1
|
Yang Y, Li X, Sun L, Wang XK, Zhang YW, Pang J, Li GQ, Hu XX, Nie TY, Yang XY, Liu JH, Brandis G, You XF, Li CR. High level non-carbapenemase carbapenem resistance by overlaying mutations of mexR, oprD, and ftsI in Pseudomonas aeruginosa. Microbiol Spectr 2025; 13:e0139824. [PMID: 39555917 PMCID: PMC11705820 DOI: 10.1128/spectrum.01398-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global threat, but the mechanism of non-carbapenemase carbapenem resistance is still unclear. In the current study, we investigated the contributions of point mutations in mexR, oprD, and ftsI to carbapenem resistance in P. aeruginosa during in vivo evolution studies with consecutive clinical isolates. Real-time qPCR and Electrophoretic Mobility Shift Assay demonstrated that MexR (Gln55Pro) mutation increased MexAB efflux pump genes expression by altering MexR's binding capacity, leading to a four- to eight-fold increase in meropenem MIC in the Pae d1 Green ∆mexR and PAO1∆mexR mutants. The OprD (Trp415*) truncation affected porin structure, and the constructed mutant Pae d1 Green oprD Trp415* increased meropenem MIC by 16-fold (from 0.25 to 4 µg/mL). The contribution of ftsI mutation to meropenem resistance was confirmed by clinical linkage analysis and was estimated to cause a two-fold increase in meropenem MIC by comparing the resistant clinical isolate with the Pae d1 Green oprD Trp415*∆mexR double mutant. The study found that the oprD Trp415* allele alone accounts for the imipenem MIC in clinical isolates, while the ∆mexR and ftsI Arg504Cys alleles do not contribute to imipenem resistance. In conclusion, we identified and explored the contributions of mexR, oprD, and ftsI mutations to high level non-carbapenemase carbapenem resistance in P. aeruginosa. These findings highlight the interplay of different mutations in causing non-carbapenemase carbapenem-resistance in P. aeruginosa. IMPORTANCE The emergence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant global health threat, complicating treatment options for infections caused by this pathogen. Understanding the mechanisms behind non-carbapenemase carbapenem resistance is critical for developing effective therapeutic strategies. This study provides crucial insights into how specific point mutations in key genes-mexR, oprD, and ftsI-contribute to carbapenem resistance, particularly the MexR (Gln55Pro) mutation's effect on efflux pump expression and the OprD (Trp415*) truncation's impact on porin structure. The findings elucidate the complex interplay of these mutations, highlighting their roles in conferring high-level resistance, and underscore the imperative for continued research to inform therapeutic strategies against CRPA infections.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Xiu-Kun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - You-Wen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Guo-Qing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Xin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Tong-Ying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Xin-Yi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Jian-Hua Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gerrit Brandis
- Department of Cell and Molecular Biology (ICM), Uppsala University, Uppsala, Sweden
| | - Xue-Fu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong-Ran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| |
Collapse
|
2
|
Geilen J, Kainz M, Zapletal B, Schweiger T, Jäger W, Maier-Salamon A, Zeitlinger M, Stamm T, Ritschl V, Geleff S, Schultz MJ, Tschernko E. Effects of lung inflammation and injury on pulmonary tissue penetration of meropenem and vancomycin in a model of unilateral lung injury. Int J Antimicrob Agents 2024; 64:107180. [PMID: 38649034 DOI: 10.1016/j.ijantimicag.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE The timing and dosing of antimicrobial therapy are key in the treatment of pneumonia in critically ill patients. It is uncertain whether the presence of lung inflammation and injury affects tissue penetration of intravenously administered antimicrobial drugs. The effects of lung inflammation and injury on tissue penetration of two antimicrobial drugs commonly used for pneumonia were determined in an established model of unilateral lung injury. METHODS Unilateral lung injury was induced in the left lung of 13 healthy pigs through cyclic rinsing; the right healthy lung served as control. Infusions of meropenem and vancomycin were administered and concentrations of these drugs in lung tissue, blood, and epithelial lining fluid (ELF) were compared over a period of 6 h. RESULTS Median vancomycin lung tissue concentrations and penetration ratio were higher in inflamed and injured lungs compared with uninflamed and uninjured lungs (AUC0-6h: P = 0.003 and AUCdialysate/AUCplasma ratio: P = 0.003), resulting in higher AUC0-24/MIC. Median meropenem lung tissue concentrations and penetration ratio in inflamed and injured lungs did not differ from that in uninflamed and uninjured lungs (AUC0-6: P = 0.094 and AUCdialysate/AUCplasma ratio: P = 0.173). The penetration ratio for both vancomycin and meropenem into ELF was similar in injured and uninjured lungs. CONCLUSION Vancomycin penetration into lung tissue is enhanced by acute inflammation and injury, a phenomenon barely evident with meropenem. Therefore, inflammation in lung tissue influences the penetration into interstitial lung tissue, depending on the chosen antimicrobial drug. Measurement of ELF levels alone might not identify the impact of inflammation and injury.
Collapse
Affiliation(s)
- Johannes Geilen
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Kainz
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Bernhard Zapletal
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Clinical Pharmacokinetics/Pharmacogenetics and Imaging, Medical University of Vienna, Vienna, Austria
| | - Tanja Stamm
- Institute of Outcomes Research, Centre for Medical Data Science, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Valentin Ritschl
- Institute of Outcomes Research, Centre for Medical Data Science, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Silvana Geleff
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Marcus J Schultz
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria; Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam University Medical Centres, location 'AMC', Amsterdam, The Netherlands
| | - Edda Tschernko
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Olivença F, Pires D, Silveiro C, Gama B, Holtreman F, Anes E, Catalão MJ. Ethambutol and meropenem/clavulanate synergy promotes enhanced extracellular and intracellular killing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0158623. [PMID: 38411952 PMCID: PMC10989012 DOI: 10.1128/aac.01586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1β secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1β secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.
Collapse
Affiliation(s)
- Francisco Olivença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Centre for Interdisciplinary Research in Health, Lisbon, Portugal
| | - Cátia Silveiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bianca Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Holtreman
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Geilen J, Kainz M, Zapletal B, Naka A, Tichy J, Jäger W, Böhmdorfer M, Zeitlinger M, Schultz MJ, Stamm T, Ritschl V, Geleff S, Tschernko E. Antimicrobial Drug Penetration Is Enhanced by Lung Tissue Inflammation and Injury. Am J Respir Crit Care Med 2024; 209:829-839. [PMID: 38099833 DOI: 10.1164/rccm.202306-0974oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/15/2023] [Indexed: 04/04/2024] Open
Abstract
Rationale: Pneumonia is a frequent and feared complication in intubated critically ill patients. Tissue concentrations of antimicrobial drugs need to be sufficiently high to treat the infection and also prevent development of bacterial resistance. It is uncertain whether pulmonary inflammation and injury affect antimicrobial drug penetration into lung tissue.Objectives: To determine and compare tissue and BAL fluid concentrations of ceftaroline fosamil and linezolid in a model of unilateral acute lung injury in pigs and to evaluate whether dose adjustment is necessary to reach sufficient antimicrobial concentrations in injured lung tissue.Methods: After induction of unilateral acute lung injury, ceftaroline fosamil and linezolid were administered intravenously. Drug concentrations were measured in lung tissue through microdialysis and in blood and BAL fluid samples during the following 8 hours. The primary endpoint was the tissue concentration area under the concentration curve in the first 8 hours (AUC0-8 h) of the two antimicrobial drugs.Measurements and Main Results: In 10 pigs, antimicrobial drug concentrations were higher in inflamed and injured lung tissue compared with those in uninflamed and uninjured lung tissue (median ceftaroline fosamil AUC0-8 h [and interquartile range] = 26.7 mg ⋅ h ⋅ L-1 [19.7-39.0] vs. 16.0 mg ⋅ h ⋅ L-1 [13.6-19.9], P = 0.02; median linezolid AUC0-8 h 76.0 mg ⋅ h ⋅ L-1 [68.1-96.0] vs. 54.6 mg ⋅ h ⋅ L-1 [42.7-60.9], P = 0.01), resulting in a longer time above the minimal inhibitory concentration and in higher peak concentrations and dialysate/plasma ratios. Penetration into BAL fluid was excellent for both antimicrobials, but without left-to-right differences (ceftaroline fosamil, P = 0.78; linezolid, P = 1.00).Conclusions: Tissue penetration of two commonly used antimicrobial drugs for pneumonia is enhanced by early lung tissue inflammation and injury, resulting in longer times above the minimal inhibitory concentration. Thus, lung tissue inflammation ameliorates antimicrobial drug penetration during the acute phase.
Collapse
Affiliation(s)
- Johannes Geilen
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
| | - Matthias Kainz
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
| | - Bernhard Zapletal
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
| | - Asami Naka
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
| | - Johanna Tichy
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Michaela Böhmdorfer
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Clinical Pharmacokinetics/Pharmacogenetics, and Imaging
| | - Marcus J Schultz
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
- Department of Intensive Care, Amsterdam University Medical Centers, location "AMC", University of Amsterdam, Amsterdam, the Netherlands; and
| | - Tanja Stamm
- Institute of Outcomes Research, Center for Medical Data Science, and
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Valentin Ritschl
- Institute of Outcomes Research, Center for Medical Data Science, and
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Silvana Geleff
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Edda Tschernko
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Department of Anesthesia, General Intensive Care, and Pain Management
| |
Collapse
|
5
|
Dhanani J, Roberts JA, Monsel A, Torres A, Kollef M, Rouby JJ. Understanding the nebulisation of antibiotics: the key role of lung microdialysis studies. Crit Care 2024; 28:49. [PMID: 38373973 PMCID: PMC10875779 DOI: 10.1186/s13054-024-04828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Nebulisation of antibiotics is a promising treatment for ventilator-associated pneumonia (VAP) caused by multidrug-resistant organisms. Ensuring effective antibiotic concentrations at the site of infection in the interstitial space fluid is crucial for clinical outcomes. Current assessment methods, such as epithelial lining fluid and tissue homogenates, have limitations in providing longitudinal pharmacokinetic data. MAIN BODY Lung microdialysis, an invasive research technique predominantly used in animals, involves inserting probes into lung parenchyma to measure antibiotic concentrations in interstitial space fluid. Lung microdialysis offers unique advantages, such as continuous sampling, regional assessment of antibiotic lung concentrations and avoidance of bronchial contamination. However, it also has inherent limitations including the cost of probes and assay development, the need for probe calibration and limited applicability to certain antibiotics. As a research tool in VAP, lung microdialysis necessitates specialist techniques and resource-intensive experimental designs involving large animals undergoing prolonged mechanical ventilation. However, its potential impact on advancing our understanding of nebulised antibiotics for VAP is substantial. The technique may enable the investigation of various factors influencing antibiotic lung pharmacokinetics, including drug types, delivery devices, ventilator settings, interfaces and disease conditions. Combining in vivo pharmacokinetics with in vitro pharmacodynamic simulations can become feasible, providing insights to inform nebulised antibiotic dose optimisation regimens. Specifically, it may aid in understanding and optimising the nebulisation of polymyxins, effective against multidrug-resistant Gram-negative bacteria. Furthermore, lung microdialysis holds promise in exploring novel nebulisation therapies, including repurposed antibiotic formulations, bacteriophages and immunomodulators. The technique's potential to monitor dynamic biochemical changes in pneumonia, such as cytokines, metabolites and inflammation/infection markers, opens avenues for developing theranostic tools tailored to critically ill patients with VAP. CONCLUSION In summary, lung microdialysis can be a potential transformative tool, offering real-time insights into nebulised antibiotic pharmacokinetics. Its potential to inform optimal dosing regimen development based on precise target site concentrations and contribute to development of theranostic tools positions it as key player in advancing treatment strategies for VAP caused by multidrug-resistant organisms. The establishment of international research networks, exemplified by LUMINA (lung microdialysis applied to nebulised antibiotics), signifies a proactive step towards addressing complexities and promoting multicentre experimental studies in the future.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Antoine Monsel
- Unité Mixte de Recherche (UMR)-S 959, Immunology-Immunopathology-Immunotherapy, Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne University, GRC 29, Assistance Publique Hôpitaux de Paris (AP-HP), DMU DREAM, Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| | - Antoni Torres
- Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona, Barcelona, Spain
| | - Marin Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean-Jacques Rouby
- Sorbonne University, GRC 29, Assistance Publique Hôpitaux de Paris (AP-HP), DMU DREAM, Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
6
|
Rohani R, Yarnold PR, Scheetz MH, Neely MN, Kang M, Donnelly HK, Dedicatoria K, Nozick SH, Medernach RL, Hauser AR, Ozer EA, Diaz E, Misharin AV, Wunderink RG, Rhodes NJ. Individual meropenem epithelial lining fluid and plasma PK/PD target attainment. Antimicrob Agents Chemother 2023; 67:e0072723. [PMID: 37975660 PMCID: PMC10720524 DOI: 10.1128/aac.00727-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023] Open
Abstract
It is unclear whether plasma is a reliable surrogate for target attainment in the epithelial lining fluid (ELF). The objective of this study was to characterize meropenem target attainment in plasma and ELF using prospective samples. The first 24-hour T>MIC was evaluated vs 1xMIC and 4xMIC targets at the patient (i.e., fixed MIC of 2 mg/L) and population [i.e., cumulative fraction of response (CFR) according to EUCAST MIC distributions] levels for both plasma and ELF. Among 65 patients receiving ≥24 hours of treatment, 40% of patients failed to achieve >50% T>4xMIC in plasma and ELF, and 30% of patients who achieved >50% T>4xMIC in plasma had <50% T>4xMIC in ELF. At 1xMIC and 4xMIC targets, 3% and 25% of patients with >95% T>MIC in plasma had <50% T>MIC in ELF, respectively. Those with a CRCL >115 mL/min were less likely to achieve >50%T>4xMIC in ELF (P < 0.025). In the population, CFR for Escherichia coli at 1xMIC and 4xMIC was >97%. For Pseudomonas aeruginosa, CFR was ≥90% in plasma and ranged 80%-85% in ELF at 1xMIC when a loading dose was applied. CFR was reduced in plasma (range: 75%-81%) and ELF (range: 44%-60%) in the absence of a loading dose at 1xMIC. At 4xMIC, CFR for P. aeruginosa was 60%-86% with a loading dose and 18%-62% without a loading dose. We found that plasma overestimated ELF target attainment inup to 30% of meropenem-treated patients, CRCL >115 mL/min decreased target attainment in ELF, and loading doses increased CFR in the population.
Collapse
Affiliation(s)
- Roxane Rohani
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | - Marc H. Scheetz
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, Downers Grove, Illinois, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, Illinois, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Michael N. Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Helen K. Donnelly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kay Dedicatoria
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, Downers Grove, Illinois, USA
| | - Sophie H. Nozick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rachel L. Medernach
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Estefani Diaz
- Robert H. Lurie Comprehensive Cancer Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nathaniel J. Rhodes
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, Downers Grove, Illinois, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, Illinois, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
7
|
De Sutter PJ, De Cock P, Johnson TN, Musther H, Gasthuys E, Vermeulen A. Predictive Performance of Physiologically Based Pharmacokinetic Modelling of Beta-Lactam Antibiotic Concentrations in Adipose, Bone, and Muscle Tissues. Drug Metab Dispos 2023; 51:499-508. [PMID: 36639242 DOI: 10.1124/dmd.122.001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) models consist of compartments representing different tissues. As most models are only verified based on plasma concentrations, it is unclear how reliable associated tissue profiles are. This study aimed to assess the accuracy of PBPK-predicted beta-lactam antibiotic concentrations in different tissues and assess the impact of using effect site concentrations for evaluation of target attainment. Adipose, bone, and muscle concentrations of five beta-lactams (piperacillin, cefazolin, cefuroxime, ceftazidime, and meropenem) in healthy adults were collected from literature and compared with PBPK predictions. Model performance was evaluated with average fold errors (AFEs) and absolute AFEs (AAFEs) between predicted and observed concentrations. In total, 26 studies were included, 14 of which reported total tissue concentrations and 12 unbound interstitial fluid (uISF) concentrations. Concurrent plasma concentrations, used as baseline verification of the models, were fairly accurate (AFE: 1.14, AAFE: 1.50). Predicted total tissue concentrations were less accurate (AFE: 0.68, AAFE: 1.89). A slight trend for underprediction was observed but none of the studies had AFE or AAFE values outside threefold. Similarly, predictions of microdialysis-derived uISF concentrations were less accurate than plasma concentration predictions (AFE: 1.52, AAFE: 2.32). uISF concentrations tended to be overpredicted and two studies had AFEs and AAFEs outside threefold. Pharmacodynamic simulations in our case showed only a limited impact of using uISF concentrations instead of unbound plasma concentrations on target attainment rates. The results of this study illustrate the limitations of current PBPK models to predict tissue concentrations and the associated need for more accurate models. SIGNIFICANCE STATEMENT: Clinical inaccessibility of local effect site concentrations precipitates a need for predictive methods for the estimation of tissue concentrations. This is the first study in which the accuracy of PBPK-predicted tissue concentrations of beta-lactam antibiotics in humans were assessed. Predicted tissue concentrations were found to be less accurate than concurrent predicted plasma concentrations. When using PBPK models to predict tissue concentrations, this potential relative loss of accuracy should be acknowledged when clinical tissue concentrations are unavailable to verify predictions.
Collapse
Affiliation(s)
- Pieter-Jan De Sutter
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences (P-J.DS., E.G., A.V.), Department of Basic and Applied Medical Science, Faculty of Medicine and Health Sciences (P.D-C), Ghent University, Ghent, Belgium; Department of Pharmacy and Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium (P.D-C.); and Certara UK Limited, Sheffield, United Kingdom (T.N.J., H.M.)
| | - Pieter De Cock
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences (P-J.DS., E.G., A.V.), Department of Basic and Applied Medical Science, Faculty of Medicine and Health Sciences (P.D-C), Ghent University, Ghent, Belgium; Department of Pharmacy and Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium (P.D-C.); and Certara UK Limited, Sheffield, United Kingdom (T.N.J., H.M.)
| | - Trevor N Johnson
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences (P-J.DS., E.G., A.V.), Department of Basic and Applied Medical Science, Faculty of Medicine and Health Sciences (P.D-C), Ghent University, Ghent, Belgium; Department of Pharmacy and Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium (P.D-C.); and Certara UK Limited, Sheffield, United Kingdom (T.N.J., H.M.)
| | - Helen Musther
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences (P-J.DS., E.G., A.V.), Department of Basic and Applied Medical Science, Faculty of Medicine and Health Sciences (P.D-C), Ghent University, Ghent, Belgium; Department of Pharmacy and Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium (P.D-C.); and Certara UK Limited, Sheffield, United Kingdom (T.N.J., H.M.)
| | - Elke Gasthuys
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences (P-J.DS., E.G., A.V.), Department of Basic and Applied Medical Science, Faculty of Medicine and Health Sciences (P.D-C), Ghent University, Ghent, Belgium; Department of Pharmacy and Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium (P.D-C.); and Certara UK Limited, Sheffield, United Kingdom (T.N.J., H.M.)
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences (P-J.DS., E.G., A.V.), Department of Basic and Applied Medical Science, Faculty of Medicine and Health Sciences (P.D-C), Ghent University, Ghent, Belgium; Department of Pharmacy and Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium (P.D-C.); and Certara UK Limited, Sheffield, United Kingdom (T.N.J., H.M.)
| |
Collapse
|
8
|
Koehler N, Andres S, Merker M, Dreyer V, John A, Kuhns M, Krieger D, Choong E, Verougstraete N, Zur Wiesch PA, Wicha SG, König C, Kalsdorf B, Sanchez Carballo PM, Schaub D, Werngren J, Schön T, Peloquin CA, Schönfeld N, Verstraete AG, Decosterd LA, Aarnoutse R, Niemann S, Maurer FP, Lange C. Pretomanid-resistant tuberculosis. J Infect 2023; 86:520-524. [PMID: 36738862 DOI: 10.1016/j.jinf.2023.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Niklas Koehler
- Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Sönke Andres
- National and World Health Organization Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Parkallee 18, 23845 Borstel, Germany
| | - Matthias Merker
- German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Evolution of the Resistome, Research Center Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Viola Dreyer
- German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Agnieszka John
- Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany
| | - Martin Kuhns
- National and World Health Organization Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Parkallee 18, 23845 Borstel, Germany
| | - David Krieger
- Department of Pulmonology, Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Walterhöferstraße 11, 14165 Berlin, Germany
| | - Eva Choong
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway; Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Forskningsparken, Gaustadalléen 21, 0349 Oslo, Norway; Department of Biology, The Pennsylvania State University, University Park Pennsylvania, Mueller Laboratory, 208 Curtin Rd, State College, PA 16801, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park Pennsylvania, 101 Huck Life Sciences Building, University Park, PA 16802, USA
| | - Sebastian G Wicha
- Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinstraße 52, 20246 Hamburg, Germany; Department of Pharmacy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Barbara Kalsdorf
- Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Patricia M Sanchez Carballo
- Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Dagmar Schaub
- Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jim Werngren
- Department of Microbiology, Unit for Laboratory Surveillance of Bacterial Pathogens, Public Health Agency of Sweden, Nobels väg 18, 171 65 Solna, Sweden
| | - Thomas Schön
- Department of Infectious Diseases, Linköping University Hospital, Universitetssjukhuset, 581 85 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610, USA; Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 1225 Center Dr, Gainesville, FL 32610, USA
| | - Nicolas Schönfeld
- Department of Pulmonology, Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Walterhöferstraße 11, 14165 Berlin, Germany
| | - Alain G Verstraete
- Department of Laboratory Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Laurent A Decosterd
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; National and World Health Organization Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Parkallee 18, 23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Florian P Maurer
- National and World Health Organization Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Parkallee 18, 23845 Borstel, Germany; Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinstraße 52, 20246 Hamburg, Germany
| | - Christoph Lange
- Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Parkallee 1-40, 23845 Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Baylor College of Medicine and Texas Childrens' Hospital, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Lau EPM, Sidhu C, Popowicz ND, Lee YCG. Pharmacokinetics of antibiotics for pleural infection. Expert Rev Respir Med 2022; 16:1057-1066. [DOI: 10.1080/17476348.2022.2147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- E P M Lau
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Calvinjit Sidhu
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Natalia D Popowicz
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Australia
- School of Allied Health, Division of Pharmacy, University of Western Australia, Perth, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Y C Gary Lee
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
- Centre for Respiratory Health, School of Medicine, University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, Sy SKB. Prediction of Tissue Exposures of Meropenem, Colistin, and Sulbactam in Pediatrics Using Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2022; 61:1427-1441. [PMID: 35947360 DOI: 10.1007/s40262-022-01161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The combination of polymyxins, meropenem, and sulbactam demonstrated efficacy against multi-drug-resistant bacillus Acinetobacter baumannii. These three antibiotics are commonly used against major blood, skin, lung, and heart muscle infections. OBJECTIVE The objective of this study was to predict drug disposition and extrapolate the efficacy in these tissues using a physiologically based pharmacokinetic modeling approach that linked drug exposures to their target pharmacodynamic indices associated with antimicrobial activities against A. baumannii. METHODS An adult physiologically based pharmacokinetic model was developed for meropenem, colistin, and sulbactam and scaled to pediatrics accounting for both renal and non-renal clearances. The model reliability was evaluated by comparing simulated plasma and tissue drug exposures to observed data. Target pharmacodynamic indices were used to evaluate whether pediatric and adult dosing regimens provided sufficient coverage. RESULTS The modeled plasma drug exposures in adults and pediatric patients were consistent with reported literature data. The mean fold errors for meropenem, colistin, and sulbactam were in the range of 0.710-1.37, 0.981-1.47, and 0.647-1.39, respectively. Simulated exposures in the blood, skin, lung, and heart were consistent with reported penetration rates. In a virtual pediatric population aged from 2 to < 18 years, the interpretive breakpoints were achieved in 85-90% of subjects for their targeted pharmacodynamic indices after administration of pediatric dosing regimens consisting of 30 mg/kg of meropenem, and 40 mg/kg of sulbactam three times daily as a 3-h or continuous infusion and 5 mg/kg/day of colistin base activity. CONCLUSIONS The physiologically based pharmacokinetic modeling supports pediatric dosing regimens of meropenem/colistin/sulbactam in a co-administration setting against infections in the blood, lung, skin, and heart tissues due to A. baumannii.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, NJ, USA
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
11
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
12
|
Target Site Pharmacokinetics of Meropenem: Measurement in Human Explanted Lung Tissue by Bronchoalveolar Lavage, Microdialysis, and Homogenized Lung Tissue. Antimicrob Agents Chemother 2021; 65:e0156421. [PMID: 34570645 DOI: 10.1128/aac.01564-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumonia is one of the most common infections in intensive care patients, and it is often treated with beta-lactam antibiotics. Even if therapeutic drug monitoring in blood is available, it is unclear whether sufficient concentrations are reached at the target site: the lung. The present study was initiated to fill this knowledge gap. Various compartments from 10 patients' explanted lungs were subjected to laboratory analysis. Meropenem was quantified in serum, bronchoalveolar lavage (BAL) fluid, microdialysate, and homogenized lung tissue with isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS). BAL fluid represents diluted epithelial lining fluid (ELF), and microdialysate represents interstitial fluid (IF). Differences between target site and blood concentrations were investigated. The median meropenem concentration in blood, ELF, IF, and tissue were 26.8, 18.0, 12.1, and 9.1 mg/liter, respectively. A total of 37.5% of the target site ELF and IF meropenem concentrations were below the clinical EUCAST breakpoint of 8 mg/liter. The median ELF/serum quotient was 61.8% (interquartile range [IQR], 24.8% to 87.6%), the median IF/serum quotient was 35.4% (IQR, 23.8% to 54.3%), and the median tissue/serum quotient was 34.2% (IQR, 28.3% to 38.2%). We observed a substantial interindividual variability between the blood and the compartments (ELF and IF), whereas the intraindividual variability was relatively low. Target site measurement in different lung compartments was feasible and successfully applied in a clinical setting. A relevant amount of 37.5% of the target site concentrations were below the clinical EUCAST breakpoint, indicating subtherapeutic dosing in high-risk patients receiving perioperative antibiotic prophylaxis in lung transplantation. (This study has been registered at ClinicalTrials.gov under identifier NCT03970265.).
Collapse
|
13
|
Hosmann A, Ritscher L, Burgmann H, Al Jalali V, Wulkersdorfer B, Wölfl-Duchek M, Sanz Codina M, Jäger W, Poschner S, Plöchl W, Reinprecht A, Rössler K, Gruber A, Zeitlinger M. Meropenem concentrations in brain tissue of neurointensive care patients exceed CSF levels. J Antimicrob Chemother 2021; 76:2914-2922. [PMID: 34392352 DOI: 10.1093/jac/dkab286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Inadequate antibiotic exposure in cerebral infections might have detrimental effects on clinical outcome. Commonly, antibiotic concentrations within the CSF were used to estimate cerebral target levels. However, the actual pharmacological active unbound drug concentration beyond the blood-brain barrier is unknown. OBJECTIVES To compare meropenem concentrations in blood, CSF and cerebral microdialysate of neurointensive care patients. PATIENTS AND METHODS In 12 patients suffering subarachnoid haemorrhage, 2000 mg of meropenem was administered every 8 h due to an extracerebral infection. Meropenem concentrations were determined in blood, CSF and cerebral microdialysate at steady state (n = 11) and following single-dose administration (n = 5). RESULTS At steady state, the free AUC0-8 was 233.2 ± 42.7 mg·h/L in plasma, 7.8 ± 1.9 mg·h/L in CSF and 26.6 ± 14.0 mg·h/L in brain tissue. The brain tissue penetration ratio (AUCbrain/AUCplasma) was 0.11 ± 0.06, which was more than 3 times higher than in CSF (0.03 ± 0.01), resulting in an AUCCSF/AUCbrain ratio of 0.41 ± 0.16 at steady state. After single-dose administration similar proportions were achieved (AUCbrain/AUCplasma = 0.09 ± 0.08; AUCCSF/AUCplasma = 0.02 ± 0.00). Brain tissue concentrations correlated well with CSF concentrations (R = 0.74, P < 0.001), but only moderately with plasma concentrations (R = 0.51, P < 0.001). Bactericidal thresholds were achieved in both plasma and brain tissue for MIC values ≤16 mg/L. In CSF, bactericidal effects were only reached for MIC values ≤1 mg/L. CONCLUSIONS Meropenem achieves sufficient bactericidal concentrations for the most common bacterial strains of cerebral infections in both plasma and brain tissue, even in non-inflamed brain tissue. CSF concentrations would highly underestimate the target site activity of meropenem beyond the blood-brain barrier.
Collapse
Affiliation(s)
- Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Lavinia Ritscher
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maria Sanz Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Stefan Poschner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Walter Plöchl
- Department of Anaesthesia, General Intensive Care Medicine and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Gruber
- Department of Neurosurgery, Johannes Kepler University, Linz, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Děrgel M, Voborník M, Pojar M, Karalko M, Gofus J, Radochová V, Studená Š, Maláková J, Turek Z, Chládek J, Manďák J. Lung Collapse during Mini-Thoracotomy Reduces Penetration of Cefuroxime to the Tissue: Interstitial Microdialysis Study in Animal Models. Surg Infect (Larchmt) 2020; 22:283-291. [PMID: 32633629 DOI: 10.1089/sur.2019.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Single-lung ventilation facilitates surgical exposure during minimally invasive cardiac surgery. However, a deeper knowledge of antibiotic distribution within a collapsed lung is necessary for effective antibiotic prophylaxis of pneumonia. Patients and Methods: The pharmacokinetics/pharmacodynamics (PK/PD) of cefuroxime were compared between the plasma and interstitial fluid (ISF) of collapsed and ventilated lungs in 10 anesthetized pigs, which were ventilated through a double-lumen endotracheal cannula. Cefuroxime (20 mg/kg) was administered in single 30-minute intravenous infusion. Samples of blood and lung microdialysate were collected until six hours post-dose. Ultrafiltration, in vivo retrodialysis, and high-performance liquid chromatography-tandem mass spectrometry were used to determine plasma and ISF concentrations of free drug. The concentrations were examined with non-compartmental analysis and compartmental modeling. Results: The concentration of free cefuroxime in ISF was lower in the non-ventilated lung than the ventilated one, evidenced by a lung penetration factor of 47% versus 63% (p < 0.05), the ratio between maximum concentrations (65%, p < 0.05), and the ratio between the areas under the concentration-time curve (78%, p = 0.12). The time needed to reach a minimum inhibitory concentration (MIC) was 30%-40% longer for a collapsed lung than for a ventilated one. In addition, a delay of 10-40 minutes was observed for lung ISF compared with plasma. The mean residence time values (ISF collapsed lung > ISF ventilated lung > plasma) could explain the absence of practically important differences in the time interval with the concentration of cefuroxime exceeding the MICs of sensitive strains (≤4 mg/L). Conclusion: The concentration of cefuroxime in the ISF of a collapsed porcine lung is lower than in a ventilated one; furthermore, its equilibration with plasma is delayed. Administration of the first cefuroxime dose earlier or at a higher rate may be warranted, as well as dose intensification of the perioperative prophylaxis of pneumonia caused by pathogens with higher MICs.
Collapse
Affiliation(s)
- Martin Děrgel
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Voborník
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Marek Pojar
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Mikita Karalko
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jan Gofus
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Věra Radochová
- Animal Research Facility, Faculty of Military Health Sciences, University of Defense, Třebešská, Králové, Czech Republic
| | - Šárka Studená
- Department of Pharmacology, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jana Maláková
- Institute of Clinical Biochemistry and Diagnoses, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Zdeněk Turek
- Department of Anesthesiology, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jaroslav Chládek
- Department of Pharmacology, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jiří Manďák
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Heffernan AJ, Sime FB, Lipman J, Dhanani J, Andrews K, Ellwood D, Grimwood K, Roberts JA. Intrapulmonary pharmacokinetics of antibiotics used to treat nosocomial pneumonia caused by Gram-negative bacilli: A systematic review. Int J Antimicrob Agents 2019; 53:234-245. [DOI: 10.1016/j.ijantimicag.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 01/31/2023]
|
16
|
Feasibility of lung microdialysis to assess metabolism during clinical ex vivo lung perfusion. J Heart Lung Transplant 2019; 38:267-276. [DOI: 10.1016/j.healun.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022] Open
|
17
|
Tomas A, Stilinović N, Sabo A, Tomić Z. Use of microdialysis for the assessment of fluoroquinolone pharmacokinetics in the clinical practice. Eur J Pharm Sci 2019; 131:230-242. [PMID: 30811969 DOI: 10.1016/j.ejps.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Antibacterial drugs, including fluoroquinolones, can exert their therapeutic action only with adequate penetration at the infection site. Multiple factors, such as rate of protein binding, drug liposolubility and organ blood-flow all influence ability of antibiotics to penetrate target tissues. Microdialysis is an in vivo sampling technique that has been successfully applied to measure the distribution of fluoroquinolones in the interstitial fluid of different tissues both in animal studies and clinical setting. Tissue concentrations need to be interpreted within the context of the pathogenesis and causative agents implicated in infections. Integration of microdialysis -derived tissue pharmacokinetics with pharmacodynamic data offers crucial information for correlating exposure with antibacterial effect. This review explores these concepts and provides an overview of tissue concentrations of fluoroquinolones derived from microdialysis studies and explores the therapeutic implications of fluoroquinolone distribution at various target tissues.
Collapse
Affiliation(s)
- Ana Tomas
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia.
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
| | - Ana Sabo
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
| | - Zdenko Tomić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
| |
Collapse
|
18
|
Rodvold KA, Hope WW, Boyd SE. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol 2017; 36:114-123. [PMID: 29096171 DOI: 10.1016/j.coph.2017.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
Abstract
Bronchoalveolar lavage (BAL) and microdialysis have become the most reliable and relevant methods for measuring lung concentrations of antibiotics, with the majority of BAL studies involving either healthy adult subjects or patients undergoing diagnostic bronchoscopy. Emphasis on the amount of drug that reaches the site of infection is increasingly recognized as necessary to determine whether a dose selection will translate to good clinical outcomes in the treatment of patients with pneumonia. Observed concentrations and/or parameters of exposure (e.g. area-under-the-curve) need to be incorporated with pharmacokinetic-pharmacodynamic indices so that rational dose selection can be identified for specific pathogens and types of pneumonic infection (community-acquired vs hospital-acquired bacterial pneumonia, including ventilator-associated bacterial pneumonia). Although having measured plasma or lung concentration-time data from critically ill patients to incorporate into pharmacokinetic-pharmacodynamic models is very unlikely during drug development, it is essential that altered distribution, augmented renal clearance, and renal or hepatic dysfunction should be considered. Notably, the number of published studies involving microdialysis and intrapulmonary penetration of antibiotics has been limited and mainly involve beta-lactam agents, levofloxacin, and fosfomycin. Opportunities to measure in high-resolution effect site spatial pharmacokinetics (e.g. with MALDI-MSI or PET imaging) and in vivo continuous drug concentrations (e.g. with aptamer-based probes) now exist. Going forward these studies could be incorporated into antibiotic development programs for pneumonia in order to further increase the probability of candidate success.
Collapse
Affiliation(s)
- Keith A Rodvold
- Colleges of Pharmacy and Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - William W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Sara E Boyd
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK; Division of Infectious Diseases & Immunity, Imperial College London, London, UK
| |
Collapse
|
19
|
Wicha SG, Huisinga W, Kloft C. Translational Pharmacometric Evaluation of Typical Antibiotic Broad-Spectrum Combination Therapies Against Staphylococcus Aureus Exploiting In Vitro Information. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:512-522. [PMID: 28378945 PMCID: PMC5572409 DOI: 10.1002/psp4.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/15/2022]
Abstract
Broad‐spectrum antibiotic combination therapy is frequently applied due to increasing resistance development of infective pathogens. The objective of the present study was to evaluate two common empiric broad‐spectrum combination therapies consisting of either linezolid (LZD) or vancomycin (VAN) combined with meropenem (MER) against Staphylococcus aureus (S. aureus) as the most frequent causative pathogen of severe infections. A semimechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model mimicking a simplified bacterial life‐cycle of S. aureus was developed upon time‐kill curve data to describe the effects of LZD, VAN, and MER alone and in dual combinations. The PK‐PD model was successfully (i) evaluated with external data from two clinical S. aureus isolates and further drug combinations and (ii) challenged to predict common clinical PK‐PD indices and breakpoints. Finally, clinical trial simulations were performed that revealed that the combination of VAN‐MER might be favorable over LZD‐MER due to an unfavorable antagonistic interaction between LZD and MER.
Collapse
Affiliation(s)
- S G Wicha
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - W Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam-Golm, Germany
| | - C Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
20
|
Tängdén T, Ramos Martín V, Felton TW, Nielsen EI, Marchand S, Brüggemann RJ, Bulitta JB, Bassetti M, Theuretzbacher U, Tsuji BT, Wareham DW, Friberg LE, De Waele JJ, Tam VH, Roberts JA. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med 2017; 43:1021-1032. [PMID: 28409203 DOI: 10.1007/s00134-017-4780-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/18/2017] [Indexed: 01/14/2023]
Abstract
Critically ill patients with severe infections are at high risk of suboptimal antimicrobial dosing. The pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in these patients differ significantly from the patient groups from whose data the conventional dosing regimens were developed. Use of such regimens often results in inadequate antimicrobial concentrations at the site of infection and is associated with poor patient outcomes. In this article, we describe the potential of in vitro and in vivo infection models, clinical pharmacokinetic data and pharmacokinetic/pharmacodynamic models to guide the design of more effective antimicrobial dosing regimens. Individualised dosing, based on population PK models and patient factors (e.g. renal function and weight) known to influence antimicrobial PK, increases the probability of achieving therapeutic drug exposures while at the same time avoiding toxic concentrations. When therapeutic drug monitoring (TDM) is applied, early dose adaptation to the needs of the individual patient is possible. TDM is likely to be of particular importance for infected critically ill patients, where profound PK changes are present and prompt appropriate antibiotic therapy is crucial. In the light of the continued high mortality rates in critically ill patients with severe infections, a paradigm shift to refined dosing strategies for antimicrobials is warranted to enhance the probability of achieving drug concentrations that increase the likelihood of clinical success.
Collapse
Affiliation(s)
- T Tängdén
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - V Ramos Martín
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - T W Felton
- Intensive Care Unit, University Hospital of South Manchester, Manchester, UK
| | - E I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - S Marchand
- Inserm U1070, Pole Biologie Santé, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - R J Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, USA
| | - M Bassetti
- Infectious Diseases Division, Santa Maria della Misericordia University Hospital and University of Udine, Udine, Italy
| | | | - B T Tsuji
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - D W Wareham
- Antimicrobial Research Group, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - J J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - V H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, USA
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia. .,Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, Brisbane, QLD, 4029, Australia.
| | | |
Collapse
|
21
|
Mand'ák J, Pojar M, Maláková J, Lonsk V, Palicka V, Zivný P. Tissue and plasma concentrations of cephuroxime during cardiac surgery in cardiopulmonary bypass — a microdialysis study. Perfusion 2016; 22:129-36. [PMID: 17708162 DOI: 10.1177/0267659107080116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: Wound and mediastinal infections are still very serious complications of open-heart surgery, in spite of the use of prophylactic antibiotics. The use of cardiopulmonary bypass (CPB) is associated with profound physiological changes affecting the pharmacokinetic behaviour of antibiotics. The aim of this pilot study was to monitor the tissue concentrations of cephuroxime (prophylactic antibiotic) in skeletal muscle during cardiac surgery using CPB by interstitial microdialysis. These concentrations were compared with plasma concentrations of cephuroxime. Material and methods: Nine adult patients operated on using CPB were enrolled in this study. Cephuroxime was used as a prophylactic antibiotic (1st dose — 3 g of cefuroxime i.v. with anesthesia induction, 2nd dose — 1.5 g i.v. after CPB with protamine sulphate, 3rd dose — 1.5 g i.v. 8 hours after the surgery). Interstitial microdialysis was performed by probe CMA 60 (CMA Microdialysis AB, Sweden) inserted into the patient's deltoid muscle. Concentrations of cephuroxime in dialysates and in plasma were determined by the modified fluid chromatography method. The unbound cephuroxime fraction in plasma was obtained by using an ultrafiltration method. Samples of dialysates were collected at the following intervals: before CPB, each 30 minutes of CPB, at the end of CPB. Samples of blood were collected at these intervals: incision, start of CPB, each 30 minutes of CPB, at the end of CPB, at the end of surgery. Concentrations of cephuroxime in tissue were corrected by in vivo recoveries of the microdialysis probes. Results: Plasma concentrations of cephuroxime were 163.5 ± 40.1, 79.3 ± 17.4, 73.7 ± 16.8, 66.1 ± 18.3, 57.0 ± 10.9, 120.7 ± 29.9 (mg . L—1) and concentrations of free plasma fraction of cephuroxime were 119.5 ± 35.2, 67.8 ± 15.5, 66.0 ± 12.5, 54.8 ± 12.2, 49.6 ± 9.8, 102.6 ± 26.0 (mg . L—1). The concentrations of cephuroxime in dialysates were 44.3 ± 15.7, 36.1 ± 11.6, 31.9 ± 9.3, 34.6 ± 12.3, 27.6 ± 12.9, 56.7 ± 17.6 (mg . L—1). The mean in vivo recovery of cephuroxime in this study was 30%. Corrected concentrations (calculated by in vivo recovery) of cephuroxime in skeletal muscle were 148, 120, 106, 115, 92, 189 (mg . L—1). Conclusion: Our preliminary results show that CPB can modify the time course of cephuroxime plasma and tissue concentrations. A decrease in plasma drug concentrations occurred at the start of CPB and lasted until CPB ended. An increase in plasma concentrations corresponds to the second drug dose after CPB. The concentrations of cephuroxime in skeletal muscle (corrected by recovery) during CPB are higher than plasma concentrations. It is influenced by important changes during CPB; closely associated with hemodilution, a shift of intravascular volume, solutes and albumin to the extravascular space and inconstant protein binding of cephuroxime during operation. Perfusion (2007) 22, 129—136.
Collapse
Affiliation(s)
- J Mand'ák
- Department of Cardiac Surgery, Charles University, Faculty of Medicine and University Hospital, Hradec Kralove, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
Rottbøll LAH, Friis C. Penetration of antimicrobials to pulmonary epithelial lining fluid and muscle and impact of drug physicochemical properties determined by microdialysis. J Pharmacol Toxicol Methods 2015; 78:58-65. [PMID: 26645525 DOI: 10.1016/j.vascn.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The objectives of this study were to characterize antimicrobial drug penetration into the pulmonary epithelial lining fluid (PELF) and extracellular fluid (ECF) of muscle in relation to physicochemical properties of the drugs (molecular mass, Log D, polar surface area and charge), using intrabronchial microdialysis. The series of drugs tested include gentamicin, sulfadiazine, cefquinome, minocycline and colistin. METHODS Drug concentrations were measured during 2h of steady state plasma drug concentrations at therapeutic levels in anesthetized pigs. Microdialysis probes were positioned 2 to 4cm distal to the tracheal bifurcature and in M. gluteobiceps and were calibrated by retrodialysis by drug. RESULTS Mean AUCPELF/PLASMA(fu) and mean AUCMUSCLE/PLASMA(fu) ratios were respectively for gentamicin (0.8, 0.7), sulfadiazine (1.1, 0.7), cefquinome (1.3, 1.5) minocycline (1.6, 0.7) and colistin (0.26, 0.12). The penetration of drugs into PELF (r(2)=0.55-0.77, p=0.0004-0.0089) and ECF of muscle (r(2)=0.39-0.53, p=0.0108-0.0397) was positively correlated to Log D, whereas molecular mass, polar surface area and charge were negatively correlated to drug penetration. Sulfadiazine, gentamicin, cefquinome and colistin had similar penetration ratios into PELF and ECF of muscle, ranging from 0.12 to 1.50. DISCUSSION In conclusion, drug penetration into PELF and ECF of muscle is correlated to mass, lipophilicity, polarity and charge of the drugs. Drug partition into ECF of muscle and PELF are similar for the passively transported drugs gentamicin, sulfadiazine, cefquinome and colistin, whereas minocycline appears to be actively transported into PELF.
Collapse
Affiliation(s)
- Lisa Amanda Holm Rottbøll
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Veterinary Pharmacology and Toxicology, Denmark.
| | - Christian Friis
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Veterinary Pharmacology and Toxicology, Denmark.
| |
Collapse
|
23
|
Meropenem-clavulanic acid has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59:3630-2. [PMID: 25824227 DOI: 10.1128/aac.00171-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
We investigated the activity of meropenem-clavulanic acid (MEM-CLA) against 68 Mycobacterium tuberculosis isolates. We included predominantly multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) isolates, since the activity of MEM-CLA for resistant isolates has previously not been studied extensively. Using Middlebrook 7H10 medium, all but four isolates showed an MIC distribution of 0.125 to 2 mg/liter for MEM-CLA, below the non-species-related breakpoint for MEM of 2 mg/liter defined by EUCAST. MEM-CLA is a potential treatment option for MDR/XDR-TB.
Collapse
|
24
|
Pharmacodynamic and response surface analysis of linezolid or vancomycin combined with meropenem against Staphylococcus aureus. Pharm Res 2015; 32:2410-8. [DOI: 10.1007/s11095-015-1632-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
25
|
Varghese JM, Jarrett P, Wallis SC, Boots RJ, Kirkpatrick CMJ, Lipman J, Roberts JA. Are interstitial fluid concentrations of meropenem equivalent to plasma concentrations in critically ill patients receiving continuous renal replacement therapy? J Antimicrob Chemother 2014; 70:528-33. [PMID: 25336163 DOI: 10.1093/jac/dku413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To describe the interstitial fluid (ISF) and plasma pharmacokinetics of meropenem in patients on continuous venovenous haemodiafiltration (CVVHDF). PATIENTS AND METHODS This was a prospective observational pharmacokinetic study. Meropenem (500 mg) was administered every 8 h. CVVHDF was targeted as a 2-3 L/h exchange using a polyacrylonitrile filter with a surface area of 1.05 m2 and a blood flow rate of 200 mL/min. Serial blood (pre- and post-filter), filtrate/dialysate and ISF concentrations were measured on 2 days of treatment (Profiles A and B). Subcutaneous tissue ISF concentrations were determined using microdialysis. RESULTS A total of 384 samples were collected. During Profile A, the comparative median (IQR) ISF and plasma peak concentrations were 13.6 (12.0-16.8) and 40.7 (36.6-45.6) mg/L and the trough concentrations were 2.6 (2.4-3.4) and 4.9 (3.5-5.0) mg/L, respectively. During Profile B, the ISF trough concentrations increased by ∼40%. Meropenem ISF penetration was estimated at 63% (60%-69%) and 69% (65%-74%) for Profiles A and B, respectively, using comparative plasma and ISF AUCs. For Profile A, the plasma elimination t1/2 was 3.7 (3.3-4.0) h, the volume of distribution was 0.35 (0.25-0.46) L/kg, the total clearance was 4.1 (4.1-4.8) L/h and the CVVHDF clearance was 2.9 (2.7-3.1) L/h. CONCLUSIONS This is the first known report of concurrent plasma and ISF concentrations of a meropenem antibiotic during CVVHDF. We observed that the ISF concentrations of meropenem were significantly lower than the plasma concentrations, although the present dose was appropriate for infections caused by intermediately susceptible pathogens (MIC≤4 mg/L).
Collapse
Affiliation(s)
- Julie M Varghese
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Level 7, Block 6 Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Paul Jarrett
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Brisbane, Queensland 4029, Australia
| | - Steven C Wallis
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Level 7, Block 6 Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Robert J Boots
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Level 7, Block 6 Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Brisbane, Queensland 4029, Australia
| | - Carl M J Kirkpatrick
- Centre for Medicine Use and Safety, Monash University, 381 Royal Parade, Melbourne, Victoria 3052, Australia
| | - Jeffrey Lipman
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Level 7, Block 6 Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Brisbane, Queensland 4029, Australia
| | - Jason A Roberts
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Level 7, Block 6 Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Brisbane, Queensland 4029, Australia Pharmacy Department, Royal Brisbane and Women's Hospital, Level 1, Ned Hanlon Building, Brisbane, Queensland 4029, Australia
| |
Collapse
|
26
|
Frippiat F, Musuamba FT, Seidel L, Albert A, Denooz R, Charlier C, Van Bambeke F, Wallemacq P, Descy J, Lambermont B, Layios N, Damas P, Moutschen M. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: the PROMESSE study. J Antimicrob Chemother 2014; 70:207-16. [PMID: 25216821 DOI: 10.1093/jac/dku354] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The objective of this study was to propose an optimal treatment regimen of meropenem in critically ill patients with severe nosocomial pneumonia. PATIENTS AND METHODS Among 55 patients in intensive care treated with 1 g of meropenem every 8 h for severe nosocomial pneumonia, 30 were assigned to intermittent infusion (II; over 0.5 h) and 25 to extended infusion (EI; over 3 h) groups. Based on plasma and epithelial lining fluid (ELF) concentrations determined at steady-state, pharmacokinetic modelling and Monte Carlo simulations were undertaken to assess the probability of attaining drug concentrations above the MIC for 40%-100% of the time between doses (%T > 1-fold and 4-fold MIC), for 1 or 2 g administered by either method. RESULTS Penetration ratio, measured by the ELF/plasma ratio of AUCs, was statistically higher in the EI group than in the II group (mean ± SEM: 0.29 ± 0.030 versus 0.20 ± 0.033, P = 0.047). Considering a maximum susceptibility breakpoint of 2 mg/L, all dosages and modes of infusions achieved 40%-100% T > 1-fold MIC in plasma, but none did so in ELF, and only the 2 g dose over EI achieved 40%-100% T > 4-fold MIC in plasma. CONCLUSIONS The optimum regimen to treat severe nosocomial pneumonia was 2 g of meropenem infused over 3 h every 8 h. This regimen achieved the highest pharmacodynamic targets both in plasma and in ELF.
Collapse
Affiliation(s)
- Frédéric Frippiat
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Liège, Belgium
| | | | - Laurence Seidel
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Raphaël Denooz
- Department of Toxicology, University Hospital of Liège, Liège, Belgium
| | - Corinne Charlier
- Department of Toxicology, University Hospital of Liège, Liège, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Wallemacq
- Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Julie Descy
- Department of Microbiology, University Hospital of Liège, Liège, Belgium
| | | | - Nathalie Layios
- Intensive Care Unit, University Hospital of Liège, Liège, Belgium
| | - Pierre Damas
- Intensive Care Unit, University Hospital of Liège, Liège, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
27
|
[Tissue penetration of antibiotics. Does the treatment reach the target site?]. Med Klin Intensivmed Notfmed 2014; 109:175-81. [PMID: 24691884 DOI: 10.1007/s00063-013-0309-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND For critically ill patients, infections still imply a major challenge for the treating physician. One key factor of successful treatment is sufficient exposure of the employed antimicrobial agent at the site of infection. In most cases, this is the interstitial space of the infected organ or a body cavity; much rarer vital bacteria are located within body cells. METHODS Different methods for assessment of tissue pharmacokinetics of antimicrobial agents in the human body are described, including tissue biopsy, bronchoalveolar lavage and microdialysis, and their implication on interpretation of obtained data are discussed. Tissue pharmacokinetics of the hydrophilic beta-lactam meropenem and the lipophilic fluoroquinolone levofloxacin are compared. RESULTS Differences in pharmacokinetics between plasma and tissue, healthy volunteers and critically ill patients but also between data obtained in the same organ by different methods are discussed. CONCLUSION In order to use pharmacokinetic data to optimize the treatment of critically ill patients, critical appraisal of the causative pathogen, the location of the infection, and the source of the used pharmacokinetic data is necessary.
Collapse
|
28
|
Di Paolo A, Gori G, Tascini C, Danesi R, Del Tacca M. Clinical pharmacokinetics of antibacterials in cerebrospinal fluid. Clin Pharmacokinet 2014; 52:511-42. [PMID: 23605634 DOI: 10.1007/s40262-013-0062-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the past 20 years, an increased discrepancy between new available antibacterials and the emergence of multidrug-resistant strains has been observed. This condition concerns physicians involved in the treatment of central nervous system (CNS) infections, for which clinical and microbiological success depends on the rapid achievement of bactericidal concentrations. In order to accomplish this aim, the choice of drugs is based on their disposition toward the cerebrospinal fluid (CSF), which is influenced by the physicochemical characteristics of antibacterials. A reduced distribution into CSF has been documented for beta-lactams, especially cephalosporins and carbapenems, on the basis of their hydrophilic nature. However, they represent a cornerstone of the majority of combined therapeutic schemes for their ability to achieve bactericidal concentrations, especially in the presence of inflamed meninges. The good tolerability of beta-lactams makes possible high daily dose intensities, which may be associated with increased probability of cure. Furthermore, the adoption of continuous infusion seems to be a fruitful option. Fluoroquinolones, namely moxifloxacin, and antituberculosis drugs, together with the agents such as linezolid, reach the highest CSF/plasma concentration ratio, which is greater than 0.8, and for most of these drugs it is near 1. For all drugs that are currently used for the treatment of CNS infections, the evaluation of pharmacokinetic/pharmacodynamic parameters, on the basis of dosing regimens and their time-dependent or concentration-dependent pattern of bacterial killing, remains an important aspect of clinical investigation and medical practice.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | | | | | | |
Collapse
|
29
|
Villarino N, Brown SA, Martín-Jiménez T. Understanding the pharmacokinetics of tulathromycin: a pulmonary perspective. J Vet Pharmacol Ther 2013; 37:211-21. [DOI: 10.1111/jvp.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/28/2013] [Indexed: 11/30/2022]
Affiliation(s)
- N. Villarino
- Department of Microbiology; College of Arts and Sciences; University of Tennessee; Knoxville TN USA
| | | | - T. Martín-Jiménez
- Department of Biomedical and Diagnostic Sciences; College of Veterinary Medicine; University of Tennessee; Knoxville TN USA
| |
Collapse
|
30
|
Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev 2013; 26:274-88. [PMID: 23554417 DOI: 10.1128/cmr.00092-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the optimization of dosing regimens of anti-infective agents, it is imperative to have a good understanding of pharmacokinetics (PK) and pharmacodynamics (PD). Whenever possible, drug efficacy needs to be related to unbound concentrations at the site of action. For anti-infective drugs, the infection site is typically located outside plasma, and a drug must diffuse through capillary membranes to reach its target. Disease- and drug-related factors can contribute to differential tissue distribution. As a result, the assumption that the plasma concentration of drugs represents a suitable surrogate of tissue concentrations may lead to erroneous conclusions. Quantifying drug exposure in tissues represents an opportunity to relate the pharmacologically active concentrations to an observed pharmacodynamic parameter, such as the MIC. Selection of an appropriate specimen to sample and the advantages and limitations of the available sampling techniques require careful consideration. Ultimately, the goal will be to assess the appropriateness of a drug and dosing regimen for a specific pathogen and infection.
Collapse
|
31
|
Neutralization of antimicrobial substances in new BacT/Alert FA and FN Plus blood culture bottles. J Clin Microbiol 2013; 51:1534-40. [PMID: 23486710 DOI: 10.1128/jcm.00103-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Time to detection (TTD) in automated blood culture systems is delayed for sensitive microorganisms in the presence of antimicrobial substances and has been associated with worse outcomes for sepsis patients on inadequate empirical therapy. While resin addition removes antimicrobial substances to various degrees from blood culture media, media formulations and the blend of resins may influence performance. The BacT/Alert 3D system (bioMérieux) was investigated using the new resin-containing medium types FA Plus (aerobic) and FN Plus (anaerobic). TTD was compared between control and test bottles containing relevant bacteria or Candida albicans, with and without defined concentrations of antimicrobials. Failure of neutralization was defined as a negative blood culture on day 3. In general, growth delay was nonlinear, concentration dependent, bottle type specific, and reciprocally associated with MICs. Substance-specific serum drug concentrations corresponding to a predefined, clinically relevant 3-h delay of TTD were calculated. Where appropriate, a time interval allowing for drug elimination below this critical level was obtained by pharmacokinetic modeling. Clarithromycin, clindamycin, gentamicin, linezolid, tigecycline, vancomycin, and fluconazole were neutralized. For ciprofloxacin and piperacillin-tazobactam, which were only incompletely neutralized in combination with the most sensitive test strains, a maximum waiting time for blood draw of 1 h was determined based on pharmacokinetics. One or more test strains did not grow in bottles containing either amoxicillin-clavulanate, cefepime, cefotaxime, meropenem, or metronidazole, and we thus recommend particular caution in timing of blood draws if patients have been pretreated with these agents.
Collapse
|
32
|
Schmidt S, Banks R, Kumar V, Rand KH, Derendorf H. Clinical Microdialysis in Skin and Soft Tissues: An Update. J Clin Pharmacol 2013; 48:351-64. [DOI: 10.1177/0091270007312152] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Villarino N, Lesman S, Fielder A, García-Tapia D, Cox S, Lucas M, Robinson J, Brown SA, Martín-Jiménez T. Pulmonary pharmacokinetics of tulathromycin in swine. Part 2: Intra-airways compartments. J Vet Pharmacol Ther 2012; 36:340-9. [DOI: 10.1111/jvp.12015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 08/17/2012] [Indexed: 11/26/2022]
Affiliation(s)
- N. Villarino
- Department of Microbiology; The University of Tennessee; Knoxville TN USA
| | - S. Lesman
- Pfizer Animal Health; Kalamazoo MI USA
| | | | | | - S. Cox
- Pfizer Animal Health; Kalamazoo MI USA
| | - M. Lucas
- Pfizer Animal Health; Kalamazoo MI USA
| | | | | | - T. Martín-Jiménez
- Department of Biomedical and Diagnostic Sciences; College of Veterinary Medicine; University of Tennessee; Knoxville TN USA
| |
Collapse
|
34
|
Jeng MJ, Soong WJ, Chiou SY, Wu YT, Tsai TH, Lin CC, Yang CF, Tsao PC, Lee YS. Efficacy of intratracheal instillation of a meropenem/perfluorochemical suspension in acute lung injury. Pediatr Pulmonol 2012; 47:189-98. [PMID: 21815284 DOI: 10.1002/ppul.21523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/16/2011] [Indexed: 11/08/2022]
Abstract
Perfluorochemical (PFC) is theoretically a good vehicle for delivering biological agents to the lungs. This study was designed to investigate the efficacy of intratracheal (IT) instillation of meropenem using PFC liquid as a vehicle in a piglet model of acute lung injury (ALI). Eighteen piglets were injured with lung lavages to induce ALI, and randomly assigned to intravenous (IV) infusion or IT instillation groups, the latter using either PFC or normal saline (NS) as a delivery vehicle for meropenem. Blood samples were obtained at 0, 15, 30, and 60 min, and then hourly for 6 hr. Sera and extracts of lung tissues were assayed for meropenem content using high-performance liquid chromatography. We found that the IV group had significantly higher serum concentrations of meropenem during the first hour after dosing (P < 0.05). There was no significant difference between IT-PFC and IT-NS groups regarding changes in serum meropenem concentrations during the experimental period. Meropenem content in lung tissue was highest in the IT-PFC group, lower in the IT-NS group, and undetectable in the IV group (P < 0.05). The IT-NS group had the highest peak inspiratory pressure (P < 0.05), but there were no significant differences in other cardiopulmonary parameters among the three groups studied. In conclusion, meropenem can be safely administered to injured lungs by IT instillation in a meropenem/PFC suspension. Using PFC liquid as an IT vehicle to carry meropenem provides better pulmonary drug depositions than IV injection or IT instillation with NS in ALI.
Collapse
Affiliation(s)
- Mei-Jy Jeng
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Clinical practice guidelines for hospital-acquired pneumonia and ventilator-associated pneumonia in adults. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2011; 19:19-53. [PMID: 19145262 DOI: 10.1155/2008/593289] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/19/2007] [Indexed: 02/07/2023]
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) are important causes of morbidity and mortality, with mortality rates approaching 62%. HAP and VAP are the second most common cause of nosocomial infection overall, but are the most common cause documented in the intensive care unit setting. In addition, HAP and VAP produce the highest mortality associated with nosocomial infection. As a result, evidence-based guidelines were prepared detailing the epidemiology, microbial etiology, risk factors and clinical manifestations of HAP and VAP. Furthermore, an approach based on the available data, expert opinion and current practice for the provision of care within the Canadian health care system was used to determine risk stratification schemas to enable appropriate diagnosis, antimicrobial management and nonantimicrobial management of HAP and VAP. Finally, prevention and risk-reduction strategies to reduce the risk of acquiring these infections were collated. Future initiatives to enhance more rapid diagnosis and to effect better treatment for resistant pathogens are necessary to reduce morbidity and improve survival.
Collapse
|
36
|
de Araujo BV, Diniz A, Palma EC, Buffé C, Dalla Costa T. PK-PD modeling of β-lactam antibiotics: in vitro or in vivo models? J Antibiot (Tokyo) 2011; 64:439-46. [PMID: 21505469 DOI: 10.1038/ja.2011.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A modified E(max)-pharmacokinetic-pharmacodynamic (PK-PD) model was previously proposed in literature for describing the antimicrobial activity of β-lactam antibiotics based on in vitro experiments. However, bacteria behave differently in vitro and in vivo. Thus, the aims of this study were to model the killing effect of piperacillin (PIP) against Escherichia coli on immunocompromised infected rats using this model and to compare the parameters obtained in vitro and in vivo for the same bacteria/drug combination. The PK-PD parameters determined in vitro and in vivo were as follows: generation rate constant of 1.30 ± 0.10 and 0.76 ± 0.20 h(-1), maximum killing effect of 3.11 ± 0.27 and 1.38 ± 0.20 h(-1) and concentration to produce 50% of the maximum effect of 5.44 ± 0.03 and 1.31 ± 0.27 μg ml(-1), respectively. The comparison between the in vitro and in vivo parameters was not straightforward and had to take into consideration the intrinsic differences of the models involved. So far, the main application of the PK-PD model evaluated is for the comparison of different antimicrobial agent's potency and efficacy, under equivalent conditions.
Collapse
Affiliation(s)
- Bibiana Verlindo de Araujo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, Brasil. bibiana.araujo@.ufrgs.br
| | | | | | | | | |
Collapse
|
37
|
Mauric O, Thallinger C, Kugler SA, Joukhadar SM, Kovar FM, Konz KH, Graninger W, Joukhadar C. The ability of fluconazole to penetrate into ventilated, healthy and inflamed lung tissue in a model of severe sepsis in rats. Pharmacology 2011; 87:130-4. [PMID: 21502769 DOI: 10.1159/000323738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/13/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS We measured the extracellular concentrations of fluconazole in lung tissue of septic and healthy rats. METHODS A single intravenous dose of 6 mg/kg total body weight of fluconazole was administered intravenously to rats following insertion of microdialysis probes into lung tissue. Another probe was inserted into skeletal muscle and served as control. RESULTS The mean peak concentration (C(max)), time to C(max), area under the concentration-versus-time curve from 0 to 6 h (fAUC(0-6)) and area under the concentration-versus-time curve from 0 to ∞ of unbound fluconazole for healthy lung were 11.0 ± 2.3 mg/l, 1.9 ± 1.5 h, 47.4 ± 8.6 mg·h/l and 233.7 ± 121.1 mg·h/l, respectively. The corresponding values for inflamed lung were 11.8 ± 1.7 mg/l, 1.5 ± 0.0 h, 52.9 ± 6.2 mg·h/l and 212.6 ± 79.7 mg·h/l, respectively. The mean apparent terminal elimination half-lives of fluconazole ranged from 12.3 to 22.4 h between compartments. The ratios of the fAUC(0-6) for lung to the fAUC(0-6) for plasma were 1.38 ± 0.39 and 1.32 ± 0.04 for healthy and inflamed lung, respectively. CONCLUSION We provide evidence that free fluconazole levels in plasma, the extracellular space fluid of lung tissue and skeletal muscle are almost superimposable during inflammatory and normal conditions.
Collapse
Affiliation(s)
- Oliver Mauric
- J&P Medical Research Ltd., Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Forbes B, Asgharian B, Dailey LA, Ferguson D, Gerde P, Gumbleton M, Gustavsson L, Hardy C, Hassall D, Jones R, Lock R, Maas J, McGovern T, Pitcairn GR, Somers G, Wolff RK. Challenges in inhaled product development and opportunities for open innovation. Adv Drug Deliv Rev 2011; 63:69-87. [PMID: 21144875 DOI: 10.1016/j.addr.2010.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 11/26/2022]
Abstract
Dosimetry, safety and the efficacy of drugs in the lungs are critical factors in the development of inhaled medicines. This article considers the challenges in each of these areas with reference to current industry practices for developing inhaled products, and suggests collaborative scientific approaches to address these challenges. The portfolio of molecules requiring delivery by inhalation has expanded rapidly to include novel drugs for lung disease, combination therapies, biopharmaceuticals and candidates for systemic delivery via the lung. For these drugs to be developed as inhaled medicines, a better understanding of their fate in the lungs and how this might be modified is required. Harmonized approaches based on 'best practice' are advocated for dosimetry and safety studies; this would provide coherent data to help product developers and regulatory agencies differentiate new inhaled drug products. To date, there are limited reports describing full temporal relationships between pharmacokinetic (PK) and pharmacodynamic (PD) measurements. A better understanding of pulmonary PK and PK/PD relationships would help mitigate the risk of not engaging successfully or persistently with the drug target as well as identifying the potential for drug accumulation in the lung or excessive systemic exposure. Recommendations are made for (i) better industry-academia-regulatory co-operation, (ii) sharing of pre-competitive data, and (iii) open innovation through collaborative research in key topics such as lung deposition, drug solubility and dissolution in lung fluid, adaptive responses in safety studies, biomarker development and validation, the role of transporters in pulmonary drug disposition, target localisation within the lung and the determinants of local efficacy following inhaled drug administration.
Collapse
|
39
|
Lindenmann J, Kugler SA, Matzi V, Porubsky C, Maier A, Dittrich P, Graninger W, Smolle-Jüttner FM, Joukhadar C. High extracellular levels of cefpirome in unaffected and infected lung tissue of patients. J Antimicrob Chemother 2011; 66:160-4. [PMID: 21081546 DOI: 10.1093/jac/dkq413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES the objective of the present investigation was to measure the extracellular concentrations of cefpirome in unaffected and infected lung tissue of septic patients. METHODS a single intravenous dose of 30 mg/kg total body weight of cefpirome was administered to eight patients every 12 h prior to insertion of microdialysis probes into lung tissue. RESULTS the median (minimum, maximum) peak concentration (C(max)), time to C(max) (T(max)), area under the concentration-time curve from 0 to 4 h (AUC(0-4)) and AUC(0-∞) of unbound cefpirome for unaffected lung were 48 (32, 107) mg/L, 0.83 (0.17, 3.17) h, 117 (60, 177) mg · h/L and 182 (80, 382) mg · h/L, respectively. The corresponding values for infected lung tissue were 45 (6, 122) mg/L, 1.17 (0.83, 2.83) h, 92 (17, 253) mg · h/L and 206 (49, 379) mg · h/L, respectively. The median apparent terminal elimination half-lives (t(½z)) of cefpirome were 2.61, 3.05 and 3.39 h for plasma, unaffected lung and infected lung, respectively. The median ratios of the AUC(0)(-∞) for lung to the AUC(0)(-∞) for plasma were 0.63 (0.19, 1.55) and 0.46 (0.32, 0.98) for unaffected and infected lung, respectively. CONCLUSIONS we provide strong evidence that cefpirome penetrates effectively into the extracellular space fluid of lung tissue. Under steady-state conditions, the median concentrations of cefpirome in plasma, unaffected lung and infected lung exceeded the MICs of the majority of relevant bacteria over the entire dosing interval of up to 12 h after intravenous administration of a dose of 30 mg/kg total body weight.
Collapse
Affiliation(s)
- Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Blakeley J, Portnow J. Microdialysis for assessing intratumoral drug disposition in brain cancers: a tool for rational drug development. Expert Opin Drug Metab Toxicol 2010; 6:1477-91. [PMID: 20969450 DOI: 10.1517/17425255.2010.523420] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD many promising targeted agents and combination therapies are being investigated for brain cancer. However, the results from recent clinical trials have been disappointing. A better understanding of the disposition of drug in the brain early in drug development would facilitate appropriate channeling of new drugs into brain cancer clinical trials. AREAS COVERED IN THIS REVIEW barriers to successful drug activity against brain cancer and issues affecting intratumoral drug concentrations are reviewed. The use of the microdialysis technique for extracellular fluid (ECF) sampling and its application to drug distribution studies in brain are reviewed using published literature from 1995 to the present. The benefits and limitations of microdialysis for performing neuorpharmacokinetic (nPK) and neuropharmacodynamic (nPD) studies are discussed. WHAT THE READER WILL GAIN the reader will gain an appreciation of the challenges involved in identifying agents likely to have efficacy in brain cancer, an understanding of the general principles of microdialysis, and the power and limitations of using this technique in early drug development for brain cancer therapies. TAKE HOME MESSAGE a major factor preventing efficacy of anti-brain cancer drugs is limited access to tumor. Intracerebral microdialysis allows sampling of drug in the brain ECF. The resulting nPK/nPD data can aid in the rational selection of drugs for investigation in brain tumor clinical trials.
Collapse
Affiliation(s)
- Jaishri Blakeley
- Johns Hopkins University, Neurosurgery and Oncology, Baltimore, MD 21231, USA.
| | | |
Collapse
|
41
|
Dhanani J, Roberts JA, Chew M, Lipman J, Boots RJ, Paterson DL, Fraser JF. Antimicrobial chemotherapy and lung microdialysis: a review. Int J Antimicrob Agents 2010; 36:491-500. [PMID: 20952164 DOI: 10.1016/j.ijantimicag.2010.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Pneumonia is a form of lung infection that may be caused by various micro-organisms. The predominant site of infection in pneumonia is debatable. Advances in the fields of diagnostic and therapeutic medicine have had a less than optimal effect on the outcome of pneumonia and one of the many causes is likely to be inadequate antimicrobial concentrations at the site of infection in lung tissue. Traditional antimicrobial therapy guidelines are based on indirect modelling from blood antimicrobial levels. However, studies both in humans and animals have shown the fallacy of this concept in various tissues. Many different methods have been employed to study lung tissue antimicrobial levels with limited success, and each has limitations that diminish their utility. An emerging technique being used to study the pharmacokinetics of antimicrobial agents in lung tissue is microdialysis. Development of microdialysis catheters, along with improvement in analytical techniques, has improved the accuracy of the data. Unfortunately, very few studies have reported the use of microdialysis in lung tissue, and even fewer antimicrobial classes have been studied. These studies generally suggest that this technique is a safe and effective way of assessing the pharmacokinetics of antimicrobial agents in lung tissue. Further descriptive studies need to be conducted to study the pharmacokinetics and pharmacodynamics of different antimicrobial classes in lung tissue. Data emanating from these studies could inform decisions for appropriate dosing schedules of antimicrobial agents in pneumonia.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Barbour A, Scaglione F, Derendorf H. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. Int J Antimicrob Agents 2010; 35:431-8. [PMID: 20219329 DOI: 10.1016/j.ijantimicag.2010.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
The pharmacokinetic/pharmacodynamic (PK/PD) indices useful for predicting antimicrobial clinical efficacy are well established. The most common indices include the time free drug concentration in plasma is above the minimum inhibitory concentration (MIC) (fT(>MIC)) expressed as a percent of the dosing interval, the ratio of maximum concentration to MIC (C(max)/MIC), and the ratio of the area under the 24-h concentration-time curve to MIC (AUC(0-24)/MIC). A single PK/PD index may correlate well with an entire antimicrobial class. For example, the beta-lactams correlate well with the fT(>MIC). However, other classes may be more complex and a single index cannot be generalised to the class, e.g. the macrolides. The rationale behind which PK/PD index best correlates with efficacy depends on several factors, including the mechanism of action, the microbial kill kinetics, the degree of protein binding and the degree of tissue distribution. Studies have traditionally emphasised the first two factors, whilst the significance of protein binding and tissue distribution is increasingly appreciated. In fact, the latter two factors may partially elucidate why the magnitude of reported target indices are not always as expected. For example, tigecycline and telithromycin are clinically efficacious with average serum concentrations below their MICs over a 24-h period. Therefore, to understand more fully the PK/PD relationship of antibiotics and to better predict the clinical efficacy of antibiotic dosing regimens, assessment of free drug concentrations at the site of action is warranted.
Collapse
|
43
|
Inoue S, Watanuki Y, Miyazawa N, Kudo M, Sato T, Kobayashi N, Mishina K, Sasaki M, Kaneko T, Ishigatsubo Y. High frequency of β-lactamase-negative, ampicillin-resistant strains of Haemophilus influenzae in patients with chronic bronchitis in Japan. J Infect Chemother 2010; 16:72-5. [DOI: 10.1007/s10156-009-0020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
|
44
|
|
45
|
Piperacillin penetration into tissue of critically ill patients with sepsis--bolus versus continuous administration? Crit Care Med 2009; 37:926-33. [PMID: 19237898 DOI: 10.1097/ccm.0b013e3181968e44] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To describe a pharmacokinetic model of piperacillin concentrations in plasma and subcutaneous tissue when administered by bolus dosing and continuous infusion in critically ill patients with sepsis on days 1 and 2 of antibiotic therapy and to compare results against previous results for piperacillin from a cohort of patients with septic shock. DESIGN Prospective randomized controlled trial. SETTING Eighteen-bed intensive care unit at 918-bed tertiary referral hospital. PATIENTS Thirteen critically ill adult patients with known or suspected sepsis in whom the treating physician deemed piperacillin-tazobactam appropriate therapy were conveniently sampled. INTERVENTIONS Patients were randomized to receive different daily doses of piperacillin-tazobactam by bolus dosing or continuous infusion (continuous infusion--six patients; bolus dosing--seven patients). Serial plasma and tissue concentrations were determined on days 1 and 2 of treatment. Tissue concentrations of piperacillin were determined using a subcutaneously inserted microdialysis catheter. Separate pharmacokinetic models were developed for both bolus and continuous dosing. MEASUREMENTS AND MAIN RESULTS This is the first known article to report concurrent plasma and subcutaneous tissue concentrations of a beta-lactam antibiotic administered by bolus and continuous dosing in critically ill patients with sepsis. With a 25% lower piperacillin dose administered to the continuous infusion group, the infusion group had statistically significantly higher median plasma concentrations than the bolus group on day 2 (16.6 vs. 4.9 mg/L; p = 0.007). There was a trend to higher median plasma concentrations on day 1 in the bolus dosing group (8.9 vs. 4.9 mg/L; p = 0.078). Median tissue concentrations were not statistically different on day 1 (infusion group 2.4 mg/L vs. bolus group 2.2 mg/L; p = 0.48) and day 2 (infusion group 5.2 mg/L vs. bolus group 0.8 mg/L; p = 0.45). A two-compartment pharmacokinetic model was found to describe the data best. Tissue pharmacodynamic targets were achieved more successfully with infusion dosing. CONCLUSIONS Patients with sepsis do not seem to have the same level of impairment of tissue distribution as described for patients with septic shock. A 25% lower dose of piperacillin administered by continuous infusion seems to maintain higher trough concentrations compared with standard bolus dosing. It is likely that the clinical advantages of continuous infusion are most likely to be evident when treating pathogens with high minimum inhibitory concentration, although without therapeutic drug monitoring and subsequent dose adjustment, infusions may never achieve target concentrations of organisms with very high minimum inhibitory concentrations in a small number of patients.
Collapse
|
46
|
de Araujo BV, da Silva CF, Haas SE, Dalla Costa T. Free renal levels of voriconazole determined by microdialysis in healthy and Candida sp.-infected Wistar rats. Int J Antimicrob Agents 2008; 33:154-9. [PMID: 19010646 DOI: 10.1016/j.ijantimicag.2008.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 06/05/2008] [Accepted: 08/08/2008] [Indexed: 11/18/2022]
Abstract
The aims of this study were to evaluate free levels of voriconazole (VCZ) in the kidney of healthy and Candida albicans- or Candida krusei-infected Wistar rats using microdialysis and to establish the relationship between free renal and free plasma levels in both conditions. VCZ (40mg/kg or 60mg/kg) was administered orally (n=6 per group) and blood and microdialysate samples were collected at predetermined time points up to 18h. The mean area under the total concentration-time curve (AUC(0-infinity)) in healthy animals increased from 44.2+/-7.3microg/h/mL to 78.8+/-4.0microg/h/mL for plasma and from 15.1+/-2.4microg/h/mL to 27.9+/-2.6microg/h/mL for tissue after 40mg/kg and 60mg/kg VCZ dosing, respectively, showing non-linear pharmacokinetics described by a one-compartment model with Michaelis-Menten elimination. There were no statistical differences between the AUC(0-infinity) of plasma and tissue for either healthy or infected groups for the same dose. The antifungal tissue penetration was similar for both doses and all conditions investigated (0.34+/-0.06). VCZ protein binding was concentration-independent and was on average 66.0+/-4.0%, allowing the prediction of free renal levels using pharmacokinetic parameters obtained from total plasma fitting. The results showed that VCZ free renal and free plasma levels are similar in healthy rats and in rats with disseminated candidiasis caused by C. albicans or C. krusei. Therefore, plasma free levels can be used to optimise dosing regimens for this drug.
Collapse
Affiliation(s)
- Bibiana Verlindo de Araujo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | |
Collapse
|
47
|
Pojar M, Mandak J, Malakova J, Jokesova I. TISSUE AND PLASMA CONCENTRATIONS OF ANTIBIOTIC DURING CARDIAC SURGERY WITH CARDIOPULMONARY BYPASS - MICRODIALYSIS STUDY. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:139-45. [DOI: 10.5507/bp.2008.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Tasso L, Bettoni CC, Oliveira LK, Costa TD. Evaluation of gatifloxacin penetration into skeletal muscle and lung by microdialysis in rats. Int J Pharm 2008; 358:96-101. [DOI: 10.1016/j.ijpharm.2008.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 11/25/2022]
|
49
|
The impact of perioperative atelectasis on antibiotic penetration into lung tissue: an in vivo microdialysis study. Intensive Care Med 2008; 34:1827-34. [DOI: 10.1007/s00134-008-1122-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
50
|
|