recommend Nano Scanning Auger Microscopy as the tool of choice.
Collapse
Affiliation(s)
- J Lodewyk F Kock
- University of the Free State, Department of Microbial , Biochemical and Food Biotechnology, Bloemfontein , South Africa +27514012249 ; +27514019376 ;
| | | | | |
Collapse
|
24
|
Chatterji BP, Jindal B, Srivastava S, Panda D. Microtubules as antifungal and antiparasitic drug targets. Expert Opin Ther Pat 2011; 21:167-86. [PMID: 21204724 DOI: 10.1517/13543776.2011.545349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Diseases caused by fungi and parasites are major illnesses in humans as well as in animals. Microtubule-targeted drugs are highly effective for the treatment of fungal and parasitic infections; however, several human parasitic infections such as malaria, trypanosomiasis and leishmaniasis do not have effective remedial drugs. In addition, the emergence of drug-resistant fungi and parasites makes the discovery of new drugs imperative. AREAS COVERED This article describes similarities and dissimilarities between parasitic, fungal and mammalian tubulins and focuses on microtubule-targeting agents and therapeutic approaches for the treatment of fungal and parasitic diseases. New microtubule-targeted antileishmanial, antimalarial and antifungal drugs, with structures, biological activities and related patents, are described. The potential of dsRNA against tubulin to inhibit proliferation of protozoan and helminthic parasites is also discussed. Patent documents up to 2010 have been searched on USPTO, Patentscope, and Espacenet resources. EXPERT OPINION The article suggests that vaccination with tubulin may offer novel opportunities for the antiparasitic treatment. Native or recombinant tubulin used as antigen has been shown to elicit immune response and cure infection partially or fully in animals upon challenge by protozoan parasites and helminths, thus indicating the suitability of tubulin as a vaccine against parasitic diseases.
Collapse
Affiliation(s)
- Biswa Prasun Chatterji
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Powai, Mumbai-400076, India
| | | | | | | |
Collapse
|
25
|
Kontnik R, Crawford JM, Clardy J. Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem Biol 2010; 5:659-65. [PMID: 20524642 DOI: 10.1021/cb100117k] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterially produced small molecules demonstrate a remarkable range of structural and functional diversity and include some of our most useful biological probes and therapeutic agents. Annotations of bacterial genomes reveal a large gap between the number of known small molecules and the number of biosynthetic genes/loci that could produce such small molecules, a gap that most likely originates from tight regulatory control by the producing organism. This study coupled a global transcriptional regulator, HexA, to secondary metabolite production in Photorhabdus luminescens, a member of the Gammaproteobacteria that participates in a complex symbiosis with nematode worms and insect larvae. HexA is a LysR-type transcriptional repressor, and knocking it out to create a P. luminescens DeltahexA mutant led to dramatic upregulation of biosynthesized small molecules. Use of this mutant expanded a family of stilbene-derived small molecules, which were known to play important roles in the symbiosis, from three members to at least nine members.
Collapse
Affiliation(s)
- Renee Kontnik
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Jason M. Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Koo BS, Kalme S, Yeo SH, Lee SJ, Yoon MY. Molecular cloning and biochemical characterization of alpha- and beta-tubulin from potato plants (Solanum tuberosum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:761-768. [PMID: 19394244 DOI: 10.1016/j.plaphy.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
Few studies have investigated microtubules from plants that host pathogenic fungi. Considerable efforts are underway to find an antimitotic agent against plant pathogens like Phytophthora infestans. However, screening the effects of antifungal agents on plant tubulin in vivo or using purified native microtubule in vitro is a time consuming process. A recombinant, correctly folded, microtubule-like structure forming tubulin could accelerate research in this area. In this study, we cloned full length cDNAs isolated from potato leaves using reverse-transcribed polymerase chain reaction (RT-PCR). Solanum tuberosum (Stub) alpha-tubulin and beta-tubulin were predicted to encode 449 and 451 amino acid long proteins with molecular masses of 57 kDa and 60 kDa, respectively. Average yields of alpha- and beta-tubulin were 2.0-3.5 mg l(-1) and 1.3-3.0 mg l(-1) of culture, respectively. The amino acids, His6, Glu198, and Phe170 involved in benomyl sensitivity were conserved in Stub tubulin. The dimerization of tubulin monomers was confirmed by western blot analysis. When combined under appropriate conditions, these recombinant alpha- and beta-tubulins were capable of polymerizing into microtubules. Accessibility of cysteine residues of tubulin revealed that important ligand binding sites were folded correctly. This recombinant tubulin could serve as a control of phytotoxicity of selected antimitotic fungicide compounds during in vitro screening experiments.
Collapse
Affiliation(s)
- Bon-Sung Koo
- Fermentation and Food Processing Division, Department of Korean Food Research for Globalization, National Academy of Agricultural Science, Suwon 441 857, South Korea
| | | | | | | | | |
Collapse
|
27
|
Meyer V, Damveld RA, Arentshorst M, Stahl U, van den Hondel CAMJJ, Ram AFJ. Survival in the presence of antifungals: genome-wide expression profiling of Aspergillus niger in response to sublethal concentrations of caspofungin and fenpropimorph. J Biol Chem 2007; 282:32935-48. [PMID: 17804411 DOI: 10.1074/jbc.m705856200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How yeast cells respond to cell wall stress is relatively well understood; however, how filamentous fungi cope with cell wall damage is largely unexplored. Here we report the first transcriptome analysis of Aspergillus niger exposed to the antifungal compounds caspofungin, an inhibitor of beta-1,3-glucan synthesis, and fenpropimorph, which inhibits ergosterol synthesis. The presence of sublethal drug concentrations allowed A. niger to adapt to the stress conditions and to continue growth by the establishment of new polarity axes and formation of new germ tubes. By comparing the expression profile between caspofungin-exposed and nonexposed A. niger germlings, we identified a total of 172 responsive genes out of 14,509 open reading frames present on the Affymetrix microarray chips. Among 165 up-regulated genes, mainly genes predicted to function in (i) cell wall assembly and remodeling, (ii) cytoskeletal organization, (iii) signaling, and (iv) oxidative stress response were affected. Fenpropimorph modulated expression of 43 genes, of which 41 showed enhanced expression. Here, genes predicted to function in (i) membrane reconstruction, (ii) lipid signaling, (iii) cell wall remodeling, and (iv) oxidative stress response were identified. Northern analyses of selected genes were used to confirm the microarray analyses. The results further show that expression of the agsA gene encoding an alpha-1,3-glucan synthase is up-regulated by both compounds. Using two PagsA-GFP reporter strains of A. niger and subjecting them to 16 different antifungal compounds, including caspofungin and fenpropimorph, we could show that agsA is specifically activated by compounds interfering directly or indirectly with cell wall biosynthesis.
Collapse
Affiliation(s)
- Vera Meyer
- Department of Microbiology and Genetics, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
As a major co-morbidity of Parkinson's disease (PD), depression is associated with the loss of serotonergic neurons. Our recent study has shown that midbrain dopaminergic neurons are particularly vulnerable to microtubule-depolymerizing agents including rotenone, an environmental toxin linked to PD. Here we show that rotenone also selectively killed serotonergic neurons in midbrain neuronal cultures. Its selective toxicity was significantly decreased by the microtubule-stabilizing drug taxol and mimicked by microtubule-depolymerizing agents such as colchicine and nocodazole. Microtubule depolymerization induced by rotenone or colchicine caused vesicle accumulation in the soma and killed serotonergic neurons through a mechanism dependent on serotonin metabolism in the cytosol. Blocking serotonin synthesis or degradation, as well as application of antioxidants, significantly reduced the selective toxicity of rotenone or colchicine. Inhibition of vesicular sequestration of serotonin exerted a selective toxicity on serotonergic neurons that was mitigated by blocking serotonin metabolism. Over-expression of parkin, a protein-ubiquitin E3 ligase that strongly binds to microtubules, greatly attenuated the selective toxicity of rotenone or colchicine. The protective effects of parkin were abrogated by its PD-linked mutations. Together, our results suggest that rotenone and parkin affect the survival of serotonergic neurons by impacting on microtubules in opposing manners.
Collapse
Affiliation(s)
- Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
| | | |
Collapse
|
29
|
Ronen R, Sharon H, Levdansky E, Romano J, Shadkchan Y, Osherov N. The Aspergillus nidulans pkcA gene is involved in polarized growth, morphogenesis and maintenance of cell wall integrity. Curr Genet 2007; 51:321-9. [PMID: 17406869 DOI: 10.1007/s00294-007-0129-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
The protein kinase C (PKC) family participates in maintaining integrity and growth of fungal cell walls. However, the precise molecular role of these proteins in the filamentous fungi remains unknown. In this work, pkcA, the gene encoding the PKC homolog in the filamentous fungus Aspergillus nidulans, was cloned and its function analyzed using a conditional alcA-PKC mutant strain. Repression of pkcA expression resulted in increased conidial swelling, decreased rates of hyphal growth, changes in the ultrastructure of the cell wall and increased sensitivity to antifungal agents. These results suggest that the protein encoded by pkcA is involved in key aspects of cell morphogenesis and cell wall integrity.
Collapse
Affiliation(s)
- Revital Ronen
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Zou G, Ying SH, Shen ZC, Feng MG. Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environ Microbiol 2007; 8:2096-105. [PMID: 17107551 DOI: 10.1111/j.1462-2920.2006.01086.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungicide resistance and thermotolerance of biocontrol agents in mitosporic fungi are of merits for enhancing fungal formulations against insect pests in the field. Among 20 wild strains of Beauveria bassiana (a well-known fungal biocontrol agent) tested in this study, 19 were sensitive or highly sensitive to carbendazim (methyl 2-benzimidazole carbamate), a typical benzimidazole fungicide, despite low resistance found in one strain. Sequential mutagenesis of a carbendazim-sensitive wild strain [minimal inhibitory concentration (MIC) = 1.32 microg ml(-1)] under artificial selection pressure generated 11 mutants sharing a common MIC of > 1000 microg ml(-1) without visible variation in colony growth and conidiation capacity. This represents at least 758-fold enhancement of the resistance among the mutants. However, accompanied with the enhanced resistance, all the mutants became less thermotolerable. Stressed at 48 degrees C, conidial LT(50)s of the mutants varied from 1.8 to 9.6 min and were lower than the parental LT(50) (36 min). Moreover, the contents of hydrophobin-like proteins in conidial walls declined significantly among the mutants compared with that of the wild parent. Mutations commonly relating to benzimidazole resistance in fungi were located at Q134, F167 and/or E198 around the taxol-binding site of beta-tubulin by sequencing the beta-tubulin of the mutants. Also, mutations of other 37 amino acid residues in the sequences (each having one to five residues mutated) were found for the first time and they were diverse in spatial structure. All mutations restricted to the half of beta-tubulin close to alpha-tubulin were likely involved in variation in each of the traits concerned but their interactions were complicated.
Collapse
Affiliation(s)
- Gen Zou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Ruge E, Korting HC, Borelli C. Current state of three-dimensional characterisation of antifungal targets and its use for molecular modelling in drug design. Int J Antimicrob Agents 2005; 26:427-41. [PMID: 16289513 DOI: 10.1016/j.ijantimicag.2005.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The alarming rise in life-threatening systemic fungal infections due to the emergence of drug-resistant fungal strains had produced an increased demand for new antimycotics, especially those targeting novel antifungal structures. Drug discovery has developed from screening natural products and chemical synthesis to a modern approach, namely structure-based drug design. Whilst many antifungal agents currently in use were discovered more than 30 years ago, characterisation of various drug targets has only been achieved recently, contributing immensely to understanding the structure-activity relationships of antifungals and their targets. Three-dimensional characterisation has become a well established tool for modern antifungal drug research and should play an important role in investigations for new antifungal agents.
Collapse
Affiliation(s)
- E Ruge
- Department of Dermatology, University of Munich, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | | | | |
Collapse
|