1
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Contreras-Gómez MJ, Martinez JRW, Rivas L, Riquelme-Neira R, Ugalde JA, Wozniak A, García P, Munita JM, Olivares-Pacheco J, Alcalde-Rico M. Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. Front Pharmacol 2022; 13:1007162. [PMID: 36263116 PMCID: PMC9574371 DOI: 10.3389/fphar.2022.1007162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the pathogens that urgently needs new drugs and new alternatives for its control. The primary strategy to combat this bacterium is combining treatments of beta-lactam with a beta-lactamase inhibitor. The most used combinations against P. aeruginosa are ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T). Although mechanisms leading to CZA and C/T resistance have already been described, among which are the resistance-nodulation-division (RND) efflux pumps, the role that these extrusion systems may play in CZA, and C/T baseline susceptibility of clinical isolates remains unknown. For this purpose, 161 isolates of non-carbapenemase-producing (Non-CP) CRPA were selected, and susceptibility tests to CZA and C/T were performed in the presence and absence of the RND efflux pumps inhibitor, Phenylalanine-arginine β-naphthylamide (PAβN). In the absence of PAβN, C/T showed markedly higher activity against Non-CP-CRPA isolates than observed for CZA. These results were even more evident in isolates classified as extremely-drug resistant (XDR) or with difficult-to-treat resistance (DTR), where CZA decreased its activity up to 55.2% and 20.0%, respectively, whereas C/T did it up to 82.8% (XDR), and 73.3% (DTR). The presence of PAβN showed an increase in both CZA (37.6%) and C/T (44.6%) activity, and 25.5% of Non-CP-CRPA isolates increased their susceptibility to these two combined antibiotics. However, statistical analysis showed that only the C/T susceptibility of Non-CP-CRPA isolates was significantly increased. Although the contribution of RND activity to CZA and C/T baseline susceptibility was generally low (two-fold decrease of minimal inhibitory concentrations [MIC]), a more evident contribution was observed in a non-minor proportion of the Non-CP-CRPA isolates affected by PAβN [CZA: 25.4% (15/59); C/T: 30% (21/70)]. These isolates presented significantly higher MIC values for C/T. Therefore, we conclude that RND efflux pumps are participating in the phenomenon of baseline susceptibility to CZA and, even more, to C/T. However, the genomic diversity of clinical isolates is so great that deeper analyzes are necessary to determine which elements are directly involved in this phenomenon.
Collapse
Affiliation(s)
- María José Contreras-Gómez
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José R. W. Martinez
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Aniela Wozniak
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - José M. Munita
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Manuel Alcalde-Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| |
Collapse
|
3
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
4
|
Zhang Y, Rosado-Lugo JD, Datta P, Sun Y, Cao Y, Banerjee A, Yuan Y, Parhi AK. Evaluation of a Conformationally Constrained Indole Carboxamide as a Potential Efflux Pump Inhibitor in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:716. [PMID: 35740123 PMCID: PMC9220351 DOI: 10.3390/antibiotics11060716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P. aeruginosa. At 6.25 µg/mL, TXA09155, showed ≥8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ajit K. Parhi
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, NJ 08852, USA; (Y.Z.); (J.D.R.-L.); (P.D.); (Y.S.); (Y.C.); (A.B.); (Y.Y.)
| |
Collapse
|
5
|
Zheng X, Zhang X, Zhou B, Liu S, Chen W, Chen L, Zhang Y, Liao W, Zeng W, Wu Q, Xu C, Zhou T. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int J Antimicrob Agents 2022; 60:106605. [DOI: 10.1016/j.ijantimicag.2022.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/05/2022]
|
6
|
Bhandari S, Adhikari S, Karki D, Chand AB, Sapkota S, Dhungel B, Banjara MR, Joshi P, Lekhak B, Rijal KR. Antibiotic Resistance, Biofilm Formation and Detection of mexA/mexB Efflux-Pump Genes Among Clinical Isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.810863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efflux-pump system and biofilm formation are two important mechanisms Pseudomonas aeruginosa deploys to escape the effects of antibiotics. The current study was undertaken from September 2019 to March 2020 at a tertiary-care hospital in Kathmandu in order to ascertain the burden of P. aeruginosa in clinical specimens, examine their biofilm-forming ability and determine their antibiotic susceptibility pattern along with the possession of two efflux-pump genes-mexA and mexB. Altogether 2820 clinical specimens were collected aseptically from the patients attending the hospital and processed according to standard microbiological procedures. Identification of P. aeruginosa was done by Gram stain microscopy and an array of biochemical tests. All the P. aeruginosa isolates were subjected to in vitro antibiotic susceptibility testing and their biofilm-forming ability was also examined. Presence of mexA and mexB efflux-pump genes was analyzed by Polymerase Chain Reaction (PCR) using specific primers. Out of 603 culture positive isolates, 31 (5.14%) were found to be P. aeruginosa, of which 55% were multi-drug resistant (MDR). Out of 13 commonly used antibiotics tested by Kirby-Bauer disc diffusion method, greatest resistance was shown against piperacillin-tazobactam 15 (48.4%) and ceftazidime 15 (48.4%), and least against meropenem 6 (19.4%) and ofloxacin 5 (16.2%). Of all 17 MDR isolates subjected to biofilm detection, strong biofilm formation was exhibited by 11 (65%) and 14 (82%) isolates with microtiter plate method and tube method respectively. Out of 17 isolates tested, 12 (70.6%) isolates possessed mexA and mexB genes indicating the presence of active efflux-pump system. Higher number of the isolates recovered from sputum 7 (58.3%) and pus 5 (41.7%) possessed mexA/mexB genes while the genes were not detected at all in the isolates recovered from the urine (p<0.05). This study assessed no significant association between biofilm production and multi-drug resistance (p>0.05). Adoption of stern measures by the concerned authorities to curb the incidence of multi-drug resistant and biofilm-forming isolates is recommended to prevent their dissemination in the hospital settings.
Collapse
|
7
|
The Mycobacterial Efflux Pump EfpA Can Induce High Drug Tolerance to Many Antituberculosis Drugs, Including Moxifloxacin, in Mycobacterium smegmatis. Antimicrob Agents Chemother 2021; 65:e0026221. [PMID: 34424047 DOI: 10.1128/aac.00262-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active efflux of drugs across the membrane is a major survival strategy of bacteria against many drugs. In this work, we characterize an efflux pump, EfpA, from the major facilitator superfamily, that is highly conserved among both slow-growing and fast-growing Mycobacterium species and has been found to be upregulated in many clinical isolates of Mycobacterium tuberculosis. The gene encoding EfpA from Mycobacterium smegmatis was overexpressed under the control of both a constitutive and an inducible promoter. The expression of the efpA gene under the control of both promoters resulted in >32-fold-increased drug tolerance of M. smegmatis cells to many first-line (rifampicin, isoniazid, and streptomycin) and second-line (amikacin) antituberculosis drugs. Notably, the drug tolerance of M. smegmatis cells to moxifloxacin increased by more than 180-fold when efpA was overexpressed. The increase in MICs correlated with the decreased uptake of drugs, including norfloxacin, moxifloxacin, and ethidium bromide, and the high MIC could be reversed in the presence of an efflux pump inhibitor. A correlation was observed between the MICs of drugs and the efflux pump expression level, suggesting that the latter could be modulated by varying the expression level of the efflux pump. The expression of high levels of efpA did not impact the fitness of the cells when supplemented with glucose. The efpA gene is conserved across both pathogenic and nonpathogenic mycobacteria. The efpA gene from Mycobacterium bovis BCG/M. tuberculosis, which is 80% identical to efpA from M. smegmatis, also led to decreased antimicrobial efficacy of many drugs, although the fold change was lower. When overexpressed in M. bovis BCG, 8-fold-higher drug tolerance to moxifloxacin was observed. This is the first report of an efflux pump from Mycobacterium species that leads to higher drug tolerance to moxifloxacin, a promising new drug for the treatment of tuberculosis.
Collapse
|
8
|
Ashwath P, Sannejal AD. The Action of Efflux Pump Genes in Conferring Drug Resistance to Klebsiella Species and Their Inhibition. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1731914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractNosocomial infections caused by Klebsiella species are characterized by high rates of morbidity and mortality. The emergence of the multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative bacteria reduces the antibiotic efficacy in the treatment of infections caused by the microorganisms. Management of these infections is often difficult, due to the high frequency of strains resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. Efflux systems are significant in conferring intrinsic and acquired resistance to the bacteria. The emergence of increasing drug resistance among Klebsiella pneumoniae nosocomial isolates has limited the therapeutic options for treatment of these infections and hence there is a constant quest for an alternative. In this review, we discuss various resistance mechanisms, focusing on efflux pumps and related genes in conferring resistance to Klebsiella. The role of various efflux pump inhibitors (EPIs) in restoring the antibacterial activity has also been discussed. In specific, antisense oligonucleotides as alternative therapeutics in combatting efflux-mediated resistance in Klebsiella species have focused upon.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
| | - Akhila Dharnappa Sannejal
- Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
| |
Collapse
|
9
|
|
10
|
Guz-Regner K, Komarnicka UK, Futoma-Kołoch B, Wernecki M, Cal M, Kozieł S, Ziółkowska A, Bugla-Płoskońska G. Antibacterial activity and action mode of Cu(I) and Cu(II) complexes with phosphines derived from fluoroquinolone against clinical and multidrug-resistant bacterial strains. J Inorg Biochem 2020; 210:111124. [PMID: 32534287 DOI: 10.1016/j.jinorgbio.2020.111124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Biological activity against reference and multi-drug resistant (MDR) clinical strains of fluoroquinolones (FQs): ciprofloxacin (HCp), norfloxacin (HNr), lomefloxacin (HLm) and sparfloxacin (HSf), phosphine ligands derived from those antibiotics and 14 phosphino copper(I) and copper(II) complexes with 2,9-dimethyl-1,10-phenanthroline, 1,10-phenanthroline or 2,2'-biquinoline have been determined. Almost all phosphines showed excellent antibacterial activity relative to reference strains (S. aureus ATCC 6538, E. coli ATCC 25922, K. pneumoniae ATCC 4352, and P. aeruginosa ATCC 27853). In rare cases P. aeruginosa rods showed natural insensitivity to oxides, and their copper(II) complexes. Most of the studied compounds showed weak antibacterial activity against clinical multi-drug resistant strains (MDR P. aeruginosa 16, 46, 325, 355, MRD A. baumanii 483 and MDR S. aureus 177). However, phosphines Ph2PCH2Sf (PSf), Ph2PCH2Lm (PLm) and their copper(I) complexes were characterized by the best antibacterial activity. In addition, PSf compounds, in which the activities relative to P. aeruginosa MDRs were relatively diverse, paid particular attention in our studies. Genetic and phenotypic studies of these strains showed significant differences between the strains, indicating different profiles of FQs resistance mechanisms. This may prove that a change in the spatial conformation of the PSf derivatives relative to the native form of HSf increased its affinity for the target site of action in gyrase, leading to selective inhibition of the multiplication of MDR strains. In conclusion, differences in PSf activity within closely related P. aeruginosa strains may indicate its diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Katarzyna Guz-Regner
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | | | - Bożena Futoma-Kołoch
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland.
| | - Maciej Wernecki
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Magdalena Cal
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| |
Collapse
|
11
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
12
|
Song JJ, Lee BD, Lee KH, Lee JD, Park YJ, Park MK. Changes in Antibiotic Resistance in Recurrent Pseudomonas Aeruginosa Infections of Chronic Suppurative Otitis Media. EAR, NOSE & THROAT JOURNAL 2020. [DOI: 10.1177/0145561316095010-1107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study investigated the changes in antibiotic resistance in recurrent Pseudomonas aeruginosa infections in chronic suppurative otitis media (CSOM). Its aim was to provide a treatment strategy for P aeruginosa infections in CSOM for the prevention of multidrug resistance. A case-control study was conducted in tertiary teaching hospitals in Korea. The experimental group included patients with recurrent P aeruginosa infection who had relapsed within 2 months after the successful control of a previous P aeruginosa infection. The control group consisted of patients with a P aeruginosa infection who had no history of such an infection. An antibiotic sensitivity test was performed for each culture. The proportion of recurrent P aeruginosa infection was 22.69% (98 of 432 cases). Drug resistance to amikacin, tobramycin, netilmicin, ciprofloxacin, and levofloxacin was significantly changed after recurrent infection. The fluoroquinolone strains seen in recurrent P aeruginosa showed high cross-resistance to other drugs. Antibiotic resistance of P aeruginosa in CSOM changed with recurrent infection.
Collapse
Affiliation(s)
- Jae-Jun Song
- Department of Otorhinolaryngology–Head and
Neck Surgery, Korea University Guro Hospital
| | - Byung Don Lee
- Department of Otolaryngology–Head and Neck
Surgery, Soonchunhyang University College of Medicine
| | - Koen Hyeong Lee
- Department of Otolaryngology–Head and Neck
Surgery, Soonchunhyang University College of Medicine
| | - Jong Dae Lee
- Department of Otolaryngology–Head and Neck
Surgery, Soonchunhyang University College of Medicine
| | - Young Joo Park
- Department of Otolaryngology–Head and Neck
Surgery, Soonchunhyang University College of Medicine
| | - Moo Kyun Park
- Department of Otolaryngology–Head and Neck
Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Mutation rate and efflux response of bacteria exposed to a novel antimicrobial iodo-thiocyanate complex. J Glob Antimicrob Resist 2019; 22:13-17. [PMID: 31857249 DOI: 10.1016/j.jgar.2019.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Antimicrobials, at sub-lethal concentrations, can act as selectors and promoters of resistance by increasing mutation rates. We measured the rate of Escherichia coli mutation from levofloxacin (LVX) sensitivity to resistance when it was grown under the near-lethal challenge of the novel biocidal iodo-thiocyanate complex (ITC). Another relevant factor affecting the emergence of antimicrobial resistance is the role of efflux pumps. Consequently, we evaluated whether ITC could potentially be a substrate for efflux pumps, and thus that efflux-mediated resistance could arise towards ITC. METHODS The mutation rate was measured by fluctuation analysis, when multiple parallel E. coli cultures were grown in the absence and presence of ITC. Then the mutational events, which occurred independently in each culture, were scored by plating the fraction of the culture in LVX-selective solid media and compared with the total cell number. To detect if ITC is a substrate for efflux pumps, minimum inhibitory concentrations (MICs) were determined against Pseudomonas aeruginosa in the absence and presence of the efflux pump inhibitor (EPI). RESULTS We have found that the E. coli exposed to the near-lethal level of ITC had a slight, but not significant, increase in mutation rate compared with unexposed cultures. Furthermore, the presence of EPI decreased the MIC of ITC by a modest 2-fold, showing that ITC was not a target for efflux pumps. CONCLUSIONS ITC usage most likely will not promote resistance development via increased mutation rates, and efflux-mediated resistance emergence to it is less likely than for some other antimicrobials.
Collapse
|
14
|
Freschi L, Bertelli C, Jeukens J, Moore MP, Kukavica-Ibrulj I, Emond-Rheault JG, Hamel J, Fothergill JL, Tucker NP, McClean S, Klockgether J, de Soyza A, Brinkman FSL, Levesque RC, Winstanley C. Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiol Lett 2019; 365:5035990. [PMID: 29897457 DOI: 10.1093/femsle/fny120] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen, especially in the context of infections of cystic fibrosis (CF). In order to facilitate coordinated study of this pathogen, an international reference panel of P. aeruginosa isolates was assembled. Here we report the genome sequencing and analysis of 33 of these isolates and 7 reference genomes to further characterise this panel. Core genome single nucleotide variant phylogeny demonstrated that the panel strains are widely distributed amongst the P. aeruginosa population. Common loss-of-function mutations reported as adaptive during CF (such as in mucA and mexA) were identified amongst isolates from chronic respiratory infections. From the 40 strains analysed, 37 unique resistomes were predicted, based on the Resistance Gene Identifier method using the Comprehensive Antibiotic Resistance Database. Notably, hierarchical clustering and phylogenetic reconstructions based on the presence/absence of genomic islands (GIs), prophages and other regions of genome plasticity (RGPs) supported the subdivision of P. aeruginosa into two main groups. This is the largest, most diverse analysis of GIs and associated RGPs to date, and the results suggest that, at least at the largest clade grouping level (group 1 vs group 2), each group may be drawing upon distinct mobile gene pools.
Collapse
Affiliation(s)
- Luca Freschi
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Claire Bertelli
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Julie Jeukens
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | | | - Jérémie Hamel
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Joanne L Fothergill
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Tallaght, Dublin D24 FKT9, Ireland
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, D-30625, Hannover, Germany
| | - Anthony de Soyza
- Institute for Cellular Medicine, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
15
|
Laudy AE. Non-antibiotics, Efflux Pumps and Drug Resistance of Gram-negative Rods. Pol J Microbiol 2019; 67:129-135. [PMID: 30015451 PMCID: PMC7256865 DOI: 10.21307/pjm-2018-017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/27/2023] Open
Abstract
Non-antibiotic medicinal products consist of drugs with diverse activity against bacteria. Many non-antibiotics demonstrate direct anti-bacterial activity against Gram-positive cocci. The activity observed against Gram-negative rods is much lower and non-antibiotics primarily from the following groups: non-steroidal anti-inflammatory drugs, cardiovascular and antidepressant medicinal products demonstrate this activity. It has been shown that the low activity of some non-antibiotics or the absence of activity against Gram-negative rods is related, among other things, to the extrusion of these compounds from bacterial cells by multi-drug resistance efflux pumps. Substrates for the resistance-nodulation-division efflux systems include the following non-antibiotics: salicylate, diclofenac, ibuprofen, mefenamic acid, naproxen, amitriptyline, alendronate sodium, nicergoline, and ticlopidine. In addition, interactions between non-antibiotics and multi-drug resistance efflux pumps have been observed. It has also been revealed that depending on the concentration, salicylate induces expression of multi-drug resistance efflux pumps in Escherichia coli, Salmonella enterica subsp. enterica serotype Typhimurium, and Burkholderia cenocepacia. However, salicylate does not affect the expression of the resistance-nodulation-division efflux systems in Stenotrophomonas maltophilia and Acinetobacter baumannii. Most importantly, there were no effects of medicinal products containing some non-antibiotic active substances, except salicylate, as substrates of multi-drug resistance efflux pumps, on the induction of Gram-negative rod resistance to quinolones.
Collapse
Affiliation(s)
- Agnieszka Ewa Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw,Warsaw,Poland
| |
Collapse
|
16
|
Atzori A, Malloci G, Prajapati JD, Basciu A, Bosin A, Kleinekathöfer U, Dreier J, Vargiu AV, Ruggerone P. Molecular Interactions of Cephalosporins with the Deep Binding Pocket of the RND Transporter AcrB. J Phys Chem B 2019; 123:4625-4635. [PMID: 31070373 PMCID: PMC6939625 DOI: 10.1021/acs.jpcb.9b01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The drug/proton antiporter AcrB, part of the major efflux pump AcrABZ-TolC in Escherichia coli, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multidrug resistance phenotype. However, the molecular features differentiating between good and poor substrates of the pump have yet to be identified. In this work, we combined molecular docking with molecular dynamics simulations to study the interactions between AcrB and two representative cephalosporins, cefepime and ceftazidime (a good and poor substrate of AcrB, respectively). Our analysis revealed different binding preferences of the two compounds toward the subsites of the large deep binding pocket of AcrB. Cefepime, although less hydrophobic than ceftazidime, showed a higher affinity than ceftazidime for the so-called hydrophobic trap, a region known for binding inhibitors and substrates. This supports the hypothesis that surface complementarity between the molecule and AcrB, more than the intrinsic hydrophobicity of the antibiotic, is a feature required for the interaction within this region. Oppositely, the preference of ceftazidime for binding outside the hydrophobic trap might not be optimal for triggering allosteric conformational changes needed to the transporter to accomplish its function. Altogether, our findings could provide valuable information for the design of new antibiotics less susceptible to the efflux mechanism.
Collapse
Affiliation(s)
- Alessio Atzori
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | | | - Andrea Basciu
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Andrea Bosin
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, 4058 Basel, Switzerland
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| |
Collapse
|
17
|
Hasani A, Madhi M, Gholizadeh P, Shahbazi Mojarrad J, Ahangarzadeh Rezaee M, Zarrini G, Samadi Kafil H. Metal nanoparticles and consequences on multi-drug resistant bacteria: reviving their role. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0344-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Abd El-Tawab AA, Ammar AM, Ahmed HA, Hefny AA. Efflux Pump Inhibitors, Alpha-Tocopherol and Aspirin: Role in Campylobacter jejuni and Campylobacter coli Fluoroquinolone Resistance. Microb Drug Resist 2019; 25:203-211. [DOI: 10.1089/mdr.2018.0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ashraf A. Abd El-Tawab
- Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ahmed M. Ammar
- Department of Microbiology and Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Heba A. Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A. Hefny
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Cunrath O, Meinel DM, Maturana P, Fanous J, Buyck JM, Saint Auguste P, Seth-Smith HMB, Körner J, Dehio C, Trebosc V, Kemmer C, Neher R, Egli A, Bumann D. Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine 2019; 41:479-487. [PMID: 30852163 PMCID: PMC6443642 DOI: 10.1016/j.ebiom.2019.02.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. METHODS We developed a versatile method for genetic engineering in multi-drug resistant (MDR) bacteria, and used this method to delete tolC and specific antibiotic-resistance genes in 18 representative MDR clinical E. coli isolates. We determined efflux activity and minimal inhibitory concentrations for a diverse set of clinically relevant antibiotics in these mutants. We also deleted oprM in MDR P. aeruginosa strains and determined the impact on antibiotic susceptibility. FINDINGS tolC deletion abolished detectable efflux activity in 15 out of 18 tested E. coli strains, and modulated antibiotic susceptibility in many strains. However, all mutant strains retained MDR status, primarily because of other, antibiotic-specific resistance genes. Deletion of oprM altered antibiotic susceptibility in a fraction of clinical P. aeruginosa isolates. INTERPRETATION Efflux modulates antibiotic resistance in clinical MDR isolates of E. coli and P. aeruginosa. However, when other antimicrobial-resistance mechanisms are present, inhibition of MDR efflux pumps alone is often not sufficient to restore full susceptibility even for antibiotics with a dramatic impact of efflux in laboratory strains. We propose that development of novel antibiotics should include target validation in clinical MDR isolates. FUND: Innovative Medicines Initiative of European Union and EFPIA, Schweizerischer Nationalfonds, Swiss National Research Program 72, EU Marie Skłodowska-Curie program. The funders played no role in design, data collection, data analysis, interpretation, writing of the report, and in the decision to submit the paper for publication.
Collapse
Affiliation(s)
| | - Dominik M Meinel
- Clinical Microbiology, University Hospital Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | - Helena M B Seth-Smith
- Clinical Microbiology, University Hospital Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Jonas Körner
- Biozentrum, University Hospital Basel, Switzerland
| | | | - Vincent Trebosc
- BioVersys AG, Hochbergerstrasse 60C, Technology Park, 4057 Basel, Switzerland
| | - Christian Kemmer
- BioVersys AG, Hochbergerstrasse 60C, Technology Park, 4057 Basel, Switzerland
| | | | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University Hospital Basel, Switzerland.
| |
Collapse
|
20
|
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effectiveness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa PAO1: Uncovering a New Role for MexMN-OprM in Efflux of β-Lactams and a Novel Regulatory Circuit (MmnRS) Controlling MexMN Expression. Antimicrob Agents Chemother 2019; 63:AAC.01718-18. [PMID: 30420483 DOI: 10.1128/aac.01718-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.
Collapse
|
21
|
Tobramycin-Linked Efflux Pump Inhibitor Conjugates Synergize Fluoroquinolones, Rifampicin and Fosfomycin against Multidrug-Resistant Pseudomonas aeruginosa. J Clin Med 2018; 7:jcm7070158. [PMID: 29932132 PMCID: PMC6069439 DOI: 10.3390/jcm7070158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we examined the in vitro effect of tobramycin-efflux pump inhibitor (TOB-EPI) conjugates in combinations with fluoroquinolones, rifampicin and fosfomycin on the growth of multi-drug resistant (MDR) and extremely-drug resistant (XDR) Pseudomonas aeruginosa. The TOB-EPI conjugates include tobramycin covalently linked to 1-(1-naphthylmethyl)-piperazine (NMP) (1), paroxetine (PAR) (2) and a dibasic peptide analogue of MC-04,124 (DBP) (3). Potent synergism was found for combinations of TOB-NMP (1), TOB-PAR (2) or TOB-DBP (3) with either fluoroquinolones (moxifloxacin, ciprofloxacin), rifampicin or fosfomycin against a panel of multidrug-resistant/extensively drug-resistant (MDR/XDR) P. aeruginosa clinical isolates. In the presence of ≤8 mg/L (6.1–7.2 µM) (≤¼ × MICadjuvant) concentration of the three conjugates, the MIC80 of moxifloxacin, ciprofloxacin, rifampicin and fosfomycin were dramatically reduced. Furthermore, the MIC80 of rifampicin (0.25–0.5 mg/L) and fosfomycin (8–16 mg/L) were reduced below their interpretative susceptibility breakpoints. Our data confirm the ability of TOB-NMP (1), TOB-PAR (2) and TOB-DBP (3) conjugates to strongly synergize with moxifloxacin, ciprofloxacin, rifampicin and fosfomycin against MDR/XDR P. aeruginosa. These synergistic combinations warrant further studies as there is an urgent need to develop new strategies to treat drug-resistant P. aeruginosa infections.
Collapse
|
22
|
Jeukens J, Kukavica-Ibrulj I, Emond-Rheault JG, Freschi L, Levesque RC. Comparative genomics of a drug-resistant Pseudomonas aeruginosa panel and the challenges of antimicrobial resistance prediction from genomes. FEMS Microbiol Lett 2018; 364:4056142. [PMID: 28922838 DOI: 10.1093/femsle/fnx161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance (AMR) is now recognized as a global threat to human health. The accessibility of microbial whole-genome sequencing offers an invaluable opportunity for resistance surveillance via the resistome, i.e. the genes and mutations underlying AMR. Unfortunately, AMR prediction from genomic data remains extremely challenging, especially for species with a large pan-genome. One such organism, for which multidrug-resistant (MDR) isolates are frequently encountered in the clinic, is Pseudomonas aeruginosa. This study focuses on a commercially available panel of seven MDR P. aeruginosa strains. The main goals were to sequence and compare these strains' genomes, attempt to predict AMR from whole genomes using two different methods and determine whether this panel could be an informative complement to the international P. aeruginosa reference panel. As expected, the results highlight the complexity of associating genotype and AMR phenotype in P. aeruginosa, mainly due to the intricate regulation of resistance mechanisms. Our results also urge caution in the interpretation of predicted resistomes regarding the occurrence of gene identity discrepancies between strains. We envision that, in addition to accounting for the genomic diversity of P. aeruginosa, future development of predictive tools will need to incorporate a transcriptomic, proteomic and/or metabolomic component.
Collapse
Affiliation(s)
- J Jeukens
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - I Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - J G Emond-Rheault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - L Freschi
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - R C Levesque
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| |
Collapse
|
23
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
24
|
Hirano T, Kinoshita T, Kazamori D, Inoue S, Nishimura K, Sakurai A, Ohishi K, Kuramoto Y, Amano H, Yazaki A. Discovery of a Novel Fluoroquinolone Antibiotic Candidate WFQ-228 with Potent Antimicrobial Activity and the Potential to Overcome Major Drug Resistance. Chem Pharm Bull (Tokyo) 2018; 66:235-238. [DOI: 10.1248/cpb.c17-00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tatsuya Hirano
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| | | | | | - Satoshi Inoue
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| | | | - Asuka Sakurai
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| | - Kensuke Ohishi
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| | | | - Hirotaka Amano
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| | - Akira Yazaki
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| |
Collapse
|
25
|
Srimani JK, Huang S, Lopatkin AJ, You L. Drug detoxification dynamics explain the postantibiotic effect. Mol Syst Biol 2017; 13:948. [PMID: 29061668 PMCID: PMC5658699 DOI: 10.15252/msb.20177723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
The postantibiotic effect (PAE) refers to the temporary suppression of bacterial growth following transient antibiotic treatment. This effect has been observed for decades for a wide variety of antibiotics and microbial species. However, despite empirical observations, a mechanistic understanding of this phenomenon is lacking. Using a combination of modeling and quantitative experiments, we show that the PAE can be explained by the temporal dynamics of drug detoxification in individual cells after an antibiotic is removed from the extracellular environment. These dynamics are dictated by both the export of the antibiotic and the intracellular titration of the antibiotic by its target. This mechanism is generally applicable for antibiotics with different modes of action. We further show that efflux inhibition is effective against certain antibiotic motifs, which may help explain mixed cotreatment success.
Collapse
Affiliation(s)
- Jaydeep K Srimani
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shuqiang Huang
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | | | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
26
|
Molecular Characterization of Resistance Genes in MDR-ESKAPE Pathogens. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017; 60:8268-8297. [PMID: 28594170 DOI: 10.1021/acs.jmedchem.7b00215] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
28
|
Loss of Methyltransferase Function and Increased Efflux Activity Leads to Doxycycline Resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 2017; 61:AAC.00268-17. [PMID: 28348161 DOI: 10.1128/aac.00268-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023] Open
Abstract
The soil-dwelling bacterium Burkholderia pseudomallei is the causative agent of the potentially fatal disease melioidosis. The lack of a vaccine toward B. pseudomallei means that melioidosis treatment relies on prolonged antibiotic therapy, which can last up to 6 months in duration or longer. Due to intrinsic resistance, few antibiotics are effective against B. pseudomallei The lengthy treatment regimen required increases the likelihood of resistance development, with subsequent potentially fatal relapse. Doxycycline (DOX) has historically played an important role in the eradication phase of melioidosis treatment. Both primary and acquired DOX resistances have been documented in B. pseudomallei; however, the molecular mechanisms underpinning DOX resistance have remained elusive. Here, we identify and functionally characterize the molecular mechanisms conferring acquired DOX resistance in an isogenic B. pseudomallei pair. Two synergistic mechanisms were identified. The first mutation occurred in a putative S-adenosyl-l-methionine-dependent methyltransferase (encoded by BPSL3085), which we propose leads to altered ribosomal methylation, thereby decreasing DOX binding efficiency. The second mutation altered the function of the efflux pump repressor gene, amrR, resulting in increased expression of the resistance-nodulation-division efflux pump, AmrAB-OprA. Our findings highlight the diverse mechanisms by which B. pseudomallei can become resistant to antibiotics used in melioidosis therapy and the need for resistance monitoring during treatment regimens, especially in patients with prolonged or recrudesced positive cultures for B. pseudomallei.
Collapse
|
29
|
Kim J, Ahn J. Characterization of Clinically Isolated Antibiotic-Resistant Salmonella Typhimurium Exposed to Subinhibitory Concentrations of Ceftriaxone and Ciprofloxacin. Microb Drug Resist 2017; 23:949-957. [PMID: 28486078 DOI: 10.1089/mdr.2016.0319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study was designed mainly to assess the phenotypic properties of clinically isolated Salmonella Typhimurium exposed to ceftriaxone and ciprofloxacin. The antibiotic susceptibility, β-lactamase activity, efflux activity, bacterial motility, biofilm-forming ability, and gene expression were determined in S. Typhimurium ATCC 19585 and S. Typhimurium CCARM 8009 when exposed to subinhibitory concentrations of ceftriaxone and ciprofloxacin. S. Typhimurium CCARM 8009 was highly resistant to ampicillin, kanamycin, penicillin G, and streptomycin, showing minimum inhibitory concentration values of more than 512 μg/ml, while S. Typhimurium ATCC 19585 showed resistance to erythromycin alone (64 μg/ml). The highest β-lactamase activity was observed in S. Typhimurium CCARM 8009 when exposed to ceftriaxone (8.2 μmol/min/ml), while the least β-lactamase activity was observed in S. Typhimurium ATCC 19585. Compared to S. Typhimurium CCARM 8009, the ethidium bromide (EtBr) accumulation was considerably increased in S. Typhimurium ATCC 19585 when treated with efflux pump inhibitors. S. Typhimurium ATCC 19585 and S. Typhimurium CCARM 8009 were highly susceptible to ciprofloxacin, erythromycin, levofloxacin, and sparfloxacin in the presence of phenylalanine-arginine-β-naphthylamide. The swimming motility of S. Typhimurium ATCC 19585 exposed to ceftriaxone was significantly reduced to 54% when compared to S. Typhimurium CCARM 8009 (93%). The numbers of attached S. Typhimurium CCARM 8009 cells were significantly increased by more than 1 log cfu/ml when exposed to ceftriaxone and ciprofloxacin. The relative gene expression was stable in S. Typhimurium CCARM 8009 in the presence of ceftriaxone and ciprofloxacin compared to the absence of antibiotics. These results suggest that the antibiotic susceptibility of S. Typhimurium having different antibiotic resistance profiles varied depending on the presence of ceftriaxone and ciprofloxacin.
Collapse
Affiliation(s)
- Jeongjin Kim
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| |
Collapse
|
30
|
Yang X, Goswami S, Gorityala BK, Domalaon R, Lyu Y, Kumar A, Zhanel GG, Schweizer F. A Tobramycin Vector Enhances Synergy and Efficacy of Efflux Pump Inhibitors against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2017; 60:3913-3932. [DOI: 10.1021/acs.jmedchem.7b00156] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xuan Yang
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sudeep Goswami
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Ronald Domalaon
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yinfeng Lyu
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute
of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Ayush Kumar
- Department
of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department
of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 1R9, Canada
| | - George G. Zhanel
- Department
of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 1R9, Canada
| | - Frank Schweizer
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department
of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 1R9, Canada
| |
Collapse
|
31
|
The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria. Molecules 2017; 22:molecules22010114. [PMID: 28085074 PMCID: PMC6155833 DOI: 10.3390/molecules22010114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022] Open
Abstract
The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs), against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC) value determination in the presence of 1 mM MgSO4. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide) was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100–800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine) tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.
Collapse
|
32
|
Alibert S, N'gompaza Diarra J, Hernandez J, Stutzmann A, Fouad M, Boyer G, Pagès JM. Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective. Expert Opin Drug Metab Toxicol 2016; 13:301-309. [PMID: 27764576 DOI: 10.1080/17425255.2017.1251581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Worrying levels of bacterial resistance have been reported worldwide involving the failure of many available antibiotic treatments. Multidrug resistance (MDR) in Gram-negative bacteria is often ascribed to the presence of multiple and different resistance mechanisms in the same strain. RND efflux pumps play a major role and are an attractive target to discover new antibacterial drugs. Areas covered: This review discusses the prevalence of efflux pumps, their overexpression in clinical scenarios, their polyselectivity, their effect on the intracellular concentrations of various antibiotics associated with the alteration of the membrane permeability and their involvement in pathogenicity are discussed. Expert opinion: Efflux pumps are new targets for the development of adjuvant in antibiotic treatments by of efflux pump inhibition. They may allow us to rejuvenate old antibiotics acting on their concentration inside the bacteria and thus potentiating their activity while blocking the release of virulence factors. It is a pharmacodynamic challenge to finalize new combined therapy.
Collapse
Affiliation(s)
- Sandrine Alibert
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Joannah N'gompaza Diarra
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Jessica Hernandez
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Aurélien Stutzmann
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Marwa Fouad
- b Pharmaceutical Chemistry Department, Faculty of Pharmacy , Cairo University , Giza , Egypt
| | - Gérard Boyer
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Jean-Marie Pagès
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
33
|
Agnello M, Finkel SE, Wong-Beringer A. Fitness Cost of Fluoroquinolone Resistance in Clinical Isolates of Pseudomonas aeruginosa Differs by Type III Secretion Genotype. Front Microbiol 2016; 7:1591. [PMID: 27757111 PMCID: PMC5047889 DOI: 10.3389/fmicb.2016.01591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is highly prevalent among clinical strains of Pseudomonas aeruginosa, limiting treatment options. We have reported previously that highly virulent strains containing the exoU gene of the type III secretion system are more likely to be FQ-resistant than strains containing the exoS gene, as well as more likely to acquire resistance-conferring mutations in gyrA/B and parC/E. We hypothesize that FQ-resistance imposes a lower fitness cost on exoU compared to exoS strains, thus allowing for better adaptation to the FQ-rich clinical environment. We created isogenic mutants containing a common FQ-resistance conferring point mutation in parC from three exoU to three exoS clinical isolates and tested fitness in vitro using head-to-head competition assays. The mutation differentially affected fitness in the exoU and exoS strains tested. While the addition of the parC mutation dramatically increased fitness in one of the exoU strains leaving the other two unaffected, all three exoS strains displayed a general decrease in fitness. In addition, we found that exoU strains may be able to compensate for the fitness costs associated with the mutation through better regulation of supercoiling compared to the exoS strains. These results may provide a biological explanation for the observed predominance of the virulent exoU genotype in FQ-resistant clinical subpopulations and represent the first investigation into potential differences in fitness costs of FQ-resistance that are linked to the virulence genotype of P. aeruginosa. Understanding the fitness costs of antibiotic resistance and possibilities of compensation for these costs is essential for the rational development of strategies to combat the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Melissa Agnello
- School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
34
|
Choudhury D, Paul D, Ghosh AS, Das Talukdar A, Dutta Choudhury M, Maurya AP, Dhar Chanda D, Chakravarty A, Bhattacharjee A. Effect of single-dose carbapenem exposure on transcriptional expression of bla NDM-1 and mexA in Pseudomonas aeruginosa. J Glob Antimicrob Resist 2016; 7:72-77. [PMID: 27668722 DOI: 10.1016/j.jgar.2016.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022] Open
Abstract
The therapeutic option of a carbapenem antibiotic is compromised in Pseudomonas aeruginosa owing both to acquired and intrinsic resistance mechanisms. In recent years, New Delhi metallo-β-lactamase has been the focus as a predominant carbapenem resistance determinant. However, it is unclear which of the mechanisms might be adopted by a P. aeruginosa strain possessing both blaNDM-1 and an overexpressed MexAB-OprM system during carbapenem therapy. This study investigated the interplay of both mechanisms in clinical isolates of P. aeruginosa when exposed to meropenem. Five strains were used: (i) strain overexpressing MexAB-OprM but with no blaNDM-1; (ii) strain harbouring blaNDM-1 but expressing MexAB-OprM at basal level; (iii) strain possessing blaNDM-1 and overexpressing MexAB-OprM; (iv) P. aeruginosa PAO1; and (v) P. aeruginosa K2733-PAO1 (ΔMexAB-OprMΔMexCD-OprJΔMexEF-OprNΔMexXY-OprM) into which blaNDM-1 was cloned. Strains were incubated in Luria-Bertani broth with and without 1μg/mL meropenem. Total RNA was isolated at 45-min intervals and was immediately reverse transcribed to cDNA. This was repeated for 6h. Quantitative real-time PCR was performed for both resistance mechanisms. Meropenem exposure did not significantly elevate transcription of either the blaNDM-1 or mexA gene. However, an interesting finding was that upon single-dose exposure to carbapenem, the efflux pump system played a major role in bacterial survival compared with NDM-1. This study gives an insight into the bacterial response to carbapenem antibiotic when two different resistance mechanisms coexist. This type of study would be helpful in designing future antimicrobials.
Collapse
Affiliation(s)
- Debarati Choudhury
- Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, India
| | | | | | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | - Atanu Chakravarty
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | | |
Collapse
|
35
|
Goli HR, Nahaei MR, Rezaee MA, Hasani A, Samadi Kafil H, Aghazadeh M, Sheikhalizadeh V. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. INFECTION GENETICS AND EVOLUTION 2016; 45:75-82. [PMID: 27562333 DOI: 10.1016/j.meegid.2016.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Overexpression of efflux pumps is one of the most important mechanisms that contributes to intrinsic and acquired resistance to antibiotics in Pseudomonas aeruginosa. The present study evaluated the role of MexAB-OprM and MexXY (-OprA) efflux pump overexpression in antibiotics resistance of P. aeruginosa clinical isolates. One-hundred clinical isolates of P. aeruginosa were obtained from four hospitals of Tabriz city in Northwest Iran. Isolates were identified and evaluated by the disk diffusion method and agar dilution in order to determine antibiotic resistance. Effect of Phenylalanine Arginine beta-Naphthylamide (PAβN) on susceptibility to various anti-Pseudomonas antimicrobials and expression levels of mexB and mexY using quantitative real-time PCR were determined in the clinical isolates. Random Amplified Polymorphic DNA Typing (RAPD-PCR) was used for genotyping of the isolates. The most and least effective antibiotics tested were colistin and ofloxacin, respectively. Seventy-one percent of the isolates were found as multidrug resistant (resistant to at least three different classes of antibiotics). Among ciprofloxacin and levofloxacin resistant isolates, 39.6% and 28.5% of them showed four-fold reduction in MIC with PAβN, respectively. Sixty-two percent and 65% of isolates overexpressed mexB and mexY, respectively. Sixty six isolates showed overexpression of both mexB and mexY efflux genes. Moreover, 76% and 88.7% of MDR isolates were mexB and mexY overexpressed, respectively. There were 30 different RAPD types in this study which were clustered into 6 clones. The study indicated that there is a significant correlation between the expression of efflux pumps and the resistance to most anti-pseudomonal antibiotics.
Collapse
Affiliation(s)
- Hamid Reza Goli
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mohammad Reza Nahaei
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious Diseases and Tropical Medicine Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Alka Hasani
- Infectious Diseases and Tropical Medicine Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| | - Vajihe Sheikhalizadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
36
|
Maurya AP, Choudhury D, Talukdar AD, Dhar Chanda D, Chakravarty A, Bhattacharjee A. Emergence of integron borne PER-1 mediated extended spectrum cephalosporin resistance among nosocomial isolates of Gram-negative bacilli. Indian J Med Res 2016. [PMID: 26205025 PMCID: PMC4525407 DOI: 10.4103/0971-5916.160718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background & objectives: Pseudomonas extended resistant (PER) enzymes are rare type of extended-spectrum beta lactamases (ESBLs) that confer third generation cephalosporin resistance. These are often integron borne and laterally transmitted. The aim of the present study was to investigate the emergence of integron borne cephalosporin resistant PER-1 gene in diverse incompatibility (Inc) group plasmids among Gram-negative bacteria. Methods: A total of 613 consecutive, non-duplicate, Gram-negative bacteria of Enterobacteriaceae family and non-fermenting Gram-negative bacteria were isolated from different clinical specimens during a period of 18 months. For amplification and detection of blaPER, multiplex PCR was done. For understanding the genetic environment of blaPER-1, integrase gene PCR and cassette PCR (59 be) was performed. Gene transferability experiment was carried out and PCR based replicon typing was performed for incompatibility group typing of plasmids using 18 pairs of primers. An inhibitor based method was used for phenotypic detection of intrinsic resistance. Results: Multiplex PCR and sequencing confirmed that 45 isolates were harbouring blaPER-1. Both class 1 and class 2 integrons were observed among them. Integrase and cassette PCR (59 be) PCR results confirmed that the resistant determinant was located within class 1 integron. Transformation and conjugation experiments revealed that PER-1 was laterally transferable and disseminated through diverse Inc plasmid type. Efflux pump mediated carbapenem resistance was observed in all isolates. All isolates belonged to heterogenous groups. Interpretation & conclusions: This study demonstrates the dissemination of cephalosporins resistant, integron borne blaPER-1 in hospital setting in this part of the country and emphasizes on the rational use of third generation cephalosporins to slow down the expansion of this rare type of ESBL gene.
Collapse
|
37
|
Choudhury D, Talukdar AD, Maurya AP, Choudhury MD, Dhar Chanda D, Chakravarty A, Bhattacharjee A. Contribution of efflux pumps in fluroquinolone resistance in multi-drug resistant nosocomial isolates of Pseudomanas aeruginosa from a tertiary referral hospital in north east India. Indian J Med Microbiol 2016; 33:84-6. [PMID: 25560007 DOI: 10.4103/0255-0857.148388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the leading opportunistic pathogen and its ability to acquire resistance against series of antimicrobial agents confine treatment option for nosocomial infections. Increasing resistance to fluroquinolone (FQ) agents has further worsened the scenario. The major mechanism of resistance to FQs includes mutation in FQs target genes in bacteria (DNA gyrase and/or topoisomerases) and overexpression of antibiotic efflux pumps. OBJECTIVE We have investigated the role of efflux pump mediated FQ resistance in nosocomial isolates of P. aeruginosa from a tertiary referral hospital in north eastern part of India. MATERIALS AND METHODS A total of 234 non-duplicate, consecutive clinical isolates of P. aeruginosa were obtained from a tertiary referral hospital of north-east India. An efflux pump inhibitor (EPI), carbonyl cyanide m-chlorophenylhydrazone (CCCP) based method was used for determination of efflux pump activity and multiplex polymerase chain reaction (PCR) was performed for molecular characterisation of efflux pump. Minimum inhibitory concentration (MIC) reduction assay was also performed for all the isolates. RESULTS AND CONCLUSION A total number of 56 (23%) have shown efflux mediated FQ resistance. MexAB-OprM efflux system was predominant type. This is the first report of efflux pump mediated FQ resistance from this part of the world and the continued emergence of these mutants with such high MIC range from this part of the world demands serious awareness, diagnostic intervention, and proper therapeutic option.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A Bhattacharjee
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
38
|
Premature Termination of MexR Leads to Overexpression of MexAB-OprM Efflux Pump in Pseudomonas aeruginosa in a Tertiary Referral Hospital in India. PLoS One 2016; 11:e0149156. [PMID: 26866484 PMCID: PMC4750933 DOI: 10.1371/journal.pone.0149156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives The present study was undertaken to investigate the mutations that are present in mexR gene of multidrug resistant (MDR) isolates of Pseudomonas aeruginosa collected from a tertiary referral hospital of north east India. Methods 76 MDR clinical isolates of P. aeruginosa were obtained from the patients who were admitted to or attended the clinics of Silchar medical college and hospital. They were screened phenotypically for the presence of efflux pump activity by an inhibitor based method. Acquired resistance mechanisms were detected by multiplex PCR. Real time PCR was performed to study the expression of mexA gene of MexAB-OprM efflux pump in isolates with increase efflux pump activity. mexR gene of the isolates with overexpressed MexAB-OprM efflux pump was amplified, sequenced and analysed. Results Out of 76 MDR isolates, 24 were found to exhibit efflux pump activity phenotypically against ciprofloxacin and meropenem. Acquired resistance mechanisms were absent in 11 of them and among those isolates, 8 of them overexpressed MexAB-OprM. All the 8 isolates possessed mutation in mexR gene. 11 transversions, 4 transitions, 2 deletion mutations and 2 insertion mutations were found in all the isolates. However, the most significant observation was the formation of a termination codon at 35th position which resulted in the termination of the polypeptide and leads to overexpression of the MexAB-OprM efflux pump. Conclusions This study highlighted emergence of a novel mutation which is probably associated with multi drug resistance. Therefore, further investigations and actions are needed to prevent or at least hold back the expansion and emergence of newer mutations in nosocomial pathogens which may compromise future treatment options.
Collapse
|
39
|
The Influence of Efflux Pump Inhibitors on the Activity of Non-Antibiotic NSAIDS against Gram-Negative Rods. PLoS One 2016; 11:e0147131. [PMID: 26771525 PMCID: PMC4714910 DOI: 10.1371/journal.pone.0147131] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Background Most patients with bacterial infections suffer from fever and various pains that require complex treatments with antibiotics, antipyretics, and analgaesics. The most common drugs used to relieve these symptoms are non-steroidal anti-inflammatory drugs (NSAIDs), which are not typically considered antibiotics. Here, we investigate the effects of NSAIDs on bacterial susceptibility to antibiotics and the modulation of bacterial efflux pumps. Methodology The activity of 12 NSAID active substances, paracetamol (acetaminophen), and eight relevant medicinal products was analyzed with or without pump inhibitors against 89 strains of Gram-negative rods by determining the MICs. Furthermore, the effects of NSAIDs on the susceptibility of clinical strains to antimicrobial agents with or without PAβN (Phe-Arg-β-naphtylamide) were measured. Results The MICs of diclofenac, mefenamic acid, ibuprofen, and naproxen, in the presence of PAβN, were significantly (≥4-fold) reduced, decreasing to 25–1600 mg/L, against the majority of the studied strains. In the case of acetylsalicylic acid only for 5 and 7 out of 12 strains of P. mirabilis and E. coli, respectively, a 4-fold increase in susceptibility in the presence of PAβN was observed. The presence of Aspirin resulted in a 4-fold increase in the MIC of ofloxacin against only two strains of E. coli among 48 tested clinical strains, which included species such as E. coli, K. pneumoniae, P. aeruginosa, and S. maltophilia. Besides, the medicinal products containing the following NSAIDs, diclofenac, mefenamic acid, ibuprofen, and naproxen, did not cause the decrease of clinical strains’ susceptibility to antibiotics. Conclusions The effects of PAβN on the susceptibility of bacteria to NSAIDs indicate that some NSAIDs are substrates for efflux pumps in Gram-negative rods. Morever, Aspirin probably induced efflux-mediated resistance to fluoroquinolones in a few E. coli strains.
Collapse
|
40
|
Choudhury D, Das Talukdar A, Dutta Choudhury M, Maurya AP, Paul D, Dhar Chanda D, Chakravorty A, Bhattacharjee A. Transcriptional Analysis of MexAB-OprM Efflux Pumps System of Pseudomonas aeruginosa and Its Role in Carbapenem Resistance in a Tertiary Referral Hospital in India. PLoS One 2015. [PMID: 26221722 PMCID: PMC4519154 DOI: 10.1371/journal.pone.0133842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carbapenem resistance presents severe threat to the treatment of multidrug resistant Pseudomonas aeruginosa infections. The study was undertaken to investigate the role of efflux pumps in conferring meropenem resistance and effect of single dose exposure of meropenem on transcription level of mexA gene in clinical isolates of P. aeruginosa from a tertiary referral hospital of India. Further, in this investigation an effort was made to assess whether different components of MexAB-OprM operon expresses in the same manner and the extent of contributions of those components in meropenem resistance in its natural host (P. aeruginosa) and in a heterologous host (E. coli). Out of 83 meropenem nonsusceptible isolates, 22 isolates were found to possess efflux pump activity phenotypically. Modified hodge test and multiplex PCR confirmed the absence of carbapenemase genes in those isolates. All of them were of multidrug resistant phenotype and were resistant to all the carbepenem drug tested. MexAB-OprM efflux pump was found to be overexpressed in all the study isolates. It could be observed that single dose exposure meropenem could give rise to trivial increase in transcription of mexA gene. Different constructs of MexAB-OprM (mexR-mexA-mexB-OprM; mexA-mexB-OprM; mexA-mexB) could be expressed in both its natural (P. aeruginosa PAO1) and heterologous host (E. coli JM107) but transcription level of mexA gene varied in both the hosts before and after single dose exposure of meropenem. Different components of the operon failed to enhance meropenem resistance in E. coli JM107 and P. aeruginosa PAO1. This study could prove that MexAB-OprM efflux pump can significantly contribute to meropenem resistance in hospital isolates of P. aeruginosa where an acquired resistant mechanism is absent. Thus, equal importance should be given for diagnosis of intrinsic resistance mechanism so as to minimize treatment failure. As meropenem could not enhance mexA transcriptions significantly, there might be a possibility that the increase in expression of efflux pump genes does not mediated by single antibiotic but rather by a combination of antipseudomonal drugs which are used during treatments. Early detection of efflux genes will help in selection of proper therapeutic options.
Collapse
Affiliation(s)
- Debarati Choudhury
- Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, India
| | | | | | - Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | - Atanu Chakravorty
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | | |
Collapse
|
41
|
Koo SH. Overexpression of Efflux Pump in Multiresistant Pseudomonas aeruginosa: How You Will Discover and Treat It? Infect Chemother 2015; 47:142-4. [PMID: 26157597 PMCID: PMC4495277 DOI: 10.3947/ic.2015.47.2.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Sun Hoe Koo
- Department of Laboratory Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
42
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
43
|
Adabi M, Talebi-Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, Moghadam-Maragheh N, Majidpour A. Spread of Efflux Pump Overexpressing-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas aeruginosa by using an Efflux Pump Inhibitor. Infect Chemother 2015; 47:98-104. [PMID: 26157587 PMCID: PMC4495281 DOI: 10.3947/ic.2015.47.2.98] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/24/2022] Open
Abstract
Background Fluoroquinolone resistance in Pseudomonas aeruginosa may be due to efflux pump overexpression and/or target mutations. We designed this study to investigate the efflux pump mediated fluoroquinolone resistance and check the increasing effectiveness of fluoroquinolones in combination with an efflux pumps inhibitor among P. aeruginosa isolates from burn wounds infections. Materials and Methods A total of 154 consecutive strains of P. aeruginosa were recovered from separate patients hospitalized in a burn hospital, Tehran, Iran. The isolates first were studied by disk diffusion antibiogram for 11 antibiotics and then minimum inhibitory concentration (MIC) experiments were performed to detect synergy between ciprofloxacin and the efflux pump inhibitor, carbonyl cyanide-m-chlorophenyl hydrazone (CCCP). Then to elucidate the inducing of multi drug resistance due to different efflux pumps activation in Fluoroquinolone resistant isolates, synergy experiments were also performed in random ciprofloxacin resistant isolates which have overexpressed efflux pumps phenotypically, using CCCP and selected antibiotics as markers for Beta-lactams and Aminoglycosides. The isolates were also tested by polymerase chain reaction (PCR) for the presence of the MexA, MexC and MexE, which encode the efflux pumps MexAB-OprM, MexCD-OprJ and MexEF-OprN. Results Most of the isolates were resistant to 3 or more antibiotics tested. More than half of the ciprofloxacin resistant isolates exhibited synergy between ciprofloxacin and CCCP, indicating the efflux pump activity contributed to the ciprofloxacin resistance. Also increased susceptibility of random ciprofloxacin resistant isolates of P. aeruginosa to other selected antibiotics, in presence of CCCP, implied multidrug extrusion by different active efflux pump in fluoroquinolones resistant strains. All of Ciprofloxacin resistant isolates were positive for MexA, MexC and MexE genes simultaneously. Conclusion In this burn hospital, where multidrug resistant P. aeruginosa isolates were prevalent, ciprofloxacin resistance and multidrug resistance due to the overexpression of fluoroquinolones mediated efflux pumps has also now emerged. Early recognition of this resistance mechanism should allow the use of alternative antibiotics and use an efflux pumps inhibitor in combination with antibiotic therapy.
Collapse
Affiliation(s)
- Maryam Adabi
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Talebi-Taher
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Arbabi
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mastaneh Afshar
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Fathizadeh
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloufar Moghadam-Maragheh
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majidpour
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
45
|
Antimicrobial co-resistance patterns of gram-negative bacilli isolated from bloodstream infections: a longitudinal epidemiological study from 2002-2011. BMC Infect Dis 2014; 14:393. [PMID: 25308184 PMCID: PMC4287581 DOI: 10.1186/1471-2334-14-393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/10/2014] [Indexed: 11/16/2022] Open
Abstract
Background Increasing multidrug resistance in gram-negative bacilli (GNB) infections poses a serious threat to public health. Few studies have analyzed co-resistance rates, defined as an antimicrobial susceptibility profile in a subset already resistant to one specific antibiotic. The epidemiologic and clinical utility of determining co-resistance rates are analyzed and discussed. Methods A 10-year retrospective study from 2002–2011 of bloodstream infections with GNB were analyzed from three hospitals in Greater Vancouver, BC, Canada. Descriptive statistics were calculated for antimicrobial resistance and co-resistance. Statistical analysis further described temporal trends of antimicrobial resistance, correlations of resistance between combinations of antimicrobials, and temporal trends in co-resistance patterns. Results The total number of unique blood stream isolates of GNB was 3280. Increasing resistance to individual antimicrobials was observed for E. coli, K. pneumoniae, K. oxytoca, E. cloacae, and P. aeruginosa. Ciprofloxacin resistance in E. coli peaked in 2006 at 40% and subsequently stabilized at 29% in 2011, corresponding to decreasing ciprofloxacin usage after 2007, as assessed by defined daily dose utilization data. High co-resistance rates were observed for ceftriaxone-resistant E. coli with ciprofloxacin (73%), ceftriaxone-resistant K. pneumoniae with trimethoprim-sulfamethoxazole (83%), ciprofloxacin-resistant E. cloacae with ticarcillin-clavulanate (91%), and piperacillin-tazobactam-resistant P. aeruginosa with ceftazidime (83%). Conclusions Increasing antimicrobial resistance was demonstrated over the study period, which may partially be associated with antimicrobial consumption. The study of co-resistance rates in multidrug resistant GNB provides insight into the epidemiology of resistance acquisition, and may be used as a clinical tool to aid prescribing empiric antimicrobial therapy. Electronic supplementary material The online version of this article (doi:10.1186/1471-2334-14-393) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Ther Deliv 2014; 5:409-27. [PMID: 24856168 DOI: 10.4155/tde.14.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that causes serious lung infections in cystic fibrosis, non-cystic fibrosis bronchiectasis, immunocompromised, and mechanically ventilated patients. The arsenal of conventional antipseudomonal antibiotic drugs include the extended-spectrum penicillins, cephalosporins, carbapenems, monobactams, polymyxins, fluoroquinolones, and aminoglycosides but their toxicity and/or increasing antibiotic resistance are of particular concern. Improvement of existing therapies against Pseudomonas aeruginosa infections involves the use of liposomes - artificial phospholipid vesicles that are biocompatible, biodegradable, and nontoxic and able to entrap and carry hydrophilic, hydrophobic, and amphiphilic molecules to the site of action. The goal of developing liposomal antibiotic formulations is to improve their therapeutic efficacy by reducing drug toxicity and/or by enhancing the delivery and retention of antibiotics at the site of infection. The focus of this review is to appraise the current progress of the development and application of liposomal antibiotic delivery systems for the treatment pulmonary infections caused by P. aeruginosa.
Collapse
|
47
|
Maurya AP, Choudhury D, Talukdar AD, Dhar (Chanda) A, Chakravarty A, Bhattacharjee A. A report on the presence of GES-5 extended spectrum beta-lactamase producing Pseudomonas aeruginosa associated with urinary tract infection from north-east India. Indian J Med Res 2014; 140:565-7. [PMID: 25488455 PMCID: PMC4277147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Debarati Choudhury
- Department of Life Science & Bioinformatics, Assam University, Silchar 788 011, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar 788 011, India
| | - Anupam Dhar (Chanda)
- Department of Microbiology, Silchar Medical College & Hospital, Silchar 788 014, India
| | - Atanu Chakravarty
- Department of Microbiology, Silchar Medical College & Hospital, Silchar 788 014, India
| | - Amitabha Bhattacharjee
- Department of Microbiology, Assam University, Silchar 788 011, India,For correspondence:
| |
Collapse
|
48
|
Sacha P, Wieczorek P, Ojdana D, Hauschild T, Milewski R, Czaban S, Poniatowski B, Tryniszewska E. Expression of MexAB-OprM efflux pump system and susceptibility to antibiotics of different Pseudomonas aeruginosa clones isolated from patients hospitalized in two intensive care units at University Hospital in Bialystok (northeastern Poland) between Janu. APMIS 2014; 122:931-40. [DOI: 10.1111/apm.12236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Paweł Sacha
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
| | - Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
| | - Tomasz Hauschild
- Department of Microbiology; Faculty of Biology and Chemistry; University of Bialystok; Bialystok
| | - Robert Milewski
- Department of Statistics and Medical Informatics; Faculty of Health Sciences; Medical University; Bialystok
| | - Sławomir Czaban
- Department of Anaesthesiology and Intensive Therapy; Faculty of Health Sciences; Medical University; Bialystok
| | - Bogusław Poniatowski
- Hospital Emergency Department with Intensive Care Subdivision; University Hospital; Bialystok
| | - Elżbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
- Department of Microbiological Diagnostics and Infectious Immunology; University Hospital; Bialystok Poland
| |
Collapse
|
49
|
Sullivan E, Bensman J, Lou M, Agnello M, Shriner K, Wong-Beringer A. Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa. Crit Care Med 2014; 42:48-56. [PMID: 23963124 DOI: 10.1097/ccm.0b013e318298a86f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the differential association of host characteristics, antimicrobial resistance, and type III secretion system virulence of Pseudomonas aeruginosa isolates with respiratory syndromes in hospitalized adult patients. DESIGN Retrospective, cohort study. SETTING Community teaching hospital. PATIENTS Two hundred eighteen consecutive adult patients with respiratory culture positive for P. aeruginosa between January 2005 to January 2010. INTERVENTIONS Medical charts were reviewed to obtain demographic, laboratory, radiographic, and clinical information. Isolates were assayed by polymerase chain reaction for genes encoding the type III secretion system effectors (ExoU, ExoS, and PcrV) and for strain relatedness using randomly amplified polymorphic DNA analysis. Levofloxacin susceptibility was determined by broth microdilution. Patients were grouped by colonization, bronchitis, or pneumonia and were compared for differential risk of developing the clinical syndrome with respect to host and microbial characteristics. MEASUREMENTS AND MAIN RESULTS Half of the study cohort (54%, 117 of 218) had pneumonia, 32% (70 of 218) had bronchitis, and 14% (31 of 218) had colonization; in-hospital mortality was 35%, 11%, and 0%, respectively. Host factors strongly associated with pneumonia development were residence in long-term care facility, healthcare-associated acquisition of P. aeruginosa, higher Acute Physiology and Chronic Health Evaluation II score, presence of enteral feeding tube, mechanical ventilation, and recent history of pneumonia. Fluoroquinolone-resistant (57% vs 34%, 16%; p < 0.0001) and multidrug-resistant (36% vs 26%, 7%; p = 0.0045) strains were more likely to cause pneumonia than bronchitis or colonization, respectively. Analysis of host and microbial factors in a multivariate regression model yielded the combined traits of fluoroquinolone resistance and gene encoding the type III secretion system ExoU effector in P. aeruginosa as the single most significant predictor of pneumonia development. CONCLUSIONS These results suggest that fluoroquinolone-resistant phenotype in a type III secretion system exoU strain background contributes toward the pathogenesis of P. aeruginosa in pneumonia.
Collapse
Affiliation(s)
- Eva Sullivan
- 1Huntington Hospital, Pasadena, CA. 2University of Southern California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
50
|
Inhibition of the Mycobacterium tuberculosis reserpine-sensitive efflux pump augments intracellular concentrations of ciprofloxacin and enhances susceptibility of some clinical isolates. J Formos Med Assoc 2013; 112:789-94. [DOI: 10.1016/j.jfma.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 11/24/2022] Open
|