1
|
El-Emam GA, El-Baz AM, Shata A, Shaaban AA, Adel El-Sokkary MM, Motawea A. Formulation and microbiological ancillary studies of gemifloxacin proniosomes for exploiting its role against LPS acute pneumonia model. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
2
|
Wang Q, Mi G, Hickey D, Li Y, Tu J, Webster TJ, Shen Y. Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 2018; 160:107-123. [PMID: 29407340 DOI: 10.1016/j.biomaterials.2018.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/19/2022]
Abstract
Pneumonia is a major contributor to infection-based hospitalizations and deaths in the United States. Antibiotics such as azithromycin (AZM), although effective at managing pneumonia, often suffer from off-target diffusion and poor bioavailability when administered orally or via intravenous injection. The formation of biofilms at the disease sites makes the treatment more complicated by protecting bacteria from antimicrobial agents and thus necessitating a much higher dosage of antibiotics to eradicate the biofilms. As such, targeted pulmonary delivery of antibiotics has emerged as a promising alternative by providing direct access to the lung while also allowing higher local therapeutic concentrations but minimal systemic exposure. In this study, AZM was encapsulated in N-fumaroylated diketopiperazine (FDKP) microparticles for efficient pulmonary delivery. Both in vitro and in vivo results demonstrated that AZM@FDKP-MPs administered via intratracheal insufflation achieved at least a 3.4 times higher local concentration and prolonged retention times compared to intravenous injection and oral administration, suggesting their potential to better manage bacterial pneumonia.
Collapse
Affiliation(s)
- Qiyue Wang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Gujie Mi
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Daniel Hickey
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Yanan Li
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
3
|
Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem 2016; 24:6390-6400. [PMID: 27887963 DOI: 10.1016/j.bmc.2016.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/28/2022]
Abstract
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.
Collapse
Affiliation(s)
- Miao Zhao
- Institute of Antibiotics Hua-shan Hospital, Fudan University & Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, China; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alexander J Lepak
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial VA Hospital, Madison, WI, USA.
| |
Collapse
|
4
|
Tillotson GS. Role of gemifloxacin in community-acquired pneumonia. Expert Rev Anti Infect Ther 2014; 6:405-18. [DOI: 10.1586/14787210.6.4.405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 2013; 65:1053-90. [PMID: 23803529 DOI: 10.1124/pr.111.005769] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pharmacokinetic-pharmacodynamic (PKPD) modeling and simulation has evolved as an important tool for rational drug development and drug use, where developed models characterize both the typical trends in the data and quantify the variability in relationships between dose, concentration, and desired effects and side effects. In parallel, rapid emergence of antibiotic-resistant bacteria imposes new challenges on modern health care. Models that can characterize bacterial growth, bacterial killing by antibiotics and immune system, and selection of resistance can provide valuable information on the interactions between antibiotics, bacteria, and host. Simulations from developed models allow for outcome predictions of untested scenarios, improved study designs, and optimized dosing regimens. Today, much quantitative information on antibiotic PKPD is thrown away by summarizing data into variables with limited possibilities for extrapolation to different dosing regimens and study populations. In vitro studies allow for flexible study designs and valuable information on time courses of antibiotic drug action. Such experiments have formed the basis for development of a variety of PKPD models that primarily differ in how antibiotic drug exposure induces amplification of resistant bacteria. The models have shown promise for efficacy predictions in patients, but few PKPD models describe time courses of antibiotic drug effects in animals and patients. We promote more extensive use of modeling and simulation to speed up development of new antibiotics and promising antibiotic drug combinations. This review summarizes the value of PKPD modeling and provides an overview of the characteristics of available PKPD models of antibiotics based on in vitro, animal, and patient data.
Collapse
Affiliation(s)
- Elisabet I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
6
|
Should moxifloxacin be used for the treatment of extensively drug-resistant tuberculosis? An answer from a murine model. Antimicrob Agents Chemother 2010; 54:4765-71. [PMID: 20805388 DOI: 10.1128/aac.00968-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence of extensively drug-resistant tuberculosis (XDR-TB), defined as TB that is resistant to isoniazid, rifampin, fluoroquinolones, and aminoglycosides, is rising worldwide. The extent of Mycobacterium tuberculosis resistance to fluoroquinolones depends on the mutation in the DNA gyrase, the only target of fluoroquinolones. The MIC of moxifloxacin, the most active fluoroquinolone against M. tuberculosis, may be lower than its peak serum level for some ofloxacin-resistant strains of Mycobacterium tuberculosis. Therefore, if the MIC of moxifloxacin is lower than its peak serum level, it may be effective against XDR-TB. Our objective was to determine the efficacy of moxifloxacin in treating ofloxacin-resistant TB. We selected isogenic fluoroquinolone-resistant mutants of M. tuberculosis H37Rv in vivo. We infected Swiss mice with either wild-type H37Rv or one of three mutant strains with different MICs that are commonly seen in clinical practice. The MICs of the mutant strains ranged from below to above the peak moxifloxacin level seen in humans (3 μg/ml). Each mouse was treated with one of four moxifloxacin doses for 1 month. Moxifloxacin was effective against mutant strain GyrB D500N, with the lowest MIC (0.5 μg/ml), when the standard dose was doubled. Moxifloxacin reduced mortality in mice infected with mutant strain GyrA A90V with an intermediate MIC (2 μg/ml). However, it had no impact on the mutant strain GyrA D94G with the highest MIC (4 μg/ml). Our study underscores current WHO recommendations to use moxifloxacin when there is resistance to early-generation fluoroquinolones such as ofloxacin, restricting this recommendation to strains with moxifloxacin MICs of less than or equal to 2 μg/ml.
Collapse
|
7
|
Abstract
SUMMARY Streptococcus pneumoniae is a colonizer of human nasopharynx, but it is also an important pathogen responsible for high morbidity, high mortality, numerous disabilities, and high health costs throughout the world. Major diseases caused by S. pneumoniae are otitis media, pneumonia, sepsis, and meningitis. Despite the availability of antibiotics and vaccines, pneumococcal infections still have high mortality rates, especially in risk groups. For this reason, there is an exceptionally extensive research effort worldwide to better understand the diseases caused by the pneumococcus, with the aim of developing improved therapeutics and vaccines. Animal experimentation is an essential tool to study the pathogenesis of infectious diseases and test novel drugs and vaccines. This article reviews both historical and innovative laboratory pneumococcal animal models that have vastly added to knowledge of (i) mechanisms of infection, pathogenesis, and immunity; (ii) efficacies of antimicrobials; and (iii) screening of vaccine candidates. A comprehensive description of the techniques applied to induce disease is provided, the advantages and limitations of mouse, rat, and rabbit models used to mimic pneumonia, sepsis, and meningitis are discussed, and a section on otitis media models is also included. The choice of appropriate animal models for in vivo studies is a key element for improved understanding of pneumococcal disease.
Collapse
|
8
|
Abgueguen P, Azoulay-Dupuis E, Noel V, Moine P, Rieux V, Fantin B, Bedos JP. Amoxicillin is effective against penicillin-resistant Streptococcus pneumoniae strains in a mouse pneumonia model simulating human pharmacokinetics. Antimicrob Agents Chemother 2007; 51:208-14. [PMID: 17060515 PMCID: PMC1797644 DOI: 10.1128/aac.00004-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/13/2006] [Accepted: 10/14/2006] [Indexed: 11/20/2022] Open
Abstract
High-dose oral amoxicillin (3 g/day) is the recommended empirical outpatient treatment of community-acquired pneumonia (CAP) in many European guidelines. To investigate the clinical efficacy of this treatment in CAP caused by Streptococcus pneumoniae strains with MICs of amoxicillin > or =2 microg/ml, we used a lethal bacteremic pneumonia model in leukopenic female Swiss mice with induced renal failure to replicate amoxicillin kinetics in humans given 1 g/8 h orally. Amoxicillin (15 mg/kg of body weight/8 h subcutaneously) was given for 3 days. We used four S. pneumoniae strains with differing amoxicillin susceptibility and tolerance profiles. Rapid bacterial killing occurred with an amoxicillin-susceptible nontolerant strain: after 4 h, blood cultures were negative and lung homogenate counts under the 2 log(10) CFU/ml detection threshold (6.5 log(10) CFU/ml in controls, P < 0.01). With an amoxicillin-intermediate nontolerant strain, significant pulmonary bacterial clearance was observed after 24 h (4.3 versus 7.9 log(10) CFU/ml, P < 0.01), and counts were undetectable 12 h after treatment completion. With an amoxicillin-intermediate tolerant strain, 24-h bacterial clearance was similar (5.4 versus 8.3 log(10) CFU/ml, P < 0.05), but 12 h after treatment completion, lung homogenates contained 3.3 log(10) CFU/ml. Similar results were obtained with an amoxicillin-resistant and -tolerant strain. Day 10 survival rates were usually similar across strains. Amoxicillin with pharmacokinetics simulating 1 g/8 h orally in humans is bactericidal in mice with pneumonia due to S. pneumoniae for which MICs were 2 to 4 microg/ml. The killing rate depends not only on resistance but also on tolerance of the S. pneumoniae strains.
Collapse
Affiliation(s)
- Pierre Abgueguen
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49933 Angers Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Chavanet P, Croisier D. La fenêtre de mutation pour le couple « pneumocoque–fluoroquinolone ». Apport des modèles expérimentaux. Med Mal Infect 2006; 36:614-24. [PMID: 17095175 DOI: 10.1016/j.medmal.2006.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/21/2006] [Indexed: 10/23/2022]
Abstract
Low-level resistance to fluoroquinolones (in vitro susceptible but with topoisomerase mutation, parC) is currently rare among pneumococci in France. However, this resistance is more frequently observed in previously exposed patients and therapeutic failure has been reported. These issues were investigated by using a humanized model of experimental pneumonia induced by pneumococci exhibiting this low-level resistance profile. The results are as follows: 1) when the pneumonia is due to a wild type pneumococcus, humanized ciprofloxacin treatment is not effective because of resistant mutants with parC mutation; moreover, levoflaxin treatment is less bactericidal than gatiflo- or moxifloxacin (-4 vs -6 log CFU/g); 2) when an efflux strain is used, levo-treatment is not efficient but there are no mutants, a gatiflo-treatment is combined when mutants appear and moxiflo-treatment is effective; 3) when the pneumonia is induced with susceptible parC strains, treatment with either levo, or gati, or moxifloxacin is completely ineffective because resistant mutants appear (acquisition of another gyrA mutation). Measure of the mutation prevention concentration (MPC) allows anticipating these results since the mutation window can be determined. These results stress the necessity to identify patients with such pneumococcal strains in order to avoid therapeutic failure and the emergence of fluoroquinolone resistant mutants.
Collapse
Affiliation(s)
- P Chavanet
- Laboratoire des maladies infectieuses, LQRF-EA 562, service des maladies infectieuses, hôpital du Bocage, CHU de Dijon, faculté de médecine de Dijon, BP 77908, 21000 Dijon, France.
| | | |
Collapse
|
10
|
De Azavedo JCS, Duncan CL, Kilburn L, Downar J, Kong B, Lad S, Low DE, Bast DJ. Relative potential for selection of quinolone-resistance-determining-region mutations in Streptococcus pneumoniae by gemifloxacin, gatifloxacin and moxifloxacin. J Chemother 2006; 18:373-8. [PMID: 17024792 DOI: 10.1179/joc.2006.18.4.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Serial passage of a clinical isolate of Streptococcus pneumoniae, in the presence of moxifloxacin, gatifloxacin or gemifloxacin, gave rise to resistant isolates. Non-susceptibility as defined by Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS) breakpoints arose on Days 10, 11, and 12 with gatifloxacin, gemifloxacin, and moxifloxacin respectively. Moxifloxacin and gatifloxacin selected for a single step quinolone-resistant-determining-region (QRDR) mutation in DNA gyrase (GyrA) on Day 4 and 7 respectively, whereas gemifloxacin selected simultaneously for multi-step mutations in gyrase and topoisomerase IV (ParC) on Day 17 and activated a non-reserpine inhibited efflux mechanism by Day 4. As found in clinical isolates, mutations included Ser-81-Phe and Glu-85-Lys in GyrA and Ser-79-Phe or Asp-83-Tyr in ParC. At high MICs, moxifloxacin showed a previously unreported 4 amino-acid deletion in GyrB as well as a more unusual substitution Ser-79-Leu/Ile in ParC. Gemifloxacin showed a 2- to 16-fold greater activity than moxifloxacin or gatifloxacin against strains with two or more QRDR mutations, however, its potency did not translate to nonsusceptibility and gemifloxacin MIC values were either at or well above the CLSI nonsusceptible breakpoint concentration.
Collapse
Affiliation(s)
- J C S De Azavedo
- Toronto Centre for Antimicrobial Research and Evaluation (ToCARE), Dept. of Microbiology, Mount Sinai Hospital, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|