1
|
Aminata M, Alioune BS, Yacouba C, Agaly DO, Diarra Bassirou, Abdoulaye T, Mamadou CD, Drissa K, Lobogal D, Djaminatou C, Youssouf C, Izetiégouma MI, Bocar FD. Multidrug resistant bacteria isolated from nosocomial infections at University Teaching Hospital of Point-G, Bamako, Mali. AFRICAN JOURNAL OF BACTERIOLOGY RESEARCH : JBR 2023; 15:39116BE70184. [PMID: 38742183 PMCID: PMC11089850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An infection is said to be nosocomial or hospital if it is absent when the patient enters the hospital and it appears and develops at least 48 h late. The objective of this study was to determine the resistance phenotypes of bacteria isolated from nosocomial infections at the University Teaching Hospital of Point G. Urine, blood, pus, skin and bronchoalveolar fluid samples were taken in different units, and bacteria isolations were performed on usual selective media such as Drigalski Colombia agar supplemented with nalidixic acid and colistin and 5% sheep blood and chocolate agar. Identifications of bacteria such as Enterobacteriaceae, Pseudomonas and acinetobacter, and Staphylococci were done using API20E gallery, API20NE gallery and catalase/oxidase tests, and the Pastorex Staph kit respectively. The antimicrobial susceptibility testing was performed on Mueller-Hinton agar using the diffusion method. A total of 463 patients were inpatients for at least 48 h in the different units, and a nosocomial infection was notified in at least 57 patients (12.3%). A total of 65 episodes of nosocomial infections were observed in these 57 patients. Of the bacteria isolated, multidrug-resistant bacteria (MDR) represented 63.7% (n=36). These were extended-spectrum beta-lactamase (ESBL)-secreting Enterobacteriaceae (n=21), high-level cephalosporinase (n=13) and methicillin-resistant coagulase-negative Staphylococci (n=2). Despite this high number of multi-resistant bacteria isolated in this study; colistin and amikacin had very good activity on enterobacteriaceae. The results show the need to strengthen hygiene in the intensive care units in order to fight against nosocomial infections at the UTH of Point G.
Collapse
Affiliation(s)
- Maiga Aminata
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
| | - Beye Seydina Alioune
- Faculty of Medicine and Odontostomatology, University Teaching Hospital of Point-G, Bamako, Mali
- Point-G University Hospital Resuscitation Unit, Bamako, Mali
| | - Cissoko Yacouba
- Faculty of Medicine and Odontostomatology, University Teaching Hospital of Point-G, Bamako, Mali
- Department of Infectious and Tropical Diseases, Point-G University Hospital, Bamako, Mali
| | - Dicko Oumar Agaly
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
| | - Diarra Bassirou
- Faculty of Medicine and Odontostomatology, University Teaching Hospital of Point-G, Bamako, Mali
- University Center for Clinical Research, Point-G University Hospital, Bamako, Mali
| | | | - Coulibaly Djibril Mamadou
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
- Faculty of Pharmacy, Point-G University Hospital, Bamako, Mali
| | - Koné Drissa
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
| | - Diarra Lobogal
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
| | - Coulibaly Djaminatou
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
| | - Coulibaly Youssouf
- Faculty of Medicine and Odontostomatology, University Teaching Hospital of Point-G, Bamako, Mali
- Point-G University Hospital Resuscitation Unit, Bamako, Mali
| | - Maiga Ibrahim Izetiégouma
- Medical Biology and Hospital Hygiene Laboratory, Point-G University Hospital, Bamako, Mali
- Faculty of Medicine and Odontostomatology, University Teaching Hospital of Point-G, Bamako, Mali
| | - Fofana Djeneba Bocar
- Faculty of Medicine and Odontostomatology, University Teaching Hospital of Point-G, Bamako, Mali
- University Center for Clinical Research, Point-G University Hospital, Bamako, Mali
| |
Collapse
|
2
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
3
|
Abstract
Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5-β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Gupta D, Singh A, Somvanshi P, Singh A, Khan AU. Structure-Based Screening of Non-β-Lactam Inhibitors against Class D β-Lactamases: An Approach of Docking and Molecular Dynamics. ACS OMEGA 2020; 5:9356-9365. [PMID: 32363287 PMCID: PMC7191842 DOI: 10.1021/acsomega.0c00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The manifestation of class D β-lactamases in the community raises significant concern as they can hydrolyze carbapenem antibiotics. Hence, it is exceptionally alluring to design novel inhibitors. Structure-based virtual screening using docking programs and molecular dynamics simulations was employed to identify two novel non-β-lactam compounds that possess the ability to block different OXA variants. Furthermore, the presence of a nonpolar aliphatic amino acid, valine, near the active site serine, was identified in all OXA variants that can be accounted to block the catalytic activity of OXA enzymes.
Collapse
Affiliation(s)
- Divya Gupta
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
- Department of Life Sciences, Uttarakhand
Technical University, Dehradun 248007 Uttarakhand, India
| | - Aditi Singh
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi 110070, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi 110070, India
| | - Ajeet Singh
- Department of Biotechnology, G. B. Pant Engineering College, Pauri 246194, India
| | - Asad U. Khan
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| |
Collapse
|
5
|
Dissemination and Characteristics of a Novel Plasmid-Encoded Carbapenem-Hydrolyzing Class D β-Lactamase, OXA-436, Found in Isolates from Four Patients at Six Different Hospitals in Denmark. Antimicrob Agents Chemother 2017; 62:AAC.01260-17. [PMID: 29061750 DOI: 10.1128/aac.01260-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
The diversity of OXA-48-like carbapenemases is continually expanding. In this study, we describe the dissemination and characteristics of a novel carbapenem-hydrolyzing class D β-lactamase (CHDL) named OXA-436. In total, six OXA-436-producing Enterobacteriaceae isolates, including Enterobacter asburiae (n = 3), Citrobacter freundii (n = 2), and Klebsiella pneumoniae (n = 1), were identified in four patients in the period between September 2013 and April 2015. All three species of OXA-436-producing Enterobacteriaceae were found in one patient. The amino acid sequence of OXA-436 showed 90.4 to 92.8% identity to the amino acid sequences of other acquired OXA-48-like variants. Expression of OXA-436 in Escherichia coli and kinetic analysis of purified OXA-436 revealed an activity profile similar to that of OXA-48 and OXA-181, with activity against penicillins, including temocillin; limited or no activity against extended-spectrum cephalosporins; and activity against carbapenems. The blaOXA-436 gene was located on a conjugative ∼314-kb IncHI2/IncHI2A plasmid belonging to plasmid multilocus sequence typing sequence type 1 in a region surrounded by chromosomal genes previously identified to be adjacent to blaOXA genes in Shewanella spp. In conclusion, OXA-436 is a novel CHDL with functional properties similar to those of OXA-48-like CHDLs. The described geographical spread among different Enterobacteriaceae and the plasmid location of blaOXA-436 illustrate its potential for further dissemination.
Collapse
|
6
|
Lund BA, Thomassen AM, Carlsen TJO, Leiros HKS. Structure, activity and thermostability investigations of OXA-163, OXA-181 and OXA-245 using biochemical analysis, crystal structures and differential scanning calorimetry analysis. Acta Crystallogr F Struct Biol Commun 2017; 73:579-587. [PMID: 28994407 PMCID: PMC5633926 DOI: 10.1107/s2053230x17013838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023] Open
Abstract
The first crystal structures of the class D β-lactamases OXA-181 and OXA-245 were determined to 2.05 and 2.20 Å resolution, respectively; in addition, the structure of a new crystal form of OXA-163 was resolved to 2.07 Å resolution. All of these enzymes are OXA-48-like and have been isolated from different clinical Klebsiella pneumoniae strains and also from other human pathogens such as Pseudomonas aeruginosa and Escherichia coli. Here, enzyme kinetics and thermostability studies are presented, and the new crystal structures are used to explain the observed variations. OXA-245 had the highest melting point (Tm = 55.8°C), as determined by differential scanning calorimetry, compared with OXA-163 (Tm = 49.4°C) and OXA-181 (Tm = 52.6°C). The differences could be explained by the loss of two salt bridges in OXA-163, and an overall decrease in the polarity of the surface of OXA-181 compared with OXA-245.
Collapse
Affiliation(s)
- Bjarte Aarmo Lund
- Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ane Molden Thomassen
- Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | | |
Collapse
|
7
|
Al-Muhanna AS, Al-Muhanna S, Alzuhairi MA. Molecular investigation of extended-spectrum beta-lactamase genes and potential drug resistance in clinical isolates of Morganella morganii. Ann Saudi Med 2016; 36:223-8. [PMID: 27236395 PMCID: PMC6074545 DOI: 10.5144/0256-4947.2016.223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Resistance to beta-lactam antibiotics has become more common in Morganella morganii, which can cause of outbreaks of bacteremia and septicemia in postoperative patients. OBJECTIVE Investigate drug susceptibility of M morganii, identify the gene responsible for extended-spectrum beta-lactamase (ESBL) production and explore treatment options. DESIGN Descriptive study. SETTING Hospitals in An Najaf, Iraq. METHODS M morganii isolates were identified based on morphology, biochemical tests and VITEK® 2 compact system using (GN-ID) card. M morganii isolates were subjected to antibiotic resistance tests using the minimum inhibitory concentration (MIC) technique and an antibiogram was produced. Molecular studies were conducted using the polymerase chain reaction technique. MAIN OUTCOME MEASURE(S) Minimum inhibitory concentration. RESULTS From 395 gram-negative bacteria, only 17 isolates M morganii grew on MacConkey agar. M morganii isolates strongly resistant to several antibiotics were considered multidrug resistant. All M morganii isolates were ESBL producers. Four genes (CTX-M, SHV, TEM and OXA) encoding the b-lactamase enzyme were detected. Meropenem and imipenem were highly active against the M morganii isolates. CONCLUSIONS All isolates showed resistance to most common antibiotics, which limits options for treatment. This study provided useful information for selecting antibiotics to precisely target infections caused by M morganii. LIMITATIONS Limited to antibiotic susceptibility and genotype.
Collapse
Affiliation(s)
- Abbas S Al-Muhanna
- Dr. Abbas Sh. Al-Muhanna, Department of Biology,, University of Kufa,, Al Kufa Main Road,, An Najaf, Iraq 54001, T: +964.781-544-0226, , ORCID ID: orcid.org/0000-0003-4525-6328
| | - Sddiq Al-Muhanna
- Dr. Abbas Sh. Al-Muhanna, Department of Biology,, University of Kufa,, Al Kufa Main Road,, An Najaf, Iraq 54001, T: +964.781-544-0226, , ORCID ID: orcid.org/0000-0003-4525-6328
| | | |
Collapse
|
8
|
Krasauskas R, Labeikytė D, Markuckas A, Povilonis J, Armalytė J, Plančiūnienė R, Kavaliauskas P, Sužiedėlienė E. Purification and characterization of a new β-lactamase OXA-205 from Pseudomonas aeruginosa. Ann Clin Microbiol Antimicrob 2015; 14:52. [PMID: 26611758 PMCID: PMC4661998 DOI: 10.1186/s12941-015-0113-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have identified a novel class 1 integron (1503 bp), named In671 in a clinical Pseudomonas aeruginosa isolate. Integron sequence analysis revealed two gene cassettes, one coding for a new OXA-type β-lactamase designated as OXA-205 and the other coding for the aadB gene that is responsible for aminoglycoside resistance. The 266 amino acid sequence of OXA-205 revealed that this β-lactamase belongs to the Ambler class D showing highest sequence homology to the OXA-2 sub-lineage. Our objective was to purify and characterize β-lactamase OXA-205. METHODS Escherichia coli cells were transformed with a plasmid containing cloned bla OXA-205 gene from P. aeruginosa. Purification of overproduced OXA-205 consisted of a single ion-exchange chromatography step. SDS-PAGE and isoelectric focusing were performed to determine the molecular mass and pI, respectively. Size-exclusion chromatography was undertaken to determine the OXA-205 oligomerization state. Substrate hydrolysis reactions were employed to assess enzyme kinetic parameters. RESULTS Purification of OXA-205 yielded the enzyme with >95 % purity (as verified by SDS-PAGE). Approximate yield of the protein was estimated to be 20 mg per liter of culture. OXA-205 had a pI at 8.1, molecular mass of 26 kDa and a monomeric native structure. Kinetic analysis revealed that OXA-205 hydrolyzed narrow spectrum substrates, including ampicillin, carbenicillin, oxacillin, penicillin G, cefazolin and cefuroxime. Additionally, we observed a substrate inhibition profile towards carbenicillin and oxacillin, but not with ampicillin or penicillin G. Our results also show that OXA-205 conferred unusually high (among class D β-lactamases) resistance towards inhibition by NaCl. CONCLUSIONS OXA-205 can be considered a narrow spectrum monomeric β-lactamase that demonstrates unusually high resistance profile towards inhibition by NaCl.
Collapse
Affiliation(s)
- R Krasauskas
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania.
| | - D Labeikytė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania.
| | - A Markuckas
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania.
| | - J Povilonis
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania. .,Thermo Fisher Scientific Baltics, V. A. Graičiūno. 8, 02241, Vilnius, Lithuania.
| | - J Armalytė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania.
| | - R Plančiūnienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilžės 18, 47181, Kaunas, Lithuania.
| | - P Kavaliauskas
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania.
| | - E Sužiedėlienė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, 03101, Vilnius, Lithuania.
| |
Collapse
|
9
|
Zhao WH, Hu ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87. [DOI: 10.2217/fmb.15.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Metallo-β-lactamases (MBLs) can hydrolyze almost all β-lactam antibiotics and are resistant to clinically available β-lactamase inhibitors. Numerous types of acquired MBLs have been identified, including IMP, VIM, NDM, SPM, GIM, SIM, DIM, KHM, TMB, FIM and AIM. IMPs and VIMs are the most frequent MBLs and disseminate in members of the family Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. Acquired MBL genes are often embedded in integrons, and some are associated with insertion sequence (IS) elements. The class 1 integrons and IS common region (ISCR) elements are usually harbored in transposons and/or plasmids, forming so-called mobile vesicles for horizontal transfer of captured genes between bacteria. Here, we review the MBL superfamily identified in Gram-negative bacteria, with an emphasis on the phylogeny of acquired MBLs and their genetic association with class 1 integrons and IS common region elements.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|
10
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
11
|
Lund BA, Leiros HKS, Bjerga GEK. A high-throughput, restriction-free cloning and screening strategy based on ccdB-gene replacement. Microb Cell Fact 2014; 13:38. [PMID: 24612508 PMCID: PMC3996003 DOI: 10.1186/1475-2859-13-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background In high-throughput demanding fields, such as biotechnology and structural biology, molecular cloning is an essential tool in obtaining high yields of recombinant protein. Here, we address recently developed restriction-free methods in cloning, and present a more cost-efficient protocol that has been optimized to improve both cloning and clone screening. Results In our case study, three homologous β-lactamase genes were successfully cloned using these restriction-free protocols. To clone the genes, we chose a gene replacement strategy, where the recombinant genes contained overhangs that targeted a region of the expression vector including a cytotoxin-encoding ccdB-gene. Conclusion We provide further evidence that gene replacement can be applied with high-throughput cloning protocols. Targeting a replacement of the ccdB-gene was found to be very successful for counterselection using these protocols. This eliminated the need for treatment with the restriction enzyme DpnI that has so far been the preferred clone selection approach. We thus present an optimized cloning protocol using a restriction-free ccdB-gene replacement strategy, which allows for parallel cloning at a high-throughput level.
Collapse
Affiliation(s)
| | | | - Gro Elin Kjæreng Bjerga
- NorStruct, Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
12
|
Zavascki AP, Carvalhaes CG, Picão RC, Gales AC. Multidrug-resistantPseudomonas aeruginosaandAcinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 2014; 8:71-93. [DOI: 10.1586/eri.09.108] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Torol S, Kasap M. Purification and characterization of OXA-23 from Acinetobacter baumannii. J Enzyme Inhib Med Chem 2012; 28:836-42. [PMID: 22651799 DOI: 10.3109/14756366.2012.689296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the existence of bla(OXA-23) is reported in various parts of the world, the product of bla(OXA-23) gene, OXA-23, has not been purified and its kinetic properties are not known. In this study, OXA-23 of Acinetobacter baumannii isolated from Kocaeli University intensive care unit was characterized after purification using recombinant methods. Preliminary results showed that conventional protein purification methods were not effective for purification of OXA-23. Therefore, OXA-23 was fused to maltose-binding protein of Escherichia coli, the fused protein was expressed and purified to homogeneity. Kinetic properties of the pure protein were then studied with substrates e.g., imipenem, meropenem, cefepime, ceftazidime, ampicilline, piperacillin, penicillin G, and nitrocefin. Also clavulanic acid, tazobactam, and sulbactam concentrations that inhibit 50% of OXA-23 enzyme activity were calculated. Modelling of OXA-23 revealed its ionic surface structure, conformation in the fused form and its topology allowing us to make predictions for OXA-23 substrate specificity.
Collapse
Affiliation(s)
- Sinem Torol
- Department Of Medical Biology/KABI Proteomics Laboratory, Kocaeli University Medical School, Kocaeli, Turkey
| | | |
Collapse
|
14
|
Liu W, Liu X, Liao J, Zhang Y, Liang X. Identification of blaOXA-128 and blaOXA-129, two novel OXA-type extended-spectrum-β-lactamases in Pseudomonas aeruginosa, in Hunan Province, China. J Basic Microbiol 2011; 50 Suppl 1:S116-9. [PMID: 20967789 DOI: 10.1002/jobm.201000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/01/2010] [Indexed: 11/06/2022]
Abstract
We collected 97 non-repetitive carbapenemases-sensitive clinical isolates of Pseudomonas aeruginosa in Human Province, China, during the period of October 2006 to January 2007. From these isolates, we identified two novel oxacillin-hydrolysing (OXA) type extended-spectrum-β-lactamases (ESBLs): bla OXA-128 and bla OXA-129, which contain the mutations of I89V from bla OXA-56 and K134N from bla OXA-10, respectively. Clinical isolates containing either bla OXA-128 or bla OXA-129 show resistance to cephamycin-class antibiotics but sensitive to carbapenem-class antibiotics. The occurrence of novel OXA-type lactamases suggests a regional prevalent pattern of ESBLs Pseudomonas aeruginosa in this area.
Collapse
Affiliation(s)
- Wen'en Liu
- Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| | | | | | | | | |
Collapse
|
15
|
OXA-134, a naturally occurring carbapenem-hydrolyzing class D beta-lactamase from Acinetobacter lwoffii. Antimicrob Agents Chemother 2010; 54:5372-5. [PMID: 20837764 DOI: 10.1128/aac.00629-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter lwoffii, a species whose natural habitat is the human skin, intrinsically possesses a chromosomal gene encoding a carbapenem-hydrolyzing class D β-lactamase, OXA-134. This species may therefore constitute a reservoir for carbapenemase genes that may spread among other Acinetobacter species.
Collapse
|
16
|
Zhao WH, Hu ZQ. β-Lactamases identified in clinical isolates ofPseudomonas aeruginosa. Crit Rev Microbiol 2010; 36:245-58. [DOI: 10.3109/1040841x.2010.481763] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Crystal structure of the narrow-spectrum OXA-46 class D beta-lactamase: relationship between active-site lysine carbamylation and inhibition by polycarboxylates. Antimicrob Agents Chemother 2010; 54:2167-74. [PMID: 20145076 DOI: 10.1128/aac.01517-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Class D beta-lactamases represent a heterogeneous group of active-site serine beta-lactamases that show an extraordinary panel of functional features and substrate profiles, thus representing relevant models for biochemical and structural studies. OXA-46 is a narrow-spectrum enzyme belonging to the OXA-2 subgroup which was found in a Pseudomonas aeruginosa clinical isolate from northern Italy. In this work, we obtained the three-dimensional structure of OXA-46, which shows the overall fold of active serine beta-lactamases and a dimeric quaternary structure. Significant differences with currently available structures of class D beta-lactamases were found in the loops located close to the active site, which differ in length and conformation. Interestingly, the three subunits present in the asymmetric unit showed some structural heterogeneity, only one of which presented a carbamylated lysine recognized as an important functional feature of class D enzymes. The carbamylation state of residue Lys75 appeared to be associated with different shapes and dimensions of the active site. Moreover, a tartrate molecule from the crystallization buffer was found in the active site of the noncarbamylated subunits, which interacts with catalytically relevant residues. The OXA-46 crystal asymmetric units thus interestingly present the structures of the free carbamylated active site and of the ligand-bound uncarbamylated active site, offering the structural basis for investigating the potential of new scaffolds of beta-lactamase inhibitors.
Collapse
|
18
|
Genetic and biochemical characterization of TRU-1, the endogenous class C beta-lactamase from Aeromonas enteropelogenes. Antimicrob Agents Chemother 2010; 54:1547-54. [PMID: 20124004 DOI: 10.1128/aac.01252-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aeromonas enteropelogenes (formerly A. tructi) was described to be an ampicillin-susceptible and cephalothin-resistant Aeromonas species, which suggests the production of a cephalosporinase. Strain ATCC 49803 was susceptible to amoxicillin, cefotaxime, and imipenem but resistant to cefazolin (MICs of 2, 0.032, 0.125, and >256 microg/ml, respectively) and produced an inducible beta-lactamase. Cefotaxime-resistant mutants (MIC, 32 microg/ml) that showed constitutive beta-lactamase production could be selected in vitro. The gene coding for the cephalosporinase of A. enteropelogenes ATCC 49803 was cloned, and its biochemical properties were investigated. Escherichia coli transformants showing resistance to various beta-lactams carried a 3.5-kb plasmid insert whose sequence revealed a 1,146-bp open reading frame (ORF) encoding a class C beta-lactamase, named TRU-1, showing the highest identity scores with A. punctata CAV-1 (75%), A. salmonicida AmpC (75%), and A. hydrophila CepH (71%). The bla(TRU-1) locus includes open reading frames (ORFs) showing significant homology with genes found in the genomes of other Aeromonas species, although it exhibits a different organization, as reflected by the presence of additional ORFs located downstream of the beta-lactamase gene in the A. hydrophila and A. salmonicida genomes. Specific PCR assays were negative for cphA-like and bla(OXA-12)-like genes in three A. enteropelogenes ATCC strains. Purified TRU-1 showed a broad substrate profile, efficiently hydrolyzing benzylpenicillin, cephalothin, cefoxitin, and, although with significantly lower turnover rates, oxyiminocephalosporins. Cephaloridine and cefepime were poorly recognized by the enzyme, as reflected by the high K(m) values observed with these substrates. Thus far, A. enteropelogenes represents the only known example of an Aeromonas species that produces only one beta-lactamase belonging to molecular class C.
Collapse
|
19
|
Abstract
OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.
Collapse
|
20
|
Abstract
Class D beta-lactamase-mediated resistance to beta-lactams has been increasingly reported during the last decade. Those enzymes also known as oxacillinases or OXAs are widely distributed among Gram negatives. Genes encoding class D beta-lactamases are known to be intrinsic in many Gram-negative rods, including Acinetobacter baumannii and Pseudomonas aeruginosa, but play a minor role in natural resistance phenotypes. The OXAs (ca. 150 variants reported so far) are characterized by an important genetic diversity and a great heterogeneity in terms of beta-lactam hydrolysis spectrum. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. Acquired class D beta-lactamase genes are mostly associated to class 1 integron or to insertion sequences.
Collapse
|
21
|
Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. ACTA ACUST UNITED AC 2009; 16:540-7. [PMID: 19477418 DOI: 10.1016/j.chembiol.2009.04.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 01/10/2023]
Abstract
Carbapenem-hydrolyzing class D beta-lactamases (CHDLs) are enzymes found in important Gram-negative pathogens (mainly Acinetobacter baumannii and Enterobacteriaceae) that confer resistance to beta-lactam antibiotics, and notably carbapenems. The crystal structure of the OXA-48 carbapenemase was determined at pH 7.5 and at a resolution of 1.9 A. Surprisingly, and by contrast with OXA-24, the only other CHDL of known crystal structure, the structure of OXA-48 was similar to OXA-10, an enzyme devoid of carbapenemase activity, indicating that the hydrolysis of these compounds could depend on subtle changes in the active site region. Moreover, the active site groove of OXA-48 was different from that of OXA-24 in shape, dimensions, and charge distribution. Molecular dynamics pointed to the functional relevance of residues located in or close to the beta5-beta6 loop and allowed us to propose a mechanism for carbapenem hydrolysis by OXA-48.
Collapse
|
22
|
Metallo-β-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int J Antimicrob Agents 2009; 33:405.e1-7. [DOI: 10.1016/j.ijantimicag.2008.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 11/22/2022]
|
23
|
Kent L, Bradley JM, France M, Döring G, Carryn S, Bradbury I, Rendall J, Jones A, Elborn JS. Temocillin in cystic fibrosis: A retrospective pilot study. J Cyst Fibros 2008; 7:551-4. [DOI: 10.1016/j.jcf.2008.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/04/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
|
24
|
First countrywide survey of acquired metallo-beta-lactamases in gram-negative pathogens in Italy. Antimicrob Agents Chemother 2008; 52:4023-9. [PMID: 18809945 DOI: 10.1128/aac.00707-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-beta-lactamases (MBLs) can confer resistance to most beta-lactams, including carbapenems. Their emergence in gram-negative pathogens is a matter of major concern. Italy was the first European country to report the presence of acquired MBLs in gram-negative pathogens and is one of the countries where MBL producers have been detected repeatedly. Here, we present the results of the first Italian nationwide survey of acquired MBLs in gram-negative pathogens. Of 14,812 consecutive nonreplicate clinical isolates (12,245 Enterobacteriaceae isolates and 2,567 gram-negative nonfermenters) screened for reduced carbapenem susceptibility during a 4-month period (September to December 2004), 30 isolates (28 Pseudomonas aeruginosa isolates, 1 Pseudomonas putida isolate, and 1 Enterobacter cloacae isolate) carried acquired MBL determinants. MBL producers were detected in 10 of 12 cities, with a predominance of VIM-type enzymes over IMP-type enzymes (4:1). Although having an overall low prevalence (1.3%) and significant geographical differences, MBL-producing P. aeruginosa strains appeared to be widespread in Italy, with a notable diversity of clones, enzymes, and integrons carrying MBL gene cassettes.
Collapse
|
25
|
Abstract
The partnering of a beta-lactam with a beta-lactamase inhibitor is a highly effective strategy that can be used to combat bacterial resistance to beta-lactam antibiotics mediated by serine beta-lactamases (EC 3.2.5.6). To this end, we tested two novel penem inhibitors against OXA-1, a class D beta-lactamase that is resistant to inactivation by tazobactam. The K(i) of each penem inhibitor for OXA-1 was in the nM range (K(i) of penem 1, 45 +/- 8 nM; K(i) of penem 2, 12 +/- 2 nM). The first-order rate constant for enzyme and inhibitor complex inactivation of penems 1 and 2 for OXA-1 beta-lactamase were 0.13 +/- 0.01 s(-1) and 0.11 +/- 0.01 s(-1), respectively. By using an inhibitor-to-enzyme ratio of 1:1, 100% inactivation was achieved in <or=900 s and the recovery of OXA-1 beta-lactamase activity was not detected at 24 h. Covalent adducts of penems 1 and 2 (changes in molecular masses, +306 +/- 3 and +321 +/- 3 Da, respectively) were identified by electrospray ionization mass spectrometry (ESI-MS). After tryptic digestion of OXA-1 inactivated by penems 1 and 2, ESI-MS and matrix-assisted laser desorption ionization-time-of-flight MS identified the adducts of 306 +/- 3 and 321 +/- 3 Da attached to the peptide containing the active-site Ser67. The base hydrolysis of penem 2, monitored by serial (1)H nuclear magnetic resonance analysis, suggested that penem 2 formed a linear imine species that underwent 7-endo-trig cyclization to ultimately form a cyclic enamine, the 1,4-thiazepine derivative. Susceptibility testing demonstrated that the penem inhibitors at 4 mg/liter effectively restored susceptibility to piperacillin. Penem beta-lactamase inhibitors which demonstrate high affinities and which form long-lived acyl intermediates may prove to be extremely useful against the broad range of inhibitor-resistant serine beta-lactamases present in gram-negative bacteria.
Collapse
|
26
|
Nemergut DR, Robeson MS, Kysela RF, Martin AP, Schmidt SK, Knight R. Insights and inferences about integron evolution from genomic data. BMC Genomics 2008; 9:261. [PMID: 18513439 PMCID: PMC2426708 DOI: 10.1186/1471-2164-9-261] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/31/2008] [Indexed: 02/01/2023] Open
Abstract
Background Integrons are mechanisms that facilitate horizontal gene transfer, allowing bacteria to integrate and express foreign DNA. These are important in the exchange of antibiotic resistance determinants, but can also transfer a diverse suite of genes unrelated to pathogenicity. Here, we provide a systematic analysis of the distribution and diversity of integron intI genes and integron-containing bacteria. Results We found integrons in 103 different pathogenic and non-pathogenic bacteria, in six major phyla. Integrons were widely scattered, and their presence was not confined to specific clades within bacterial orders. Nearly 1/3 of the intI genes that we identified were pseudogenes, containing either an internal stop codon or a frameshift mutation that would render the protein product non-functional. Additionally, 20% of bacteria contained more than one integrase gene. dN/dS ratios revealed mutational hotspots in clades of Vibrio and Shewanella intI genes. Finally, we characterized the gene cassettes associated with integrons in Methylobacillus flagellatus KT and Dechloromonas aromatica RCB, and found a heavy metal efflux gene as well as genes involved in protein folding and stability. Conclusion Our analysis suggests that the present distribution of integrons is due to multiple losses and gene transfer events. While, in some cases, the ability to integrate and excise foreign DNA may be selectively advantageous, the gain, loss, or rearrangment of gene cassettes could also be deleterious, selecting against functional integrases. Thus, such a high fraction of pseudogenes may suggest that the selective impact of integrons on genomes is variable, oscillating between beneficial and deleterious, possibly depending on environmental conditions.
Collapse
Affiliation(s)
- Diana R Nemergut
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Yao F, Qian Y, Chen S, Wang P, Huang Y. Incidence of extended-spectrum beta-lactamases and characterization of integrons in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Shantou, China. Acta Biochim Biophys Sin (Shanghai) 2007; 39:527-32. [PMID: 17622472 DOI: 10.1111/j.1745-7270.2007.00304.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study is concerned with the level of antibiotic resistance of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae, isolated in Shantou, China, and its mechanism. Seventy-four non-repetitive clinical isolates of K. pneumoniae producing ESBLs were isolated over a period of 2 years. Antibiotic susceptibility, carried out by Epsilometer test, showed that most of the isolates were multiresistant. Polymerase chain reaction showed that, among the several types of beta-lactamases, SHV was the most prevalent, TEM was the second most prevalent, and CTX-M was the least prevalent. Sixty-nine isolates were positive for integrase gene IntI1, but no IntI2 or IntI3 genes were found. The variable region of class 1 integrons were amplified and further identified by sequencing. Thirteen different gene cassettes and 11 different cassette combinations were detected. Dfr and aadA cassettes were predominant and cassette combinations dfrA12, orfF and aadA2 were most frequently found. No gene cassettes encoding ESBLs were found. Integrons were prevalent and played an important role in multidrug resistance in ESBL-producing K. pneumoniae.
Collapse
Affiliation(s)
- Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | | | | | | | | |
Collapse
|
28
|
Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007; 20:79-114. [PMID: 17223624 PMCID: PMC1797629 DOI: 10.1128/cmr.00015-06] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information.
Collapse
Affiliation(s)
- Florence Depardieu
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
29
|
Voha C, Docquier JD, Rossolini GM, Fosse T. Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum. Antimicrob Agents Chemother 2006; 50:2673-9. [PMID: 16870757 PMCID: PMC1538689 DOI: 10.1128/aac.00058-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Previous studies have reported beta-lactamase-mediated penicillin resistance in Fusobacterium nucleatum, but no beta-lactamase gene has yet been identified in this species. An F. nucleatum subsp. polymorphum strain resistant to penicillin and amoxicillin was isolated from a human periodontitis sample. DNA cloning and sequencing revealed a 765-bp open reading frame encoding a new class D beta-lactamase named FUS-1 (OXA-85). A recombinant Escherichia coli strain carrying the bla(FUS-1) gene exhibited resistance to amoxicillin with a moderate decrease in the MICs with clavulanic acid. The bla(FUS-1) gene was found in two additional clonally unrelated F. nucleatum subsp. polymorphum isolates. It was located on the chromosome in a peculiar genetic environment where a gene encoding a putative transposase-like protein is found, suggesting a possible acquisition of this class D beta-lactamase gene. The FUS-1 enzyme showed the closest ancestral relationship with OXA-63 from Brachyspira pilosicoli (53% identity) and with putative chromosomal beta-lactamases of Campylobacter spp. (40 to 42% identity). FUS-1 presents all of the conserved structural motifs of class D beta-lactamases. Kinetic analysis revealed that FUS-1 exhibits a narrow substrate profile, efficiently hydrolyzing benzylpenicillin and oxacillin. FUS-1 was poorly inactivated by clavulanate and NaCl. FUS-1 is the first example of a class D beta-lactamase produced by a gram-negative, anaerobic, rod-shaped bacterium to be characterized.
Collapse
Affiliation(s)
- Christine Voha
- Laboratoire de Bactériologie et Epidémiologie Moléculaire, Université de Nice, Centre Hospitalier Universitaire de Nice, France
| | | | | | | |
Collapse
|
30
|
Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Füzi M, Kronvall G, Rossolini GM. Establishing clonal relationships between VIM-1-like metallo-beta-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol 2006; 44:4309-15. [PMID: 17021059 PMCID: PMC1698408 DOI: 10.1128/jcm.00817-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten multidrug-resistant Pseudomonas aeruginosa strains producing VIM-1-like acquired metallo-beta-lactamases (MBLs), isolated from four European countries (Greece, Hungary, Italy, and Sweden), were analyzed for genetic relatedness by several methodologies, including fliC sequence analysis, macrorestriction profiling of genomic DNA by pulsed-field gel electrophoresis (PFGE), random amplification of polymorphic DNA (RAPD), and multilocus sequence typing (MLST). The four approaches yielded consistent results overall but showed different resolution powers in establishing relatedness between isolates (PFGE>RAPD>MLST>fliC typing) and could usefully complement each other to address issues in the molecular epidemiology of P. aeruginosa strains producing acquired MBLs. In particular, the recently developed MLST approach was useful in revealing clonal relatedness between isolates when this was not readily apparent using RAPD and PFGE, and it suggested a common ancestry for some of the VIM-1-like MBL-positive P. aeruginosa strains currently spreading in Europe. The MBL producers belonged in three clonal complexes/burst groups (BGs). Of these, one corresponded to the previously described BG4 and included serotype O12 strains from Hungary and Sweden, while the other two were novel and included serotype O11 or nonserotypable strains from Greece, Sweden, and/or Italy. Comparison of the integrons carrying blaVIM-1-like cassettes of various isolates revealed a remarkable structural heterogeneity, suggesting the possibility that multiple independent events of acquisition of different blaVIM-containing integrons had occurred in members of the same clonal lineage, although a contribution of integrase-mediated cassette shuffling or other recombination mechanisms during the evolution of similar strains could also have played a role in determining this variability.
Collapse
Affiliation(s)
- Christian G Giske
- Department of Clinical Microbiology L2:02, Karolinska Institutet-MTC, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|