1
|
Senneby E, Holmberg A, Thörnqvist A, Fraenkel CJ. Decontamination of patient bathroom surfaces with 405 nm violet-blue light irradiation in a real-life setting. J Hosp Infect 2024; 152:93-98. [PMID: 39098393 DOI: 10.1016/j.jhin.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Irradiation with violet-blue light (VBL), in the spectrum of 405-450 nm, has been reported to be effective against pathogenic bacteria. AIM To investigate whether VBL irradiation could reduce the level of surface contamination at seven shared patient bathrooms in two wards at a hospital in Sweden. METHODS Repeated sampling of five separate surfaces (door handle, tap water handle, floor, toilet seat, and toilet armrest) was performed in the bathrooms where 405 nm light-emitting diode spotlights had been installed. A prospective study with a cross-over design was carried out, which included two study periods, first with the spotlights either switched on or off and a second study period with the opposite spotlight status. FINDINGS In total, 665 surface samples were collected during the study (133 samples per surface). Bacterial growth was found in 84% of all samples. The most common findings were coagulase-negative staphylococci and Bacillus spp. The median number of colony-forming units (cfu)/cm2 was 15 (interquartile range: 5-40) for all surfaces. In our main outcome, mean cfu/cm2 of all surfaces in a bathroom, no difference was observed with or without VBL. Clean surfaces (<5 cfu/cm2) were more commonly observed in bathrooms with VBL, also when controlling for confounding factors. No difference was observed in the number of heavily contaminated surfaces. CONCLUSION This study did not safely demonstrate an additive effect on bacterial surface levels when adding VBL to routine cleaning in shared patient bathrooms.
Collapse
Affiliation(s)
- E Senneby
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden; Department of Clinical Microbiology, Infection Control and Prevention, Region Skåne, Lund, Sweden.
| | - A Holmberg
- Department of Clinical Microbiology, Infection Control and Prevention, Region Skåne, Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - A Thörnqvist
- Department of Clinical Microbiology, Infection Control and Prevention, Region Skåne, Lund, Sweden
| | - C-J Fraenkel
- Department of Clinical Microbiology, Infection Control and Prevention, Region Skåne, Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Plavskii VY, Sobchuk AN, Mikulich AV, Dudinova ON, Plavskaya LG, Tretyakova AI, Nahorny RK, Ananich TS, Svechko AD, Yakimchuk SV, Leusenka IA. Identification by methods of steady-state and kinetic spectrofluorimetry of endogenous porphyrins and flavins sensitizing the formation of reactive oxygen species in cancer cells. Photochem Photobiol 2024; 100:1310-1327. [PMID: 38258972 DOI: 10.1111/php.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The question about acceptor molecules of optical radiation that determine the effects of photobiomodulation in relation to various types of cells still remains the focus of attention of researchers. This issue is most relevant for cancer cells, since, depending on the parameters of optical radiation, light can either stimulate their growth or inhibit them and lead to death. This study shows that endogenous porphyrins, which have sensitizing properties, may play an important role in the implementation of the effects of photobiomodulation, along with flavins. For the first time, using steady-state and kinetic spectrofluorimetry, free-base porphyrins and their zinc complexes were discovered and identified in living human cervical epithelial carcinoma (HeLa) cells, as well as in their extracts. It has been shown that reliable detection of porphyrin fluorescence in cells is hampered by the intense fluorescence of flavins due to their high concentration (micromolar range) and higher (compared to tetrapyrroles) fluorescence quantum yield. Optimization of the spectral range of excitation and the use of extractants that provide multiple quenching of the flavin component while increasing the emission efficiency of tetrapyrroles makes it possible to weaken the contribution of the flavin component to the recorded fluorescence spectra.
Collapse
Affiliation(s)
- Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Andrei N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| |
Collapse
|
3
|
da Silva RR, Nath AK, Adedoyin V, Akpoto E, DuBois JL. Anaerobic heme recycling by gut microbes: Important methods for monitoring porphyrin production. Methods Enzymol 2024; 702:353-370. [PMID: 39155118 PMCID: PMC11661913 DOI: 10.1016/bs.mie.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Heme is the most abundant species of iron inside the human body and an essential cofactor for numerous electron/chemical group transfer reactions and catalyses, especially those involving O2. Whole anaerobic biomes exist that also depend on heme but lack widespread, O2-dependent pathways for heme synthesis and breakdown. The gastrointestinal tract is an anaerobic ecosystem where many microbes are auxotrophic for heme, and where the abundant members of the Bacteroidetes phylum convert heme into iron and porphyrins. Working with mixtures of these hydrophobic compounds presents challenges for analyses, especially when their source is biological. In this brief chapter, we detail a handful of important methods and point out caveats necessary for their concurrent detection, separation, and quantification.
Collapse
Affiliation(s)
| | - Arnab Kumar Nath
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Victoria Adedoyin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Emmanuel Akpoto
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
4
|
Stewart CF, McGoldrick P, Anderson JG, MacGregor SJ, Atreya CD, Maclean M. Microbial reduction of prebagged human plasma using 405 nm light and its effects on coagulation factors. AMB Express 2024; 14:66. [PMID: 38842656 PMCID: PMC11156813 DOI: 10.1186/s13568-024-01725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.
Collapse
Affiliation(s)
- Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Preston McGoldrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK.
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
5
|
Yang Y, Yang R, Deng F, Yang L, Yang G, Liu Y, Tian Q, Wang Z, Li A, Shang L, Cheng G, Zhang L. Immunoactivation by Cutaneous Blue Light Irradiation Inhibits Remote Tumor Growth and Metastasis. ACS Pharmacol Transl Sci 2024; 7:1055-1068. [PMID: 38633599 PMCID: PMC11019738 DOI: 10.1021/acsptsci.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.
Collapse
Affiliation(s)
- Yingchun Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fangqing Deng
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luqiu Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guanghao Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanyan Liu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Tian
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zixi Wang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Aipeng Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Shang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Genyang Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lianbing Zhang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Izquierdo N, Gamez E, Alejo T, Mendoza G, Arruebo M. Antimicrobial Photodynamic Therapy Using Encapsulated Protoporphyrin IX for the Treatment of Bacterial Pathogens. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1717. [PMID: 38673075 PMCID: PMC11051101 DOI: 10.3390/ma17081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Herein, we report on the antimicrobial photodynamic effect of polymeric nanoparticles containing the endogenous photosensitizer protoporphyrin IX. Compared to equivalent doses of the free photosensitizer, we demonstrated that the photodynamic antimicrobial efficacy of PLGA (polylactic-co-glycolic acid) nanoparticles containing protoporphyrin IX (PpIX) against pathogenic Staphylococcus aureus (S. aureus) is preserved after encapsulation, while photobleaching is reduced. In addition, compared to equivalent doses of the free porphyrin, we show that a reduction in the cytotoxicity in mammalian cell cultures is observed when encapsulated. Therefore, the encapsulation of protoporphyrin IX reduces its photodegradation, while the released photosensitizer maintains its ability to generate reactive oxygen species upon light irradiation. The polymeric nanoencapsulation promotes aqueous solubility for the hydrophobic PpIX, improves its photostability and reduces the cytotoxicity, while providing an extended release of this endogenous photosensitizer.
Collapse
Affiliation(s)
- Natalia Izquierdo
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; (N.I.); (E.G.); (G.M.)
| | - Enrique Gamez
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; (N.I.); (E.G.); (G.M.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Teresa Alejo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; (N.I.); (E.G.); (G.M.)
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; (N.I.); (E.G.); (G.M.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| |
Collapse
|
7
|
Zdubek A, Maliszewska I. On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms. Int J Mol Sci 2024; 25:3590. [PMID: 38612403 PMCID: PMC11011456 DOI: 10.3390/ijms25073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described.
Collapse
Affiliation(s)
| | - Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
8
|
Luo Q, Liu C, Zhang A, Zhang D. Research progress in photodynamic therapy for Helicobacter pylori infection. Helicobacter 2024; 29:e13068. [PMID: 38497573 DOI: 10.1111/hel.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Helicobacter pylori (H. pylori) is a pathogenic microorganism that colonizes the human gastric mucosa and can lead to various gastric disorders, including gastritis, gastric ulcers, and gastric cancer. However, the increasing prevalence of antibiotic resistance in H. pylori has prompted the search for alternative treatment options. Photodynamic therapy has emerged as a potential alternative therapy, thus offering the advantage of avoiding some of the side effects associated with antibiotics and effectively targeting drug-resistant strains. In the postantibiotic era, photodynamic therapy (PDT) has shown promise as a novel treatment for H. pylori infection. This review focused on elucidating the mechanism of photodynamic therapy in the treatment of H. pylori. Additionally, we present an overview of the current research on photodynamic therapy by examining both standalone photodynamic therapy and combination therapies for H. pylori infection treatment. Furthermore, the safety profile of photodynamic therapy was also evaluated. Finally, we discuss the challenges and prospects associated with this innovative technology, with an aim to provide new insights and methodologies for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunyan Liu
- Institute of Sensor Technology, Gansu Academy of Sciences, Key Laboratory of Sensor and Sensing Technology of Gansu, Lanzhou, China
| | - Aiping Zhang
- The Second People's Hospital of Lanzhou, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Passaglia E, Sgarbossa A. Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy. Pharmaceutics 2023; 15:2748. [PMID: 38140089 PMCID: PMC10747032 DOI: 10.3390/pharmaceutics15122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria.
Collapse
Affiliation(s)
- Elisa Passaglia
- National Research Council-Institute of Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Antonella Sgarbossa
- National Research Council-Nanoscience Institute (CNR-NANO) and NEST-Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
10
|
Salviatto LTC, Prates RA, Pavani C, Bussadori SK, Deana AM. The influence of growth medium on the photodynamic susceptibility of Aggregatibacter actinomycetemcomitans to antimicrobial blue light. Lasers Med Sci 2023; 38:274. [PMID: 37993626 DOI: 10.1007/s10103-023-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The aim of this study was to investigate whether antimicrobial blue light (aBL) can cause the death of Aggregatibacter actinomycetemcomitans (A.a) and to determine the influence of different culture media, specifically brain heart infusion and blood agar, on bacterial survival fraction. An LED emitting at 403 ± 15 nm, with a radiant power of 1W, irradiance of 588.2 mW/cm2, and an irradiation time of 0 min, 1 min, 5 min, 10 min, 30 min, and 60 min, was used. The plates were incubated in microaerophilic conditions at 37 °C for 48 h, and the colony-forming units were counted. The photosensitizers were investigated using spectroscopy and fluorescence microscopy. There was no significant difference between the culture media (p > 0.05). However, a statistical reduction in both media was observed at 30 min (1058 J/cm2) (p < 0.05). The findings of this study suggest that aBL has the potential to kill bacteria regardless of the culture media used. Light therapy could be a promising and cost-effective strategy for preventing periodontal disease when used in combination with mechanical plaque control.
Collapse
Affiliation(s)
| | - Renato Araujo Prates
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Christiane Pavani
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Alessandro Melo Deana
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| |
Collapse
|
11
|
Huang S, Qin H, Liu M. Photoinactivation of Escherichia coli by 405 nm and 450 nm light-emitting diodes: Comparison of continuous wave and pulsed light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112799. [PMID: 37832394 DOI: 10.1016/j.jphotobiol.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Antimicrobial blue light (ABL) therapy is one of the novel non-antibiotic approaches and recent studies showed the potential of pulsed ABL. PURPOSE Comparing photoinactivation effect of continuous wave (CW) and pulsed blue light and investigating the impact of varying light parameters. METHODS E. coli cells in planktonic were treated with CW and pulsed light (405 nm and 450 nm) at 60 mW/cm2, and the samples were taken to assess survival, reactive oxygen species (ROS) level, damage of cell membrane and metabolic activity. Further, a ROS scavenger was used to find the role of ROS played in ABL therapy. RESULTS E. coli was more sensitive to 405 nm light and the photoinactivation was dose-dependent. Pulsed 405 nm light showed the better antimicrobial effect on E. coli and caused increasing damage of cell membrane. It might be attributed to the ROS production in bacteria. CONCLUSION Pulsed light has a potential of improving the efficacy of ABL therapy and is worth to be explored deeply further.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Rd, Zhongshan City 528403, China.
| |
Collapse
|
12
|
Sinclair LG, Dougall LR, Ilieva Z, McKenzie K, Anderson JG, MacGregor SJ, Maclean M. Laboratory evaluation of the broad-spectrum antibacterial efficacy of a low-irradiance visible 405-nm light system for surface-simulated decontamination. HEALTH AND TECHNOLOGY 2023; 13:1-15. [PMID: 37363345 PMCID: PMC10264887 DOI: 10.1007/s12553-023-00761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Purpose Lighting systems which use visible light blended with antimicrobial 405-nm violet-blue light have recently been developed for safe continuous decontamination of occupied healthcare environments. This paper characterises the optical output and antibacterial efficacy of a low irradiance 405-nm light system designed for environmental decontamination applications, under controlled laboratory conditions. Methods In the current study, the irradiance output of a ceiling-mounted 405-nm light source was profiled within a 3×3×2 m (18 m3) test area; with values ranging from 0.001-2.016 mWcm-2. To evaluate antibacterial efficacy of the light source for environmental surface decontamination, irradiance levels within this range (0.021-1 mWcm-2) at various angular (Δ ϴ=0-51.3) and linear (∆s=1.6-2.56 m) displacements from the source were used to generate inactivation kinetics, using the model organism, Staphylococcus aureus. Additionally, twelve bacterial species were surface-seeded and light-exposed at a fixed displacement below the source (1.5 m; 0.5 mWcm-2) to demonstrate broad-spectrum efficacy at heights typical of high touch surfaces within occupied settings. Results Results demonstrate that significant (P≤0.05) inactivation was successfully achieved at all irradiance values investigated, with spatial positioning from the source affecting inactivation, with greater times required for inactivation as irradiance decreased. Complete/near-complete (≥93.28%) inactivation of all bacteria was achieved following exposure to 0.5 mWcm-2 within exposure times realistic of those utilised practically for whole-room decontamination (2-16 h). Conclusion This study provides fundamental evidence of the efficacy, and energy efficiency, of low irradiance 405-nm light for bacterial inactivation within a controlled laboratory setting, further justifying its benefits for practical infection control applications.
Collapse
Affiliation(s)
- Lucy G Sinclair
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Laura R Dougall
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Zornitsa Ilieva
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Karen McKenzie
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
13
|
Zhu X, Yan H, Cui Z, Li H, Zhou W, Liu Z, Zhang H, Manoli T, Mo H, Hu L. Ultrasound-assisted blue light killing Vibrio parahaemolyticus to improve salmon preservation. ULTRASONICS SONOCHEMISTRY 2023; 95:106389. [PMID: 37003214 PMCID: PMC10457575 DOI: 10.1016/j.ultsonch.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Vibrio parahaemolyticus is a typical marine bacterium, which often contaminates seafood and poses a health risk to consumers. Some non-thermal sterilization technologies, such as ultrasonic field (UF) and blue light (BL) irradiation, have been widely used in clinical practice due to their efficiency, safety, and avoidance of drug resistance, but their application in food preservation has not been extensively studied. This study aims to investigate the effect of BL on V. parahaemolyticus in culture media and in ready-to-eat fresh salmon, and to evaluate the killing effectiveness of the UF combined with BL treatment on V. parahaemolyticus. The results showed that BL irradiation at 216 J/cm2 was effective in causing cell death (close to 100%), cell shrinkage and reactive oxygen species (ROS) burst in V. parahaemolyticus. Application of imidazole (IMZ), an inhibitor of ROS generation, attenuated the cell death induced by BL, indicating that ROS were involved in the bactericidal effects of BL on V. parahaemolyticus. Furthermore, UF for 15 min enhanced the bactericidal effect of BL at 216 J/cm2 on V. parahaemolyticus, with the bactericidal rate of 98.81%. In addition, BL sterilization did not affect the color and quality of salmon, and the additive UF treatment for 15 min did not significant impact on the color of salmon. These results suggest that BL or UF combined with BL treatment has potential for salmon preservation, however, it is crucial to strictly control the intensity of BL and the duration of UF treatment to prevent reducing the freshness and brightness of salmon.
Collapse
Affiliation(s)
- Xiaolin Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Han Yan
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; College of Applied Technology, Hezhou University, Hezhou, Guangxi 542899, China
| | - Zhenkun Cui
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Tatiana Manoli
- Department of Meat, Fish and Seafood Technology, Odessa National Academy of Food Technologies, Odessa 65039, Ukraine
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
14
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
15
|
dos Anjos C, Leanse LG, Ribeiro MS, Sellera FP, Dropa M, Arana-Chavez VE, Lincopan N, Baptista MS, Pogliani FC, Dai T, Sabino CP. New Insights into the Bacterial Targets of Antimicrobial Blue Light. Microbiol Spectr 2023; 11:e0283322. [PMID: 36809152 PMCID: PMC10101057 DOI: 10.1128/spectrum.02833-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Initially, we evaluated the killing kinetics of bacteria exposed to aBL and used this information to calculate the lethal doses (LD) responsible for killing 90 and 99.9% of bacteria. We also quantified endogenous porphyrins and assessed their spatial distribution. We then quantified and suppressed reactive oxygen species (ROS) production in bacteria to investigate their role in bacterial killing by aBL. We also assessed aBL-induced DNA damage, protein carbonylation, lipid peroxidation, and membrane permeability in bacteria. Our data showed that P. aeruginosa was more susceptible to aBL (LD99.9 = 54.7 J/cm2) relative to S. aureus (LD99.9 = 158.9 J/cm2) and E. coli (LD99.9 = 195 J/cm2). P. aeruginosa exhibited the highest concentration of endogenous porphyrins and level of ROS production relative to the other species. However, unlike other species, DNA degradation was not observed in P. aeruginosa. Sublethal doses of blue light (LD99.9). We conclude that the primary targets of aBL depend on the species, which are probably driven by variable antioxidant and DNA-repair mechanisms. IMPORTANCE Antimicrobial-drug development is facing increased scrutiny following the worldwide antibiotic crisis. Scientists across the world have recognized the urgent need for new antimicrobial therapies. In this sense, antimicrobial blue light (aBL) is a promising option due to its antimicrobial properties. Although aBL can damage different cell structures, the targets responsible for bacterial inactivation have still not been completely established and require further exploration. In our study, we conducted a thorough investigation to identify the possible aBL targets and gain insights into the bactericidal effects of aBL on three relevant pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This research not only adds new content to blue light studies but opens new perspectives to antimicrobial applications.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Gibraltar, Europa Point Campus, Gibraltar
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício S. Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Pogliani
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caetano P. Sabino
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Biolambda, Scientific and Commercial Ltd., São Paulo, Brazil
| |
Collapse
|
16
|
Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers (Basel) 2023; 15:polym15041023. [PMID: 36850306 PMCID: PMC9967877 DOI: 10.3390/polym15041023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A biodegradable photodynamic antibacterial film (PS-CF) was prepared using the casting method, with κ-Carrageenan (κ-Car) as the film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. Chilled pork samples were coated with PS-CF and stored at 4 °C to investigate the effects of PS-CF combined with LED light irradiation (425 nm, 45 min) (PS+L+) on pork preservation during 10 days of storage. The total viable count (TVC) of bacteria, total volatile basic nitrogen value (TVB-N) and the pH of pork treated with PS+L+ were all lower than the control, and the water-holding capacity (WHC) was higher. Ten days later, the TVB-N value was 12.35 ± 0.57 mg/100 g and the TVC value was 5.78 ± 0.17 log CFU/g, which was within the acceptable range. Sensory evaluation determined that the color, odor, and overall acceptability of pork treated with PS+L+ were significantly better than the control. These findings suggest that PS+L+ treatment effectively extended the shelf life of chilled pork from ~4-5 to 10 days. Correlation analysis showed that the sensory quality of the chilled pork significantly correlated with total bacterial counts, TVB-N and thiobarbituric acid reactive substances (TBARS) (p < 0.05), suggesting that these biomarkers could be used as standard indicators for evaluating the freshness of chilled pork. These findings demonstrate the effectiveness of Cur-β-CD photodynamic antibacterial film for the preservation of chilled pork and provide a theoretical basis for the application of the film for the preservation of fresh food in general.
Collapse
|
17
|
Ingestible light source for intragastric antibacterial phototherapy: a device safety study on a minipig model. Photochem Photobiol Sci 2022; 22:535-547. [PMID: 36378410 DOI: 10.1007/s43630-022-00333-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
AbstractHelicobacter pylori gastric infections are among the most diffused worldwide, suffering from a rising rate of antibiotic resistance. In this context, some of the authors have previously designed an ingestible device in the form of a luminous capsule to perform antibacterial photodynamic inactivation in the stomach. In this study, the light-emitting capsules were tested to verify the safety of use prior to perform clinical efficacy studies. First, laboratory tests measured the capsule temperature while in function and verified its chemical resistance in conditions mimicking the gastric and gut environments. Second, safety tests in a healthy minipig model were designed and completed, to verify both the capsule integrity and the absence of side effects, associated with its illumination and transit throughout the gastrointestinal tract. To this aim, a capsule administration protocol was defined considering a total of 6 animals with n = 2 treated with 8 capsules, n = 2 treated with 16 capsules and n = 2 controls with no capsule administration. Endoscopies were performed in sedated conditions before–after every capsule administration. Biopsies were taken from the corpus and antrum regions, while the gastric cavity temperature was monitored during illumination. The bench tests confirmed a very good chemical resistance and a moderate (about 3 °C) heating of the capsules. The animal trials showed no significant effects on the gastric wall tissues, both visually and histologically, accompanied with overall good animal tolerance to the treatment. The integrity of the administered capsules was verified as well. These encouraging results pose the basis for the definition of successive trials at the clinical level.
Graphical abstract
Collapse
|
18
|
Investigation of bactericidal effect of a mid-infrared free electron laser on Escherichia coli. Sci Rep 2022; 12:18111. [PMID: 36302931 PMCID: PMC9612618 DOI: 10.1038/s41598-022-22949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2022] Open
Abstract
The rapid increase in the number of bacteria that are resistant to many commonly used antimicrobial agents and their global spread have become a major problem worldwide. In particular, for periodontal disease, which is a localized infection, there is a growing need for treatment methods that do not primarily involve antimicrobial agents, and antimicrobial photodynamic therapy (aPDT) is attracting attention. In this study, the bactericidal effects of a mid-infrared free electron laser (MIR-FEL) on E. coli were investigated as a basic study to examine the applicability of MIR-FELs, which can selectively excite molecular vibrations due to their wavelength tunability, to aPDT. The optimal irradiation wavelengths to be examined in this study were determined from the infrared spectrum of the bacteria, which was obtained using Fourier transform infrared spectroscopy. Five irradiation wavelengths (6.62, 6.88, 7.14, 8.09 and 9.26 µm) were selected from the FT-IR spectrum, and we found that the bactericidal effects at a wavelength of 6.62 µm were markedly stronger than those observed at the other wavelengths. At this wavelength corresponding to the Amide II band, the bacterial survival rate decreased significantly as the irradiation time increased. On the contrary, irradiation of a neodymium-doped yttrium aluminum garnet (Nd: YAG) laser at 1.06 µm exhibited no distinct bactericidal effect. No morphological changes were observed after MIR-FEL irradiation, suggesting that a bacterial organelle molecule may be the target of MIR-FEL irradiation, but the exact target was not identified. Furthermore, the temperature change induced in the culture medium by the laser irradiation was ± 1.5 °C at room temperature. These results suggest that the bactericidal effects of MIR-FEL are derived from photochemical reactions involving infrared photons, since E. coli is usually killed by heating it to 75 °C for 1 min or longer.
Collapse
|
19
|
Exploiting Violet-Blue Light to Kill Campylobacter jejuni: Analysis of Global Responses, Modeling of Transcription Factor Activities, and Identification of Protein Targets. mSystems 2022; 7:e0045422. [PMID: 35924857 PMCID: PMC9426514 DOI: 10.1128/msystems.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic foodborne zoonotic pathogen of worldwide concern as the leading cause of bacterial gastroenteritis. Many strains are increasingly antibiotic resistant and new methods of control are required to reduce food-chain contamination. One possibility is photodynamic inactivation (PDI) using violet-blue (VB) light, to which C. jejuni is highly susceptible. Here, we show that flavin and protoporphyrin IX are major endogenous photosensitizers and that exposure of cells to VB light increases intracellular reactive oxygen species (ROS) to high levels, as indicated by a dichlorodihydrofluorescein reporter. Unusually for an oxygen-respiring bacterium, C. jejuni employs several ROS-sensitive iron-sulfur cluster enzymes in central metabolic pathways; we show that VB light causes rapid inactivation of both pyruvate and 2-oxoglutarate oxidoreductases, thus interrupting the citric acid cycle. Cells exposed to VB light also lose heme from c-type cytochromes, restricting electron transport, likely due to irreversible oxidation of heme-ligating cysteine residues. Evaluation of global gene expression changes by RNAseq and probabilistic modeling showed a two-stage protein damage/oxidative stress response to VB light, driven by specific regulators, including HspR, PerR, Fur, and RacR. Deletion mutant analysis showed that superoxide dismutase and the cytochrome CccA were particularly important for VB light survival and that abolishing repression of chaperones and oxidative stress resistance genes by HcrA, HspR, or PerR increased tolerance to VB light. Our results explain the high innate sensitivity of C. jejuni to VB light and provide new insights that may be helpful in exploiting PDI for novel food-chain interventions to control this pathogen. IMPORTANCE Campylobacteriosis caused by C. jejuni is one of the most widespread zoonotic enteric diseases worldwide and represents an enormous human health and economic burden, compounded by the emergence of antibiotic-resistant strains. New interventions are urgently needed to reduce food-chain contamination. Although UV light is well known to be bactericidal, it is highly mutagenic and problematic for continuous exposure in food production facilities; in contrast, narrow spectrum violet-blue (VB) light is much safer. We confirmed that C. jejuni is highly susceptible to VB light and then identified some of the global regulatory networks involved in responding to photo-oxidative damage. The identification of damaged cellular components underpins efforts to develop commercial applications of VB light-based technologies.
Collapse
|
20
|
Santos AL, Liu D, Reed AK, Wyderka AM, van Venrooy A, Li JT, Li VD, Misiura M, Samoylova O, Beckham JL, Ayala-Orozco C, Kolomeisky AB, Alemany LB, Oliver A, Tegos GP, Tour JM. Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. SCIENCE ADVANCES 2022; 8:eabm2055. [PMID: 35648847 PMCID: PMC9159576 DOI: 10.1126/sciadv.abm2055] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 06/01/2023]
Abstract
The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms. The antibacterial mode of action of MMs involves physical disruption of the membrane. In addition, by permeabilizing the membrane, MMs at sublethal doses potentiate the action of conventional antibiotics. Repeated exposure to antibacterial MMs is not accompanied by resistance development. Finally, therapeutic doses of MMs mitigate mortality associated with bacterial infection in an in vivo model of burn wound infection. Visible light-activated MMs represent an unconventional antibacterial mode of action by mechanical disruption at the molecular scale, not existent in nature and to which resistance development is unlikely.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- IdISBA–Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Anna K. Reed
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Aaron M. Wyderka
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | - John T. Li
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Victor D. Li
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mikita Misiura
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Olga Samoylova
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Jacob L. Beckham
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | | | - Lawrence B. Alemany
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Antonio Oliver
- IdISBA–Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
- Servicio de Microbiologia, Hospital Universitari Son Espases, Palma, Spain
| | - George P. Tegos
- Office of Research, Reading Hospital, Tower Health, 420 S. Fifth Avenue, West Reading, PA 19611, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
- NanoCarbon Center and the Welch Institute for Advanced Materials, Rice University, Houston, TX 77005, USA
| |
Collapse
|
21
|
Wang M, Gu K, Ding W, Wan M, Zhao W, Shi H, Li J. Antifungal effect of a new photosensitizer derived from BODIPY on Candida albicans biofilms. Photodiagnosis Photodyn Ther 2022; 39:102946. [PMID: 35660011 DOI: 10.1016/j.pdpdt.2022.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been recognized as an alternative treatment of Candida albicans (C. albicans) infections. The aim of this study was to investigate the antifungal effect of PDT mediated by a new photosensitizer (PS) derived from BODIPY (BDP-4L) on C. albicans biofilms. METHODS C. albicans biofilms were incubated with BDP-4L of different concentrations and then irradiated at the light doses of 1.8, 3.6, 5.4, 7.2 and 9.0 J/cm2. XTT reduction assay was conducted to determine the PS concentration and PDT parameters. Confocal light scanning microscopy (CLSM) and scanning electron microscope (SEM) were used to visualize and quantify the effect of BDP-4L on C. albicans biofilms after PDT. RESULTS C. albicans biofilms were inactivated in light dose-dependent and PS concentration-dependent manners using BDP-4L as PS. Without irradiation, no inactivation effect was observed when PS concentrations varied from 5 μM to 80 μM. 40 μM PS with 3.6 J/cm2 irradiation resulted in a significant reduction of 83.8% in biofilm metabolic activities. CLSM assay demonstrated that cell viability was obviously inhibited by 82.6%. SEM images revealed ruptured and rough cell surface, indicating increased cell membrane permeability after PDT. CONCLUSIONS Our results suggested that BDP-4L mediated PDT exhibited a favorable antifungal effect on C. albicans biofilms.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Wenxin Ding
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital North, Fudan University, No.108, Rd. Luxiang, Huashan Hospital North, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
22
|
Romano G, Insero G, Marrugat SN, Fusi F. Innovative light sources for phototherapy. Biomol Concepts 2022; 13:256-271. [DOI: 10.1515/bmc-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The use of light for therapeutic purposes dates back to ancient Egypt, where the sun itself was an innovative source, probably used for the first time to heal skin diseases. Since then, technical innovation and advancement in medical sciences have produced newer and more sophisticated solutions for light-emitting sources and their applications in medicine. Starting from a brief historical introduction, the concept of innovation in light sources is discussed and analysed, first from a technical point of view and then in the light of their fitness to improve existing therapeutic protocols or propose new ones. If it is true that a “pure” technical advancement is a good reason for innovation, only a sub-system of those advancements is innovative for phototherapy. To illustrate this concept, the most representative examples of innovative light sources are presented and discussed, both from a technical point of view and from the perspective of their diffusion and applications in the clinical field.
Collapse
Affiliation(s)
- Giovanni Romano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
| | - Giacomo Insero
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
- National Research Council, National Institute of Optics (CNR-INO) , Via Carrara 1 , 50019 Sesto Fiorentino , FI , Italy
| | - Santi Nonell Marrugat
- Institut Quimic de Sarria, Universidad Ramon Llull , Via Augusta 390 , 08017 Barcelona , Spain
| | - Franco Fusi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
| |
Collapse
|
23
|
Akasov R, Khaydukov EV, Yamada M, Zvyagin AV, Leelahavanichkul A, Leanse LG, Dai T, Prow T. Nanoparticle enhanced blue light therapy. Adv Drug Deliv Rev 2022; 184:114198. [PMID: 35301045 DOI: 10.1016/j.addr.2022.114198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
24
|
Dong PT, Jusuf S, Hui J, Zhan Y, Zhu Y, Liu GY, Cheng JX. Photoinactivation of catalase sensitizes wide-ranging bacteria to ROS-producing agents and immune cells. JCI Insight 2022; 7:153079. [PMID: 35446788 PMCID: PMC9220836 DOI: 10.1172/jci.insight.153079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria have evolved to cope with the detrimental effects of ROS using their essential molecular components. Catalase, a heme-containing tetramer protein expressed universally in most aerobic bacteria, plays an indispensable role in scavenging excess hydrogen peroxide (H2O2). Here, through use of wild-type and catalase-deficient mutants, we identified catalase as an endogenous therapeutic target of 400–420 nm blue light. Catalase residing inside bacteria could be effectively inactivated by blue light, subsequently rendering the pathogens extremely vulnerable to H2O2 and H2O2-producing agents. As a result, photoinactivation of catalase and H2O2 synergistically eliminated a wide range of catalase-positive planktonic bacteria and P. aeruginosa inside biofilms. In addition, photoinactivation of catalase was shown to facilitate macrophage defense against intracellular pathogens. The antimicrobial efficacy of catalase photoinactivation was validated using a Pseudomonas aeruginosa–induced mouse abrasion model. Taken together, our findings offer a catalase-targeting phototherapy approach against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Jie Hui
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, United States of America
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, San Diego, United States of America
| | - Ji-Xin Cheng
- Boston University, Boston, United States of America
| |
Collapse
|
25
|
Lu M, Wong KI, Li X, Wang F, Wei L, Wang S, Wu MX. Oregano Oil and Harmless Blue Light to Synergistically Inactivate Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol 2022; 13:810746. [PMID: 35359746 PMCID: PMC8961286 DOI: 10.3389/fmicb.2022.810746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Blue light (BL) at 405 nm and oregano essential oil (OEO) have shown bactericidal activity by its own. Here, we demonstrated that the two synergistically killed multidrug-resistant (MDR) Pseudomonas aeruginosa (Pa). Pa ATCC19660 and HS0065 planktonic cells and mature biofilms were reduced by more than 7 log10 after treatment by BL combined with OEO, in sharp contrast to no significant bacterial reduction with the monotreatment. The duo also sufficiently eliminated acute or biofilm-associated infection of open burn wounds in murine without incurring any harmful events in the skin. The synergic bactericide was attributed mainly to the ability of OEO to magnify cytotoxic reactive oxygen species (ROS) production initiated by BL that excited endogenous tetrapyrrole macrocycles in bacteria while completely sparing the surrounding tissues from the phototoxic action. OEO ingredient analysis in combination with microbial assays identified carvacrol and its isomer thymol to be the major phytochemicals that cooperated with BL executing synergic killing. The finding argues persuasively for valuable references of carvacrol and thymol in assessing and standardizing the bactericidal potential of various OEO products.
Collapse
Affiliation(s)
- Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopaedics, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ka Ioi Wong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopaedics, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wei
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopaedics, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei X. Wu
- Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Mei X. Wu,
| |
Collapse
|
26
|
Kubrak T, Karakuła M, Czop M, Kawczyk-Krupka A, Aebisher D. Advances in Management of Bladder Cancer-The Role of Photodynamic Therapy. Molecules 2022; 27:731. [PMID: 35163996 PMCID: PMC8838614 DOI: 10.3390/molecules27030731] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive and modern form of therapy. It is used in the treatment of non-oncological diseases and more and more often in the treatment of various types of neoplasms in various locations including bladder cancer. The PDT method consists of local or systemic application of a photosensitizer, i.e., a photosensitive compound that accumulates in pathological tissue. Light of appropriate wavelength is absorbed by the photosensitizer molecules, which in turn transfers energy to oxygen or initiates radical processes that leads to selective destruction of diseased cells. The technique enables the selective destruction of malignant cells, as the photocytotoxicity reactions induced by the photosensitizer take place strictly within the pathological tissue. PDT is known to be well tolerated in a clinical setting in patients. In cited papers herein no new safety issues were identified. The development of anti-cancer PDT therapies has greatly accelerated over the last decade. There was no evidence of increased or cumulative toxic effects with each PDT treatment. Many modifications have been made to enhance the effects. Clinically, bladder cancer remains one of the deadliest urological diseases of the urinary system. The subject of this review is the anti-cancer use of PDT, its benefits and possible modifications that may lead to more effective treatments for bladder cancer. Bladder cancer, if localized, would seem to be a good candidate for PDT therapy since this does not involve the toxicity of systemic chemotherapy and can spare normal tissues from damage if properly carried out. It is clear that PDT deserves more investment in clinical research, especially for plant-based photosensitizers. Natural PS isolated from plants and other biological sources can be considered a green approach to PDT in cancer therapy. Currently, PDT is widely used in the treatment of skin cancer, but numerous studies show the advantages of related therapeutic strategies that can help eliminate various types of cancer, including bladder cancer. PDT for bladder cancer in which photosensitizer is locally activated and generates cytotoxic reactive oxygen species and causing cell death, is a modern treatment. Moreover, PDT is an innovative technique in oncologic urology.
Collapse
Affiliation(s)
- Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Michał Karakuła
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| |
Collapse
|
27
|
Bauer R, Hoenes K, Meurle T, Hessling M, Spellerberg B. The effects of violet and blue light irradiation on ESKAPE pathogens and human cells in presence of cell culture media. Sci Rep 2021; 11:24473. [PMID: 34963696 PMCID: PMC8714816 DOI: 10.1038/s41598-021-04202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Bacteria belonging to the group of ESKAPE pathogens are responsible for the majority of nosocomial infections. Due to the increase of antibiotic resistance, alternative treatment strategies are of high clinical relevance. In this context visible light as disinfection technique represents an interesting option as microbial pathogens can be inactivated without adjuvants. However cytotoxic effects of visible light on host cells have also been reported. We compared the cytotoxicity of violet and blue light irradiation on monocytic THP-1 and alveolar epithelium A549 cells with the inactivation effect on ESKAPE pathogens. THP-1 cells displayed a higher susceptibility to irradiation than A549 cells with first cytotoxic effects occurring at 300 J cm−2 (405 nm) and 400 J cm−2 (450 nm) in comparison to 300 J cm−2 and 1000 J cm−2, respectively. We could define conditions in which a significant reduction of colony forming units for all ESKAPE pathogens, except Enterococcus faecium, was achieved at 405 nm while avoiding cytotoxicity. Irradiation at 450 nm demonstrated a more variable effect which was species and medium dependent. In summary a significant reduction of viable bacteria could be achieved at subtoxic irradiation doses, supporting a potential use of visible light as an antimicrobial agent in clinical settings.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081, Ulm, Germany
| | - Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081, Ulm, Germany.
| |
Collapse
|
28
|
Stewart CF, Tomb RM, Ralston HJ, Armstrong J, Anderson JG, MacGregor SJ, Atreya CD, Maclean M. Violet-blue 405-nm Light-based Photoinactivation for Pathogen Reduction of Human Plasma Provides Broad Antibacterial Efficacy Without Visible Degradation of Plasma Proteins. Photochem Photobiol 2021; 98:504-512. [PMID: 34935147 DOI: 10.1111/php.13584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
In transfusion medicine, bacterial contamination can occur in ex vivo stored blood plasma, and there are continued efforts to improve blood safety and reduce the risk of transfusion-transmitted infections. Visible 405-nm violet-blue light has demonstrated potential for in situ pathogen reduction in ex vivo stored plasma and platelet concentrates. This study investigates the broad-spectrum antibacterial efficacy and compatibility potential of 405-nm light for treatment of blood plasma. Human plasma seeded with bacteria at a range of densities (101 -103 , 104 -106 , 107 -108 CFU mL-1 ) was exposed to 360 J cm-2 405-nm light (1 h at 0.1 W cm-2 ), with this fixed dose selected based on the initial analysis of inactivation kinetics. One-dimensional protein mobility analysis and measurement of advanced oxidation protein products (AOPP) was conducted to evaluate compatibility of the antimicrobial dose with plasma proteins and, identify upper levels at which protein degradation can be detected. Broad-spectrum antibacterial efficacy was observed with a fixed treatment of 360 J cm-2 , with 98.9-100% inactivation achieved across all seeding densities for all organisms, except E. coli, which achieved 95.1-100% inactivation. At this dose (360 J cm-2 ), no signs of protein degradation occurred. Overall, 405-nm light shows promise for broad-spectrum bacterial inactivation in blood plasma, while preserving plasma protein integrity.
Collapse
Affiliation(s)
- Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Rachael M Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Heather J Ralston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Jack Armstrong
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
29
|
Terrosi C, Anichini G, Docquier JD, Gori Savellini G, Gandolfo C, Pavone FS, Cusi MG. Efficient Inactivation of SARS-CoV-2 and Other RNA or DNA Viruses with Blue LED Light. Pathogens 2021; 10:pathogens10121590. [PMID: 34959545 PMCID: PMC8708627 DOI: 10.3390/pathogens10121590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Blue LED light has proven to have a powerful bacteria-killing ability; however, little is known about its mechanism of virucidal activity. Therefore, we analyzed the effect of blue light on different respiratory viruses, such as adenovirus, respiratory syncytial virus and SARS-CoV-2. The exposure of samples to a blue LED light with a wavelength of 420 nm (i.e., in the visible range) at 20 mW/cm2 of irradiance for 15 min appeared optimal and resulted in the complete inactivation of the viral load. These results were similar for all the three viruses, demonstrating that both enveloped and naked viruses could be efficiently inactivated with blue LED light, regardless of the presence of envelope and of the viral genome nature (DNA or RNA). Moreover, we provided some explanations to the mechanisms by which the blue LED light could exert its antiviral activity. The development of such safe and low-cost light-based devices appears to be of fundamental utility for limiting viral spread and for sanitizing small environments, objects and surfaces, especially in the pandemic era.
Collapse
Affiliation(s)
- Chiara Terrosi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Jean Denis Docquier
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Gianni Gori Savellini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, 50121 Florence, Italy;
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
- Correspondence: ; Tel.: +39-0577-233871; Fax: +39-0577-233870
| |
Collapse
|
30
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
32
|
Heme auxotrophy in abundant aquatic microbial lineages. Proc Natl Acad Sci U S A 2021; 118:2102750118. [PMID: 34785591 DOI: 10.1073/pnas.2102750118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Heme, a porphyrin ring complexed with iron, is a metalloprosthetic group of numerous proteins involved in diverse metabolic and respiratory processes across all domains of life, and is thus considered essential for respiring organisms. Several microbial groups are known to lack the de novo heme biosynthetic pathway and therefore require exogenous heme from the environment. These heme auxotroph groups are largely limited to pathogens, symbionts, or microorganisms living in nutrient-replete conditions, whereas the complete absence of heme biosynthesis is extremely rare in free-living organisms. Here, we show that the acI lineage, a predominant and ubiquitous free-living bacterial group in freshwater habitats, is auxotrophic for heme, based on the experimental or genomic evidence. We found that two recently cultivated acI isolates require exogenous heme for their growth. One of the cultured acI isolates also exhibited auxotrophy for riboflavin. According to whole-genome analyses, all (n = 20) isolated acI strains lacked essential enzymes necessary for heme biosynthesis, indicating that heme auxotrophy is a conserved trait in this lineage. Analyses of >24,000 representative genomes for species clusters of the Genome Taxonomy Database revealed that heme auxotrophy is widespread across abundant but not-yet-cultivated microbial groups, including Patescibacteria, Marinisomatota (SAR406), Actinomarinales (OM1), and Marine groups IIb and III of Euryarchaeota Our findings indicate that heme auxotrophy is a more common phenomenon than previously thought, and may lead to use of heme as a growth factor to increase the cultured microbial diversity.
Collapse
|
33
|
Battisti A, Morici P, Sgarbossa A. Fluorescence Lifetime Imaging Microscopy of Porphyrins in Helicobacter pylori Biofilms. Pharmaceutics 2021; 13:1674. [PMID: 34683966 PMCID: PMC8537233 DOI: 10.3390/pharmaceutics13101674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Bacterial biofilm constitutes a strong barrier against the penetration of drugs and against the action of the host immune system causing persistent infections hardly treatable by antibiotic therapy. Helicobacter pylori (Hp), the main causative agent for gastritis, peptic ulcer and gastric adenocarcinoma, can form a biofilm composed by an exopolysaccharide matrix layer covering the gastric surface where the bacterial cells become resistant and tolerant to the commonly used antibiotics clarithromycin, amoxicillin and metronidazole. Antimicrobial PhotoDynamic Therapy (aPDT) was proposed as an alternative treatment strategy for eradicating bacterial infections, particularly effective for Hp since this microorganism produces and stores up photosensitizing porphyrins. The knowledge of the photophysical characteristics of Hp porphyrins in their physiological biofilm microenvironment is crucial to implement and optimize the photodynamic treatment. Fluorescence lifetime imaging microscopy (FLIM) of intrinsic bacterial porphyrins was performed and data were analyzed by the 'fit-free' phasor approach in order to map the distribution of the different fluorescent species within Hp biofilm. Porphyrins inside bacteria were easily distinguished from those dispersed in the matrix suggesting FLIM-phasor technique as a sensitive and rapid tool to monitor the photosensitizer distribution inside bacterial biofilms and to better orientate the phototherapeutic strategy.
Collapse
Affiliation(s)
- Antonella Battisti
- Istituto Nanoscienze—CNR and NEST—Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy; (A.B.); (P.M.)
| | - Paola Morici
- Istituto Nanoscienze—CNR and NEST—Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy; (A.B.); (P.M.)
- Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, I-16132 Genova, Italy
| | - Antonella Sgarbossa
- Istituto Nanoscienze—CNR and NEST—Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy; (A.B.); (P.M.)
| |
Collapse
|
34
|
Yoshida A, Inaba K, Sasaki H, Hamada N, Yoshino F. Impact on Porphyromonas gingivalis of antimicrobial photodynamic therapy with blue light and Rose Bengal in plaque-disclosing solution. Photodiagnosis Photodyn Ther 2021; 36:102576. [PMID: 34628072 DOI: 10.1016/j.pdpdt.2021.102576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Antimicrobial photodynamic therapy (aPDT) in periodontal pockets using lasers is difficult to perform in some cases because of the high cost of irradiation equipment and the narrow irradiation field. The purpose of the present study was to examine the effects of aPDT in combination with a plaque-disclosing solution and blue light-emitting diode (LED), which are used for composite resin polymerization. METHODS The reactive oxygen species generated by irradiating 0.001% RB or MB with blue light were analyzed using electron spin resonance spectroscopy. Blue-light exposure was performed at 6.92, 20.76 and 124.6 J. The microorganism to be sterilized was Porphyromonas gingivalis. After aPDT, colony-forming units (CFUs) were measured to estimate cell survival. Carbonylated protein (PC) levels were used to evaluate oxidative stress. All statistical analyses were performed with Tukey's multiple comparisons test or the unpaired t-test. RESULTS Singlet oxygen (1O2) generation was confirmed by RB+blue LED. 1O2 production was significantly greater with the blue LED irradiation of RB than that of MB (p < 0.0001). CFUs were significantly lower in the blue LED-irradiated group than in the non-LED-irradiated group (p < 0.01). The bactericidal effect increased in a time-dependent manner. aPDT increased PC levels. No morphological changes were observed in P. gingivalis. CONCLUSIONS The present results suggest that aPDT exerts bactericidal effects against P. gingivalis by increasing oxidative stress through the generation of 1O2 in cells. Periodontal disease may be treated by aPDT using the equipment available in dental offices.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Department of Dental Education, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Keitaro Inaba
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Haruka Sasaki
- Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Fumihiko Yoshino
- Department of Pharmacology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan.
| |
Collapse
|
35
|
Reversal of Polymicrobial Biofilm Tolerance to Ciprofloxacin by Blue Light plus Carvacrol. Microorganisms 2021; 9:microorganisms9102074. [PMID: 34683395 PMCID: PMC8539106 DOI: 10.3390/microorganisms9102074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic wound infections are often caused by multi-species biofilms and these biofilm-embedded bacteria exhibit remarkable tolerance to existing antibiotics, which presents huge challenges to control such infections in the wounds. In this investigation, we established a polymicrobial biofilm composed of P. aeruginosa, S. aureus, K. pneumoniae, and A. baumannii. We tested a cocktail therapy comprising 405-nm blue light (BL), carvacrol (Ca), and antibiotics on the multispecies biofilm. Despite the fact that all strains used to form the biofilm were susceptible to ciprofloxacin (CIP) in planktonic cultures, the biofilm was found to withstand ciprofloxacin as well as BL-Ca dual treatment, mainly because K. pneumoniae outgrew and became dominant in the biofilm after each treatment. Strikingly, when ciprofloxacin was combined with BL-Ca, the multispecies biofilms succumbed substantially and were eradicated at an efficacy of 99.9%. Mechanistically, BL-Ca treatment increased membrane permeability and potentiated the anti-biofilm activity of ciprofloxacin, probably by facilitating ciprofloxacin’s entrance of the bacteria, which is particularly significant for K. pneumoniae, a species that is refractory to either ciprofloxacin or BL-Ca dual treatment. The results suggest that bacterial membrane damage can be one of the pivotal strategies to subvert biofilm tolerance and combat the recalcitrant multispecies biofilms.
Collapse
|
36
|
Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol 2021; 48:376-396. [PMID: 34569892 DOI: 10.1080/1040841x.2021.1975643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is the major component of the gastric microbiome of infected individuals and one of the aetiological factors of chronic gastritis, peptic ulcer disease and gastric cancer. The increasing resistance to antibiotics worldwide has made the treatment of H. pylori infection a challenge. As a way to overhaul the efficacy of currently used H. pylori antibiotic-based eradication therapies, alternative treatment strategies are being devised. These include probiotics and prebiotics as adjuvants in H. pylori treatment, antimicrobial peptides as alternatives to antibiotics, photodynamic therapy ingestible devices, microparticles and nanoparticles applied as drug delivery systems, vaccines, natural products, and phage therapy. This review provides an updated synopsis of these emerging H. pylori control strategies and discusses the advantages, hurdles, and challenges associated with their development and implementation. An effective human vaccine would be a major achievement although, until now, projects regarding vaccine development have failed or were discontinued. Numerous natural products have demonstrated anti-H. pylori activity, mostly in vitro, but further clinical studies are needed to fully disclose their role in H. pylori eradication. Finally, phage therapy has the potential to emerge as a valid alternative, but major challenges remain, namely the isolation of more H. pylori strictly virulent bacterio(phages).
Collapse
Affiliation(s)
- Cláudia Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rute Ferreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- Faculty of Engineering, LEPABE - Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Pathology, University of Porto, Porto, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
37
|
Enwemeka CS, Bumah VV, Mokili JL. Pulsed blue light inactivates two strains of human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112282. [PMID: 34404018 PMCID: PMC8349404 DOI: 10.1016/j.jphotobiol.2021.112282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/29/2023]
Abstract
Emerging evidence suggests that blue light has the potential to inactivate viruses. Therefore, we investigated the effect of 405 nm, 410 nm, 425 nm and 450 nm pulsed blue light (PBL) on human alpha coronavirus HCoV-229 E and human beta coronavirus HCoV-OC43, using Qubit fluorometry and RT-LAMP to quantitate the amount of nucleic acid in irradiated and control samples. Like SARS-CoV-2, HCoV-229E and HCoV-OC43 are single stranded RNA viruses transmitted by air and direct contact; they have similar genomic sizes as SARS-CoV-2, and are used as surrogates for SARS-CoV-2. Irradiation was carried out either at 32.4 J cm-2 using 3 mW cm-2 irradiance or at 130 J cm-2 using 12 mW cm-2 irradiance. Results: (1) At each wavelength tested, PBL was antiviral against both coronaviruses. (2) 405 nm light gave the best result, yielding 52.3% (2.37 log10) inactivation against HCoV-OC43 (p < .0001), and a significant 1.46 log 10 (44%) inactivation of HCoV-229E (p < .01). HCoV-OC43, which like SARS-CoV-2 is a beta coronavirus, was more susceptible to PBL irradiation than alpha coronavirus HCoV-229E. The latter finding suggests that PBL is potentially antiviral against multiple coronavirus strains, and that, while its potency may vary from one virus to another, it seems more antiviral against beta coronaviruses, such as HCoV-OC43. (3) Further, the antiviral effect of PBL was better at a higher irradiance than a lower irradiance, and this indicates that with further refinement, a protocol capable of yielding 100% inactivation of viruses is attainable.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - John L Mokili
- Viral Information Institute, Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
38
|
Chen Z, Huang S, Liu M. The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:3-11. [PMID: 34181781 DOI: 10.1111/phpp.12715] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Photobiomodulation (PBM) uses low-intensity visible or near-infrared light to produce beneficial effects on cells or tissues, such as brain therapy, wound healing. Still there is no consistent recommendation on the parameters (dose, light mode, wavelength, irradiance) and protocols (repetition, treatment duration) for its clinical application. Herein, we summarize the current PBM parameters for the treatment of melanoma, and we also discuss the potential photoreceptors and downstream signaling mechanisms in the PBM treatment of melanoma cells. It is hypothesized that PBM may inhibit the melanoma cells by activating mitochondria, OPNs, and other receptors. Regardless of the underlying mechanisms, PBM has been shown to be beneficial in treating melanoma. Through further in-depth studies of the underlying potential mechanisms, it can strengthen the applications of PBM for the therapy of melanoma.
Collapse
Affiliation(s)
- Zeqing Chen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shijie Huang
- Zhongshan Fudan Joint Innovation Center, Zhongshan City, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan City, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Woźniak A, Kruszewska B, Pierański MK, Rychłowski M, Grinholc M. Antimicrobial Photodynamic Inactivation Affects the Antibiotic Susceptibility of Enterococcus spp. Clinical Isolates in Biofilm and Planktonic Cultures. Biomolecules 2021; 11:693. [PMID: 34063146 PMCID: PMC8148121 DOI: 10.3390/biom11050693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/30/2022] Open
Abstract
Enterococcus faecium and Enterococcus faecalis are opportunistic pathogens that can cause a vast variety of nosocomial infections. Moreover, E. faecium belongs to the group of ESKAPE microbes, which are the main cause of hospital-acquired infections and are especially difficult to treat because of their resistance to many antibiotics. Antimicrobial photodynamic inactivation (aPDI) represents an alternative to overcome multidrug resistance problems. This process requires the simultaneous presence of oxygen, visible light, and photosensitizing compounds. In this work, aPDI was used to resensitize Enterococcus spp. isolates to antibiotics. Antibiotic susceptibility testing according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations was combined with synergy testing methods recommended by the American Society for Microbiology. Two clinical isolates, E. faecalis and E. faecium, were treated with a combination of aPDI utilizing rose bengal (RB) or fullerene (FL) derivative as photosensitizers, antimicrobial blue light (aBL), and 10 recommended antibiotics. aPDI appeared to significantly impact the survival rate of both isolates, while aBL had no significant effect. The synergy testing results differed between strains and utilized methods. Synergy was observed for RB aPDI in combination with gentamycin, ciprofloxacin and daptomycin against E. faecalis. For E. faecium, synergy was observed between RB aPDI and gentamycin or ciprofloxacin, while for RB aPDI with vancomycin or daptomycin, antagonism was observed. A combination of FL aPDI gives a synergistic effect against E. faecalis only with imipenem. Postantibiotic effect tests for E. faecium demonstrated that this isolate exposed to aPDI in combination with gentamycin, streptomycin, tigecycline, doxycycline, or daptomycin exhibits delayed growth in comparison to untreated bacteria. The results of synergy testing confirmed the effectiveness of aPDI in resensitization of the bacteria to antibiotics, which presents great potential in the treatment of infections caused by multidrug-resistant strains.
Collapse
Affiliation(s)
- Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| | - Beata Kruszewska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| | - Michał Karol Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (B.K.); (M.K.P.)
| |
Collapse
|
40
|
Combining Visible Light and Non-Focused Ultrasound Significantly Reduces Propionibacterium acnes Biofilm While Having Limited Effect on Host Cells. Microorganisms 2021; 9:microorganisms9050929. [PMID: 33925936 PMCID: PMC8146519 DOI: 10.3390/microorganisms9050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial biofilms are highly resistant to antibiotics and have been implicated in the etiology of 60%–80% of chronic microbial infections. We tested a novel combination of low intensity ultrasound and blue light against biofilm and planktonic bacteria. A laboratory prototype was built which produced both energies uniformly and coincidently from a single treatment head, impinging upon a 4.45 cm2 target. To demonstrate proof of concept, Propionibacterium acnes biofilms were cultured on Millicell hanging inserts in 6-well plates. Hanging inserts with biofilms were treated in a custom exposure chamber designed to minimize unwanted ultrasound reflections. Coincident delivery of both energies demonstrated synergy over either alone, killing both stationary planktonic and biofilm cultures of P. acnes. Reduction in biofilm bacteria was dose dependent on exposure time (i.e., energy delivered). P. acnes biofilms were significantly reduced by dual energy treatment (p < 0.0001), with a >1 log10 reduction after a 5 min (9 J/cm2) and >3 log10 reduction after a 30 min (54 J/cm2) treatment (p < 0.05). Mammalian cells were found to be unaffected by the treatment. Both the light and the ultrasound energies are at levels previously cleared by the FDA. Therefore, this combination treatment could be used as a safe, efficacious method to treat biofilm related syndromes.
Collapse
|
41
|
Bacteria-specific pro-photosensitizer kills multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Commun Biol 2021; 4:408. [PMID: 33767385 PMCID: PMC7994569 DOI: 10.1038/s42003-021-01956-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
The emergence of multidrug-resistant bacteria has become a real threat and we are fast running out of treatment options. A combinatory strategy is explored here to eradicate multidrug-resistant Staphlococcus aureus and Pseudomonas aeruginosa including planktonic cells, established biofilms, and persisters as high as 7.5 log bacteria in less than 30 min. Blue-laser and thymol together rapidly sterilized acute infected or biofilm-associated wounds and successfully prevented systematic dissemination in mice. Mechanistically, blue-laser and thymol instigated oxidative bursts exclusively in bacteria owing to abundant proporphyrin-like compounds produced in bacteria over mammalian cells, which transformed harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitations of thymoquinone and thymohydroquinone augmented reactive oxygen species production and initiated a torrent of cytotoxic events in bacteria while completely sparing the host tissue. The investigation unravels a previously unappreciated property of thymol as a pro-photosensitizer analogous to a prodrug that is activated only in bacteria. Multidrug-resistant bacteria are a real threat to human health. Here, the authors investigate a combinatory strategy using blue-laser and thymol against Staphylococcus aureus and Pseudomonas aeruginosa. Blue-laser and thymol succesfully sterilized acute infected or biofilm-associated wounds and prevented systematic dissemination in mice. Compared with mammalian cells, bacteria contain abundant proporphyrin-like compounds that transform harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitation of thymoquinone and thymohydroquinone augmented reactive oxygen species production in bacteria while completely sparing the host tissue.
Collapse
|
42
|
Hoenes K, Bauer R, Spellerberg B, Hessling M. Microbial Photoinactivation by Visible Light Results in Limited Loss of Membrane Integrity. Antibiotics (Basel) 2021; 10:341. [PMID: 33807025 PMCID: PMC8005082 DOI: 10.3390/antibiotics10030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Interest in visible light irradiation as a microbial inactivation method has widely increased due to multiple possible applications. Resistance development is considered unlikely, because of the multi-target mechanism, based on the induction of reactive oxygen species by wavelength specific photosensitizers. However, the affected targets are still not completely identified. We investigated membrane integrity with the fluorescence staining kit LIVE/DEAD® BacLight™ on a Gram positive and a Gram negative bacterial species, irradiating Staphylococcus carnosus and Pseudomonas fluorescens with 405 nm and 450 nm. To exclude the generation of viable but nonculturable (VBNC) bacterial cells, we applied an ATP test, measuring the loss of vitality. Pronounced uptake of propidium iodide was only observed in Pseudomonas fluorescens at 405 nm. Transmission electron micrographs revealed no obvious differences between irradiated samples and controls, especially no indication of an increased bacterial cell lysis could be observed. Based on our results and previous literature, we suggest that visible light photoinactivation does not lead to rapid bacterial cell lysis or disruption. However, functional loss of membrane integrity due to depolarization or inactivation of membrane proteins may occur. Decomposition of the bacterial envelope following cell death might be responsible for observations of intracellular component leakage.
Collapse
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany;
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (R.B.); (B.S.)
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (R.B.); (B.S.)
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany;
| |
Collapse
|
43
|
Maliszewska I, Goldeman W. Pentamidine enhances photosensitization of Acinetobacter baumannii using diode lasers with emission of light at wavelength of ʎ = 405 nm and ʎ = 635 nm. Photodiagnosis Photodyn Ther 2021; 34:102242. [PMID: 33662618 DOI: 10.1016/j.pdpdt.2021.102242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/22/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
Antimicrobial photodynamic inactivation is currently one of the most promising trends in the modern bactericidal protocols. Under the conditions defined in our studies, we found that in vitro photosensitization of A. baumannii with 5-ALA as a precursor of protoporphyrin IX (photosensitizer) reduces the concentration of viable cells in planktonic cultures, and this process can be strongly enhanced by pentamidine. Diode lasers with the peak-power wavelength of ʎ = 405 nm (radiation intensity of 26 mW cm-2) and ʎ = 635 nm (radiation intensity of 55 mW cm-2) were used in this study. It was found that a blue laser light (energy fluence of 64 J cm-2; no external photosensitizer) in the presence of pentamidine resulted in a reduction of CFU of 99.992 % compared to 99.97 % killing without pentamidine. When a red laser light was used in the experiments (energy fluence of 136 J cm-2; no external photosensitizer), the mortality rate was 99.98 % in the presence of pentamidine compared to 99.93 % of those killed without the addition of this drug. The lethal effect with 5-ALA was achieved under blue light fluence of 16 J cm-2 (in the presence of pentamidine) and 32 J cm-2 (without pentamidine). In the case of laser light of 635 nm, the lethal effect with 5-ALA was attained with energy fluence of 51 J cm-2 (with pentamidine) and 102 J cm-2 (without pentamidine). The possible roles of pentamidine in enhancing photodynamic inactivation of A. baumannii have been discussed.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
44
|
Bapat P, Singh G, Nobile CJ. Visible Lights Combined with Photosensitizing Compounds Are Effective against Candida albicans Biofilms. Microorganisms 2021; 9:microorganisms9030500. [PMID: 33652865 PMCID: PMC7996876 DOI: 10.3390/microorganisms9030500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.
Collapse
Affiliation(s)
- Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Gurbinder Singh
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
45
|
Structural membrane changes induced by pulsed blue light on methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112150. [PMID: 33578335 DOI: 10.1016/j.jphotobiol.2021.112150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. PURPOSE The current study presents visual evidence that the observed biochemical changes also result in cell metabolic changes and structural alteration of the cell membrane. METHODS Cultures of MRSA were treated with 450 nm pulsed blue light (PBL) at 3 mW/cm2 irradiance, using a sub lethal dose of 2.7 J/cm2 radiant exposure three times at 30-min intervals. Following 24 h incubation at 37 °C, irradiated colonies and control non-irradiated colonies were processed for light and transmission electron microscopy. RESULTS The images obtained revealed three major effects of PBL; (1) disruption of MRSA cell membrane, (2) alteration of membrane structure, and (3) disruption of cell replication. CONCLUSION These signs of bacterial inactivation at a dose deliberately selected to be sub-lethal supports our previous finding that rapid depolarization of bacterial cell membrane and disruption of cellular function comprise another mechanism underlying photo-inactivation of bacteria. Further, it affirms the potency of PBL.
Collapse
|
46
|
Bumah VV, Cortez PM, Morrow BN, Rojas P, Bowman CR, Masson-Meyers DS, Enwemeka CS. Blue light absorbing pigment in Streptococcus agalactiae does not potentiate the antimicrobial effect of pulsed 450 nm light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112149. [PMID: 33578336 DOI: 10.1016/j.jphotobiol.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recently, it was shown that Group B Streptococcus (GBS) COH1 strain, which has granadaene-an endogenous chromophore known to absorb blue light-is not susceptible to 450 nm pulsed blue light (PBL) inactivation unless the bacterium is co-cultured with exogenous porphyrin. PURPOSE To confirm or refute the finding, we studied the effect of blue light on NCTC, another strain of GBS with more granadaene than COH1, to determine if the abundance of granadaene-and by implication more absorption of blue light-fosters GBS susceptibility to PBL. METHODS We irradiated cultures of the bacterium with or without protoporphyrin, coproporphyrin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD) or NADH. After 24-h incubation, bacterial colonies were enumerated, log10 CFU/mL computed, and descriptive and inferential data analyzed and compared. RESULTS (1) The rich amount of granadaene in NCTC did not enhance its susceptibility to antimicrobial pulsed blue light (PBL). (2) Adding exogenous porphyrin fostered NCTC susceptibility to irradiation, resulting in 100% bacterial suppression. (3) Exogenous FMN or FAD, which strongly absorb 450 nm light, did not promote the antimicrobial effect of PBL, neither did exogenous NAD or NADH, two weak blue light-absorbing photosensitizers. CONCLUSION These results strengthen our previous assertion that an endogenous chromophore with the capacity to absorb and transform light energy into a biochemical process that engenders bacterial cell death, is essential for 450 nm PBL to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA; College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | | | | | - Paulina Rojas
- Department of Biology, San Diego State University, CA 92182, USA
| | | | | | | |
Collapse
|
47
|
The viability of human cells irradiated with 470-nm light at various radiant energies in vitro. Lasers Med Sci 2021; 36:1661-1670. [PMID: 33486613 DOI: 10.1007/s10103-021-03250-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Blue light is known to be antimicrobial, but its effect on normal cutaneous and subcutaneous cells remains unclear. Therefore, we studied the effect of 470-nm light on the viability of adult and neonatal human dermal fibroblasts, Jurkat T-cells, and THP-1 monocytes in vitro. Each culture was irradiated with 0, 3, 55, or 110 J/cm2 of 470-nm light and subjected to trypan blue assay to ascertain viability. Further, MTT, neutral red, and fluorescence assays of fibroblasts were performed, and cell morphology visualized using bright field and fluorescence microscopy. At each dose and in each of the four cell lines, there was no significant difference in cell concentration between irradiated and non-irradiated cultures, even though irradiation with 55 J/cm2 or 110 J/cm2 slightly decreased cell count. Light microscopy showed progressive morphological changes in the fibroblasts as energy fluence increased from 55 to 110 J/cm2. Irradiation at 3 J/cm2 produced a slight but non-significant increase in the viability of Jurkat T-cells and THP-1 monocytes. In contrast, at 110 J/cm2 radiant exposure, irradiation slightly decreased the viability of all four cells. While 3 J/cm2 appears stimulatory, our finding that 110 J/cm2 produces a slight decrease in viability and engenders morphological changes in fibroblasts, suggesting that such high doses should be avoided in blue light treatments.
Collapse
|
48
|
Potential for direct application of blue light for photo-disinfection of dentine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112123. [PMID: 33454542 DOI: 10.1016/j.jphotobiol.2021.112123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/31/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
The direct application of light for photo-disinfection potentially provides a safe and novel modality to inhibit or eliminate cariogenic bacteria residing upon and within dentine. This study aimed to both; characterize the pattern of transmission of 405 nm light through molar dentine at different tooth locations, as well as, determine the irradiation parameters that are antibacterial for Streptococcus mutans under various growth conditions, including lawns, planktonic cultures, and biofilms. To determine the amount of light (405 nm) transmitted at different anatomical tooth locations; irradiance values were recorded after blue light (470-4054 mW/cm2) had traversed through occlusal, oblique, and buccal dentine sections; and three thicknesses - 1, 2 and 3 mm were investigated. To determine tubular density; scanning electron micrographs from 2 mm outer (dentine-enamel junction) and inner (pulp) dentine sections were analysed. For photo-disinfection studies; S. mutans was irradiated using the same 405 nm wavelength light at a range of doses (110-1254 J/cm2) in both biofilm and planktonic cultures. The inhibitory effect of the irradiation on bacterial lawns was compared by measuring zones of inhibition; and for planktonic cultures both spectrophotometric and colony forming unit (CFU) assays were performed. A live/dead staining assay was utilised to determine the effect of irradiation on bacterial viability in mature biofilms. Data indicated that increasing dentine thickness decreased light transmission significantly irrespective of its orientation. Occlusal and oblique samples exhibited higher transmission compared with buccal dentine. Oblique dentine 405 nm light transmission was comparable with that of occlusal dentine independent of section thickness. An increased tubule density directly positively correlated with light transmission. Irradiation at 405 nm inhibited S. mutans growth in both biofilm and planktonic cultures and a dose response relationship was observed. Irradiation at doses of 340 and 831 J/cm2 led to significant reductions in bacterial growth and viability; as determined by CFU counting and live/dead staining. Data suggests that phototherapy approaches utilising a 405 nm wavelength have therapeutic potential to limit cariogenic bacterial infections both at the surface and within dentine.
Collapse
|
49
|
Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M. Inactivation Effect of Violet and Blue Light on ESKAPE Pathogens and Closely Related Non-pathogenic Bacterial Species - A Promising Tool Against Antibiotic-Sensitive and Antibiotic-Resistant Microorganisms. Front Microbiol 2021; 11:612367. [PMID: 33519770 PMCID: PMC7838345 DOI: 10.3389/fmicb.2020.612367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023] Open
Abstract
Due to the globally observed increase in antibiotic resistance of bacterial pathogens and the simultaneous decline in new antibiotic developments, the need for alternative inactivation approaches is growing. This is especially true for the treatment of infections with the problematic ESKAPE pathogens, which include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and often exhibit multiple antibiotic resistances. Irradiation with visible light from the violet and blue spectral range is an inactivation approach that does not require any additional supplements. Multiple bacterial and fungal species were demonstrated to be sensitive to this disinfection technique. In the present study, pathogenic ESKAPE organisms and non-pathogenic relatives are irradiated with visible blue and violet light with wavelengths of 450 and 405 nm, respectively. The irradiation experiments are performed at 37°C to test a potential application for medical treatment. For all investigated microorganisms and both wavelengths, a decrease in colony forming units is observed with increasing irradiation dose, although there are differences between the examined bacterial species. A pronounced difference can be observed between Acinetobacter, which prove to be particularly light sensitive, and enterococci, which need higher irradiation doses for inactivation. Differences between pathogenic and non-pathogenic bacteria of one genus are comparatively small, with the tendency of non-pathogenic representatives being less susceptible. Visible light irradiation is therefore a promising approach to inactivate ESKAPE pathogens with future fields of application in prevention and therapy.
Collapse
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
50
|
Yan H, Cui Z, Manoli T, Zhang H. Recent advances in non-thermal disinfection technologies in the food industry. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Han Yan
- School of Food Science, Henan Institute of Science and Technology
| | - ZhenKun Cui
- School of Food Science, Henan Institute of Science and Technology
| | - Tatiana Manoli
- Faculty of Technology and Commodity Science of Food Products and Food Business, Odessa National Academy of Food Technologies
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology
| |
Collapse
|