1
|
Takala TM, Mokhtari S, Ahonen SL, Wan X, Saris PEJ. Wild-type Lactococcus lactis producing bacteriocin-like prophage lysins. Front Microbiol 2023; 14:1219723. [PMID: 37520360 PMCID: PMC10377672 DOI: 10.3389/fmicb.2023.1219723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Lactococcus is a genus of lactic acid bacteria used in the dairy industry as a starter. Lactococci have been found to produce altogether more than 40 different bacteriocins, ribosomally synthesized antimicrobial proteins. All known Lactococcus spp. bacteriocins belong to classes I and II, which are mainly heat-resistant peptides. No class III bacteriocins, bigger heat-sensitive proteins, including phage tail-like bacteriocins, have been found from the Lactococcus spp. Unlike phage tail-like bacteriocins, prophage lysins have not been regarded as bacteriocins, possibly because phage lysins contribute to autolysis, degrading the host's own cell wall. Methods Wild-type Lactococcus lactis strain LAC460, isolated from spontaneously fermented idli batter, was examined for its antimicrobial activity. We sequenced the genome, searched phage lysins from the culture supernatant, and created knock-out mutants to find out the source of the antimicrobial activity. Results and discussion The strain LAC460 was shown to kill other Lactococcus strains with protease- and heat-sensitive lytic activity. Three phage lysins were identified in the culture supernatant. The genes encoding the three lysins were localized in different prophage regions in the chromosome. By knock-out mutants, two of the lysins, namely LysL and LysP, were demonstrated to be responsible for the antimicrobial activity. The strain LAC460 was found to be resistant to the lytic action of its own culture supernatant, and as a consequence, the phage lysins could behave like bacteriocins targeting and killing other closely related bacteria. Hence, similar to phage tail-like bacteriocins, phage lysin-like bacteriocins could be regarded as a novel type of class III bacteriocins.
Collapse
Affiliation(s)
- Timo M. Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Samira Mokhtari
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Susanna L. Ahonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E. J. Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Loganathan K, Viswanathan B. Genome editing for phage design and uses for therapeutic applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:203-224. [PMID: 37770172 DOI: 10.1016/bs.pmbts.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The over usage of antibiotics leads to antibiotic abuse which in turn eventually raises resistance mechanisms among wide range of pathogens. Due to lack of experimental data of efficacy of phages as potential antimicrobial and therapeutic agent and also more specific and cumbersome isolation process against specific pathogens makes it not so feasible technology to be looked as an alternative therapy. But, recent developments in genome editing techniques enables programmed nuclease enzymes that has effectively improvised our methodology to make accurate changes in the genomes of prokaryote as well as eukaryote cells. It is already strengthening our ability to improvise genetic engineering to disease identification by facilitating the creation of more precise models to identify the root cause. The present chapter discusses on improvisation of phage therapy using recent genome editing tools and also shares data on the methods of usage of phages and their derivatives like proteins and enzymes such as lysins and depolymerases, as a potential therapeutic or prophylaxis agent. Methods involved in recombinant based techniques were also discussed in this chapter. Combination of traditional approach with modern tools has led to a potential development of phage-based therapeutics in near future.
Collapse
|
3
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
4
|
Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. J Appl Microbiol 2022; 132:3515-3532. [DOI: 10.1111/jam.15462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lavanya Khullar
- Department of Microbiology Panjab University Chandigarh India
| | - Kusum Harjai
- Department of Microbiology Panjab University Chandigarh India
| | - Sanjay Chhibber
- Department of Microbiology Panjab University Chandigarh India
| |
Collapse
|
5
|
Manoharadas S, Altaf M, Alrefaei AF, Ahmad N, Althaf Hussain S, Al-Rayes BF. An Engineered Multimodular Enzybiotic against Methicillin-Resistant Staphylococcus aureus. Life (Basel) 2021; 11:1384. [PMID: 34947915 PMCID: PMC8705753 DOI: 10.3390/life11121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Development of multidrug antibiotic resistance in bacteria is a predicament encountered worldwide. Researchers are in a constant hunt to develop effective antimicrobial agents to counter these dreadful pathogenic bacteria. Here we describe a chimerically engineered multimodular enzybiotic to treat a clinical isolate of methicillin-resistant Staphylococcus aureus (S. aureus). The cell wall binding domain of phage ϕ11 endolysin was replaced with a truncated and more potent cell wall binding domain from a completely unrelated protein from a different phage. The engineered enzybiotic showed strong activity against clinically relevant methicillin-resistant Staphylococcus aureus. In spite of a multimodular peptidoglycan cleaving catalytic domain, the engineered enzybiotic could not exhibit its activity against a veterinary isolate of S. aureus. Our studies point out that novel antimicrobial proteins can be genetically engineered. Moreover, the cell wall binding domain of the engineered protein is indispensable for a strong binding and stability of the proteins.
Collapse
Affiliation(s)
- Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
| | - Mohammad Altaf
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia;
| | - Naushad Ahmad
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia;
| | - Basel F. Al-Rayes
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
| |
Collapse
|
6
|
Obořilová R, Šimečková H, Pastucha M, Klimovič Š, Víšová I, Přibyl J, Vaisocherová-Lísalová H, Pantůček R, Skládal P, Mašlaňová I, Farka Z. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. NANOSCALE 2021; 13:13538-13549. [PMID: 34477758 DOI: 10.1039/d1nr02921e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rai A, Khairnar K. Overview of the risks of Staphylococcus aureus infections and their control by bacteriophages and bacteriophage-encoded products. Braz J Microbiol 2021; 52:2031-2042. [PMID: 34251609 DOI: 10.1007/s42770-021-00566-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the leading cause of secondary infections in hospitals and a challenging pathogen in food industries. Decades after it was first reported, β-lactam-resistant S. aureus remains a subject of intense research owing to the ever-increasing issue of drug resistance. S. aureus bacteriophages (phages) or their encoded products are considered an alternative to antibiotics as they have been shown to be effective in treating some S. aureus-associated infections. In this review, we present a concise collection of the literature on the pathogenic potential of S. aureus and examine the prospects of using S. aureus phages and their encoded products as antimicrobials.
Collapse
Affiliation(s)
- Akanksha Rai
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl Microbiol Biotechnol 2020; 104:5145-5158. [PMID: 32248441 DOI: 10.1007/s00253-020-10581-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023]
Abstract
Staphylococcus aureus is a notorious foodborne pathogen since it has ability to produce variety of toxins including heat-stable enterotoxin, form biofilm, and acquire resistance to antibiotics. Biocontrol of foodborne pathogens by lytic bacteriophages garners increasing interest from both researchers and food industry. In the present study, 29 phages against S. aureus were successfully isolated from chicken, pork, and fish. Characterization of the isolates revealed that phage SA46-CTH2 belonging to Podoviridae family had a number of features suitable for food industry applications such as wide host range, short latent period, large burst size, high stress tolerance, and a genome free of virulence genes. Furthermore, phage SA46-CTH2 alone or in combination with nisin exhibited great efficacy in reducing planktonic and biofilm cells of S. aureus at various conditions tested. The combination of phage SA46-CTH2 and nisin was also found to be able to inhibit the regrowth of S. aureus at both 37 and 24 °C.Key points• A total of 29 S. aureus phages were successfully isolated from fish, pork, and chicken products. • Phage SA46-CTH2 was characterized by host range, morphology, and genome sequencing. • SA46-CTH2 significantly reduced both planktonic and biofilm cells of S. aureus. • Combination of SA46-CTH2 and nisin inhibited the regrowth of S. aureus.
Collapse
|
9
|
Titze I, Lehnherr T, Lehnherr H, Krömker V. Efficacy of Bacteriophages Against Staphylococcus aureus Isolates from Bovine Mastitis. Pharmaceuticals (Basel) 2020; 13:ph13030035. [PMID: 32110980 PMCID: PMC7151712 DOI: 10.3390/ph13030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 01/16/2023] Open
Abstract
The lytic efficacy of bacteriophages against Staphylococcus aureus isolates from bovine milk was investigated in vitro, regarding possible applications in the therapy of udder inflammation caused by bacterial infections (mastitis). The host range of sequenced, lytic bacteriophages was determined against a collection of 92 Staphylococcus (S.) aureus isolates. The isolates originated from quarter foremilk samples of clinical and subclinical mastitis cases. A spot test and a subsequent plaque assay were used to determine the phage host range. According to their host range, propagation and storage properties, three phages, STA1.ST29, EB1.ST11, and EB1.ST27, were selected for preparing a bacteriophage mixture (1:1:1), which was examined for its lytic activity against S. aureus in pasteurized and raw milk. It was found that almost two thirds of the isolates could be lysed by at least one of the tested phages. The bacteriophage mixture was able to reduce the S. aureus germ density in pasteurized milk and its reduction ability was maintained in raw milk, with only a moderate decrease compared to the results in pasteurized milk. The significant reduction ability of the phage mixture in raw milk promotes further in vivo investigation.
Collapse
Affiliation(s)
- Isabel Titze
- Department of Bioprocess Engineering and Microbiology, University of Applied Sciences and Arts Hannover, D-30453 Hannover, Germany;
| | - Tatiana Lehnherr
- Phage Technology Center GmbH, D-59199 Bönen, Germany; (T.L.); (H.L.)
| | - Hansjörg Lehnherr
- Phage Technology Center GmbH, D-59199 Bönen, Germany; (T.L.); (H.L.)
| | - Volker Krömker
- Department of Bioprocess Engineering and Microbiology, University of Applied Sciences and Arts Hannover, D-30453 Hannover, Germany;
- Section for Production, Nutrition and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
- Correspondence:
| |
Collapse
|
10
|
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. SCIENCE ADVANCES 2019; 5:eaaw7414. [PMID: 31663016 PMCID: PMC6795507 DOI: 10.1126/sciadv.aaw7414] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 06/01/2023]
Abstract
Phages infecting Staphylococcus aureus can be used as therapeutics against antibiotic-resistant bacterial infections. However, there is limited information about the mechanism of genome delivery of phages that infect Gram-positive bacteria. Here, we present the structures of native S. aureus phage P68, genome ejection intermediate, and empty particle. The P68 head contains 72 subunits of inner core protein, 15 of which bind to and alter the structure of adjacent major capsid proteins and thus specify attachment sites for head fibers. Unlike in the previously studied phages, the head fibers of P68 enable its virion to position itself at the cell surface for genome delivery. The unique interaction of one end of P68 DNA with one of the 12 portal protein subunits is disrupted before the genome ejection. The inner core proteins are released together with the DNA and enable the translocation of phage genome across the bacterial membrane into the cytoplasm.
Collapse
Affiliation(s)
- Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dana Štveráková
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Viruses 2019; 11:v11030268. [PMID: 30889807 PMCID: PMC6466130 DOI: 10.3390/v11030268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Despite the successful use of antibacterials, the emergence of multidrug-resistant bacteria has become a serious threat to global healthcare. In this era of antibacterial crisis, bacteriophages (phages) are being explored as an antibacterial treatment option since they possess a number of advantages over conventional antibacterials, especially in terms of specificity and biosafety; phages specifically lyse target bacteria while not affecting normal and/or beneficial bacteria and display little or no toxicity in that they are mainly composed of proteins and nucleic acids, which consequently significantly reduces the time and cost involved in antibacterial development. However, these benefits also create potential issues regarding antibacterial spectra and host immunity; the antibacterial spectra being very narrow when compared to those of chemicals, with the phage materials making it possible to trigger host immune responses, which ultimately disarm antibacterial efficacy upon successive treatments. In addition, phages play a major role in horizontal gene transfer between bacterial populations, which poses serious concerns for the potential of disastrous consequences regarding antibiotic resistance. Fortunately, however, recent advancements in synthetic biology tools and the speedy development of phage genome resources have allowed for research on methods to circumvent the potentially disadvantageous aspects of phages. These novel developments empower research which goes far beyond traditional phage therapy approaches, opening up a new chapter for phage applications with new antibacterial platforms. Herein, we not only highlight the most recent synthetic phage engineering and phage product engineering studies, but also discuss a new proof-of-concept for phage-inspired antibacterial design based on the studies undertaken by our group.
Collapse
Affiliation(s)
- Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Eun Sook Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Yeon-Ji Yoo
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| |
Collapse
|
12
|
Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018; 10:v10060292. [PMID: 29844287 PMCID: PMC6024856 DOI: 10.3390/v10060292] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Peptidoglycan degrading enzymes are of increasing interest as antibacterial agents, especially against multi-drug resistant pathogens. Herein we present a review about the biological features of virion-associated lysins and endolysins, phage-derived enzymes that have naturally evolved to compromise the bacterial peptidoglycan from without and from within, respectively. These natural features may determine the adaptability of the enzymes to kill bacteria in different environments. Endolysins are by far the most studied group of peptidoglycan-degrading enzymes, with several studies showing that they can exhibit potent antibacterial activity under specific conditions. However, the lytic activity of most endolysins seems to be significantly reduced when tested against actively growing bacteria, something that may be related to fact that these enzymes are naturally designed to degrade the peptidoglycan from within dead cells. This may negatively impact the efficacy of the endolysin in treating some infections in vivo. Here, we present a critical view of the methods commonly used to evaluate in vitro and in vivo the antibacterial performance of PG-degrading enzymes, focusing on the major hurdles concerning in vitro-to-in vivo translation.
Collapse
|
13
|
Endolysins of Bacteriophages as an Anti-Methicillin Resistant Staphylococcus aureus Infection in Children: A Narrative Review. JOURNAL OF PEDIATRICS REVIEW 2017. [DOI: 10.5812/jpr.11562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 2017; 101:3103-3119. [PMID: 28337580 PMCID: PMC5380687 DOI: 10.1007/s00253-017-8224-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 03/04/2017] [Indexed: 11/24/2022]
Abstract
Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.
Collapse
Affiliation(s)
- Agnieszka Latka
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.,Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
15
|
Drilling AJ, Ooi ML, Miljkovic D, James C, Speck P, Vreugde S, Clark J, Wormald PJ. Long-Term Safety of Topical Bacteriophage Application to the Frontal Sinus Region. Front Cell Infect Microbiol 2017; 7:49. [PMID: 28286740 PMCID: PMC5323412 DOI: 10.3389/fcimb.2017.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Background:Staphylococcus aureus biofilms contribute negatively to a number of chronic conditions, including chronic rhinosinusitis (CRS). With the inherent tolerance of biofilm-bound bacteria to antibiotics and the global problem of bacterial antibiotic resistance, the need to develop novel therapeutics is paramount. Phage therapy has previously shown promise in treating sinonasal S. aureus biofilms. Methods: This study investigates the long term (20 days) safety of topical sinonasal flushes with bacteriophage suspensions. The bacteriophage cocktail NOV012 against S. aureus selected for this work contains two highly characterized and different phages, P68 and K710. Host range was assessed against S. aureus strains isolated from CRS patients using agar spot tests. NOV012 was applied topically to the frontal sinus region of sheep, twice daily for 20 days. General sheep wellbeing, mucosal structural changes and inflammatory load were assessed to determine safety of NOV012 application. Results: NOV012 could lyse 52/61 (85%) of a panel of locally derived CRS clinical isolates. Application of NOV012 to the frontal sinuses of sheep for 20 days was found to be safe, with no observed inflammatory infiltration or tissue damage within the sinus mucosa. Conclusion: NOV012 cocktail appears safe to apply for extended periods to sheep sinuses and it could infect and lyse a wide range of S. aureus CRS clinical isolates. This indicates that phage therapy has strong potential as a treatment for chronic bacterial rhinosinusitis.
Collapse
Affiliation(s)
- Amanda J Drilling
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide Adelaide, SA, Australia
| | - Mian L Ooi
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide Adelaide, SA, Australia
| | - Dijana Miljkovic
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide Adelaide, SA, Australia
| | - Craig James
- Adelaide Pathology Partners Adelaide, SA, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University Bedford Park, SA, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide Adelaide, SA, Australia
| | | | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
16
|
Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017; 43:583-601. [DOI: 10.1080/1040841x.2016.1271309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carla Carvalho
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Ana Rita Costa
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Filipe Silva
- CECAV-UTAD, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana Oliveira
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
17
|
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins--application approaches. Curr Med Chem 2016; 22:1757-73. [PMID: 25666799 PMCID: PMC4468916 DOI: 10.2174/0929867322666150209152851] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
18
|
Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. BACTERIOPHAGE 2015; 5:e1062590. [PMID: 26442196 DOI: 10.1080/21597081.2015.1062590] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023]
Abstract
Antibiotics have the remarkable power to control bacterial infections. Unfortunately, widespread use, whether regarded as prudent or not, has favored the emergence and persistence of antibiotic resistant strains of human pathogenic bacteria, resulting in a global health threat. Bacteriophages (phages) are parasites that invade the cells of virtually all known bacteria. Phages reproduce by utilizing the host cell's machinery to replicate viral proteins and genomic material, generally damaging and killing the cell in the process. Thus, phage can be exploited therapeutically as bacteriolytic agents against bacteria. Furthermore, understanding of the molecular processes involved in the viral life cycle, particularly the entry and cell lysis steps, has led to the development of viral proteins as antibacterial agents. Here we review the current preclinical state of using phage-derived endolysins, virion-associated peptidoglycan hydrolases, polysaccharide depolymerases, and holins for the treatment of bacterial infection. The scope of this review is a focus on the viral proteins that have been assessed for protective effects against human pathogenic bacteria in animal models of infection and disease.
Collapse
Affiliation(s)
- Dwayne R Roach
- Molecular Biology of the Genes in Extremophiles; Department of Microbiology; Institute Pasteur ; Paris, France
| | - David M Donovan
- Animal Biosciences and Biotechnology Laboratory; NEA; Agricultural Research Service; US Department of Agriculture ; Beltsville, MD USA
| |
Collapse
|
19
|
EC300: a phage-based, bacteriolysin-like protein with enhanced antibacterial activity against Enterococcus faecalis. Appl Microbiol Biotechnol 2015; 99:5137-49. [DOI: 10.1007/s00253-015-6483-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
|
20
|
Kaźmierczak Z, Górski A, Dąbrowska K. Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses 2014; 6:2551-70. [PMID: 24988520 PMCID: PMC4113783 DOI: 10.3390/v6072551] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a common and often virulent pathogen in humans. This bacterium is widespread, being present on the skin and in the nose of healthy people. Staphylococcus aureus can cause infections with severe outcomes ranging from pustules to sepsis and death. The introduction of antibiotics led to a general belief that the problem of bacterial infections would be solved. Nonetheless, pathogens including staphylococci have evolved mechanisms of drug resistance. Among current attempts to address this problem, phage therapy offers a promising alternative to combat staphylococcal infections. Here, we present an overview of current knowledge on staphylococcal infections and bacteriophages able to kill Staphylococcus, including experimental studies and available data on their clinical use.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, Wroclaw 53-114, Poland.
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, Wroclaw 53-114, Poland.
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, Wroclaw 53-114, Poland.
| |
Collapse
|
21
|
Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 2014; 5:217. [PMID: 24860564 PMCID: PMC4026712 DOI: 10.3389/fmicb.2014.00217] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China ; National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
22
|
Keary R, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. BACTERIOPHAGE 2014; 4:e28451. [PMID: 25105056 PMCID: PMC4124061 DOI: 10.4161/bact.28451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
This study describes the genome of temperate Siphoviridae phage DW2, which is routinely propagated on Staphylococcus aureus DPC5246. The 41941 bp genome revealed an open reading frame (ORF1) which has a high level of homology with members of the resolvase subfamily of site-specific serine recombinase, involved in chromosomal integration and excision. In contrast, the majority of staphylococcal phages reported to date encode tyrosine recombinases. Two putative genes encoded by phage DW2 (ORF15 and ORF24) were highly homologous to the NWMN0273 and NWMN0280 genes encoding virulence factors carried on the genome of ϕNM4, a prophage in the genome of S. aureus Newman. Phage DW2 also encodes proteins highly homologous to two well-characterized Staphylococcus aureus pathogenicity island derepressors encoded by the staphylococcal helper phage 80α indicating that it may similarly act as a helper phage for mobility of pathogenicity islands in S. aureus. This study also focused on the enzybiotic potential of phage DW2. The structure of the putative endolysin and tail hydrolase were investigated and used as the basis for a cloning strategy to create recombinant peptidoglycan hydrolyzing proteins. After overexpression in E. coli, four of these proteins (LysDW2, THDW2, CHAPE1-153, and CHAPE1-163) were demonstrated to have hydrolytic activity against peptidoglycan of S. aureus and thus represent novel candidates for exploitation as enzybiotics.
Collapse
Affiliation(s)
- Ruth Keary
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork Ireland
| | - Olivia McAuliffe
- Biotechnology Department; Teagasc; Moorepark Food Research Centre; Fermoy, Co. Cork Ireland
| | - R Paul Ross
- Biotechnology Department; Teagasc; Moorepark Food Research Centre; Fermoy, Co. Cork Ireland
| | - Colin Hill
- Alimentary Pharmacobiotic Centre; University College Cork; Cork, Ireland
| | - Jim O'Mahony
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork Ireland
| | - Aidan Coffey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork Ireland
| |
Collapse
|
23
|
Kraushaar B, Thanh MD, Hammerl JA, Reetz J, Fetsch A, Hertwig S. Isolation and characterization of phages with lytic activity against methicillin-resistant Staphylococcus aureus strains belonging to clonal complex 398. Arch Virol 2013; 158:2341-50. [PMID: 23760627 DOI: 10.1007/s00705-013-1707-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
Abstract
Some years ago, MRSA clonal complex (CC) 398 emerged, which spread extensively in livestock animals. People in contact with food production animals are at high risk of colonization. A reduction of MRSA CC398 in livestock might be achieved by application of virulent phages. However, there have not yet been any reports published on phages lysing MRSA CC398 strains. In this study, three virulent phages (PSa1, PSa2 and PSa3) with lytic activity against MRSA CC398 strains were isolated from German pig farms. Morphologically, the phages are members of the family Podoviridae, and they exhibited an identical host range. They lysed 52 (60 %) out of 86 tested MRSA CC398 strains representing 18 different spa types. While the PSa1 and PSa3 genomes have a similar size of approximately 17.5 kb, the PSa2 genome is somewhat larger (ca. 18.5 kb). Southern hybridization revealed strong DNA homologies between the phages, which was confirmed by sequence analysis of cloned restriction fragments and PCR products. Moreover, the whole PSa3 genomic sequence (17,602 bp) showed a close relationship to 44AHJD-like phages, which are not known to contain virulence-associated genes. To assess whether these phages might be candidates for applications, in vitro experiments were carried out in which the number of MRSA CC398 cells could be reduced by up to four log10 units. The phages were stable at a wide range of temperatures and pH values.
Collapse
Affiliation(s)
- Britta Kraushaar
- Department for Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, 10589, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Rodríguez-Rubio L, Martínez B, Donovan DM, García P, Rodríguez A. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation. PLoS One 2013; 8:e54828. [PMID: 23359813 PMCID: PMC3554637 DOI: 10.1371/journal.pone.0054828] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88], and three different fusion proteins created between HydH5 and lysostaphin has been assessed. The lytic activity of the five proteins (HydH5, HydH5Lyso, HydH5SH3b, CHAPSH3b and lysostaphin) was confirmed using commercial whole extended shelf-life milk (ESL) in challenge assays with 104 CFU/mL of the strain S. aureus Sa9. HydH5, HydH5Lyso and HydH5SH3b (3.5 µM) kept the staphylococcal viable counts below the control cultures for 6 h at 37°C. The effect is apparent just 15 minutes after the addition of the lytic enzyme. Of note, lysostaphin and CHAPSH3b showed the highest staphylolytic protection as they were able to eradicate the initial staphylococcal challenge immediately or 15 min after addition, respectively, at lower concentration (1 µM) at 37°C. CHAPSH3b showed the same antistaphyloccal effect at room temperature (1.65 µM). No re-growth was observed for the remainder of the experiment (up to 6 h). CHAPSH3b activity (1.65 µM) was also assayed in raw (whole and skim) and pasteurized (whole and skim) milk. Pasteurization of milk clearly enhanced CHAPSH3b staphylolytic activity in both whole and skim milk at both temperatures. This effect was most dramatic at room temperature as this protein was able to reduce S. aureus viable counts to undetectable levels immediately after addition with no re-growth detected for the duration of the experiment (360 min). Furthermore, CHAPSH3b protein is known to be heat tolerant and retained some lytic activity after pasteurization treatment and after storage at 4°C for 3 days. These results might facilitate the use of the peptidoglycan hydrolase HydH5 and its derivative fusions, particularly CHAPSH3b, as biocontrol agents for controlling undesirable bacteria in dairy products.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - David M. Donovan
- Animal Biosciences and Biotechnology Laboratory, Animal and Natural Resources Institute, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), USDA, Beltsville, Maryland, United States of America
| | - Pilar García
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
- * E-mail:
| |
Collapse
|
25
|
Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A. Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era. Adv Virus Res 2012; 83:143-216. [PMID: 22748811 DOI: 10.1016/b978-0-12-394438-2.00005-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polyvalent bacteriophages of the genus Twort-like that infect clinically relevant Staphylococcus strains may be among the most promising phages with potential therapeutic applications. They are obligatorily lytic, infect the majority of Staphylococcus strains in clinical strain collections, propagate efficiently and do not transfer foreign DNA by transduction. Comparative genomic analysis of 11 S. aureus/S. epidermidis Twort-like phages, as presented in this chapter, emphasizes their strikingly high similarity and clear divergence from phage Twort of the same genus, which might have evolved in hosts of a different species group. Genetically, these phages form a relatively isolated group, which minimizes the risk of acquiring potentially harmful genes. The order of genes in core parts of their 127 to 140-kb genomes is conserved and resembles that found in related representatives of the Spounavirinae subfamily of myoviruses. Functions of certain conserved genes can be predicted based on their homology to prototypical genes of model spounavirus SPO1. Deletions in the genomes of certain phages mark genes that are dispensable for phage development. Nearly half of the genes of these phages have no known homologues. Unique genes are mostly located near termini of the virion DNA molecule and are expressed early in phage development as implied by analysis of their potential transcriptional signals. Thus, many of them are likely to play a role in host takeover. Single genes encode homologues of bacterial virulence-associated proteins. They were apparently acquired by a common ancestor of these phages by horizontal gene transfer but presumably evolved towards gaining functions that increase phage infectivity for bacteria or facilitate mature phage release. Major differences between the genomes of S. aureus/S. epidermidis Twort-like phages consist of single nucleotide polymorphisms and insertions/deletions of short stretches of nucleotides, single genes, or introns of group I. Although the number and location of introns may vary between particular phages, intron shuffling is unlikely to be a major factor responsible for specificity differences.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 2012; 96:1157-74. [PMID: 23076591 PMCID: PMC3492699 DOI: 10.1007/s00253-012-4484-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022]
Abstract
Bacteria of the genus Staphylococcus are common pathogens responsible for a broad spectrum of human and animal infections and belong to the most important etiological factors causing food poisoning. Because of rapid increase in the prevalence of isolation of staphylococci resistant to many antibiotics, there is an urgent need for the development of new alternative chemotherapeutics. A number of studies have recently demonstrated the strong potential of peptidoglycan hydrolases (PHs) to control and treat infections caused by this group of bacteria. PHs cause rapid lysis and death of bacterial cells. The review concentrates on enzymes hydrolyzing peptidoglycan of staphylococci. Usually, they are characterized by high specificity to only Staphylococcus aureus cell wall components; however, some of them are also able to lyse cells of other staphylococci, e.g., Staphylococcus epidermidis-human pathogen of growing importance and also other groups of bacteria. Some PHs strengthen the bactericidal or bacteriostatic activity of common antibiotics, and as a result, they should be considered as component of combined therapy which could definitely reduced the development of bacterial resistance to both enzymes and antibiotics. The preliminary research revealed that most of these enzymes can be produced using heterologous, especially Escherichia coli expression systems; however, still much effort is required to develop more efficient and large-scale production technologies. This review discusses current state on knowledge with emphasis on the possibilities of application of PHs in the context of therapeutics for infections caused by staphylococci.
Collapse
Affiliation(s)
- Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
27
|
Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 2012; 39:427-34. [DOI: 10.3109/1040841x.2012.723675] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Borysowski J, Lobocka M, Międzybrodzki R, Weber-Dabrowska B, Górski A. Potential of bacteriophages and their lysins in the treatment of MRSA: current status and future perspectives. BioDrugs 2012; 25:347-55. [PMID: 22050337 DOI: 10.2165/11595610-000000000-00000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteriophages (phages) are viruses that specifically infect and kill bacteria. Lysins are enzymes of bacteriophage origin that cleave covalent bonds in peptidoglycan, thereby inducing rapid lysis of a bacterial cell. As potential antibacterial agents, phages and lysins have some important features in common, especially the capacity to kill antibiotic-resistant bacteria, a narrow antibacterial range, and lack of toxic effects on mammalian cells. In this article we present the staphylococcal phages and their lysins that can be used to combat methicillin-resistant Staphylococcus aureus (MRSA), one of today's most dangerous pathogens. We also discuss the use of phages as vectors specifically delivering different antibacterial agents to bacterial cells. Experimental data show that both phages and lysins could be effective in the treatment of MRSA.
Collapse
Affiliation(s)
- Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Warsaw Medical University, Poland.
| | | | | | | | | |
Collapse
|
29
|
Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: fusions, deletions, and synergy with LysH5. Appl Environ Microbiol 2012; 78:2241-8. [PMID: 22267667 DOI: 10.1128/aem.07621-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virion-associated peptidoglycan hydrolases have potential as antimicrobial agents due to their ability to lyse Gram-positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion-associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. Full-length HydH5 and two truncated derivatives containing only the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain exhibited high lytic activity against live S. aureus cells. In addition, three different fusion proteins were created between lysostaphin and HydH5, each of which showed higher staphylolytic activity than the parental enzyme or its deletion construct. Both parental and fusion proteins lysed S. aureus cells in zymograms and plate lysis and turbidity reduction assays. In plate lysis assays, HydH5 and its derivative fusions lysed bovine and human S. aureus strains, the methicillin-resistant S. aureus (MRSA) strain N315, and human Staphylococcus epidermidis strains. Several nonstaphylococcal bacteria were not affected. HydH5 and its derivative fusion proteins displayed antimicrobial synergy with the endolysin LysH5 in vitro, suggesting that the two enzymes have distinct cut sites and, thus, may be more efficient in combination for the elimination of staphylococcal infections.
Collapse
|
30
|
Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S. A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol 2011; 11:226. [PMID: 21985151 PMCID: PMC3207973 DOI: 10.1186/1471-2180-11-226] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 10/11/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. However, the rapid emergence of antibiotic resistance limits the choice of therapeutic options for treating infections caused by this organism. Muralytic enzymes from bacteriophages have recently gained attention for their potential as antibacterial agents against antibiotic-resistant gram-positive organisms. Phage K is a polyvalent virulent phage of the Myoviridae family that is active against many Staphylococcus species. RESULTS We identified a phage K gene, designated orf56, as encoding the phage tail-associated muralytic enzyme (TAME). The gene product (ORF56) contains a C-terminal domain corresponding to cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), which demonstrated muralytic activity on a staphylococcal cell wall substrate and was lethal to S. aureus cells. We constructed N-terminal truncated forms of ORF56 and arrived at a 16-kDa protein (Lys16) that retained antistaphylococcal activity. We then generated a chimeric gene construct encoding Lys16 and a staphylococcal cell wall-binding SH3b domain. This chimeric protein (P128) showed potent antistaphylococcal activity on global clinical isolates of S. aureus including methicillin-resistant strains. In addition, P128 was effective in decolonizing rat nares of S. aureus USA300 in an experimental model. CONCLUSIONS We identified a phage K gene that encodes a protein associated with the phage tail structure. The muralytic activity of the phage K TAME was localized to the C-terminal CHAP domain. This potent antistaphylococcal TAME was combined with an efficient Staphylococcus-specific cell-wall targeting domain SH3b, resulting in the chimeric protein P128. This protein shows bactericidal activity against globally prevalent antibiotic resistant clinical isolates of S. aureus and against the genus Staphylococcus in general. In vivo, P128 was efficacious against methicillin-resistant S. aureus in a rat nasal colonization model.
Collapse
Affiliation(s)
- Vivek Daniel Paul
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
- Department of Molecular Genetics, University of Toronto,1 King's College Circle, Toronto, ON-M5S 1A8, Canada
| | - Sanjeev Saravanan Rajagopalan
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Sudarson Sundarrajan
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Shilpa E George
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Jiya Y Asrani
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Renjith Pillai
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
- Lab Technologist, Pulmonary research, 559, Heritage Medical Research Center Dept of Medicine,112 St and 87 Ave, Edmonton, Alberta-T6G2S2, Canada
| | - Ravisha Chikkamadaiah
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Murali Durgaiah
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Bharathi Sriram
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
| | - Sriram Padmanabhan
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore 560 022, India
- Lupin Limited, Biotechnology R & D, Gat #1156, Ghotawade Village, Mulshi Taluka, Pune-411042, India
| |
Collapse
|
31
|
Rodríguez L, Martínez B, Zhou Y, Rodríguez A, Donovan DM, García P. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. BMC Microbiol 2011; 11:138. [PMID: 21682850 PMCID: PMC3150257 DOI: 10.1186/1471-2180-11-138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/17/2011] [Indexed: 11/29/2022] Open
Abstract
Background Staphylococcus aureus is a food-borne pathogen and the most common cause of infections in hospitalized patients. The increase in the resistance of this pathogen to antibacterials has made necessary the development of new anti-staphylococcal agents. In this context, bacteriophage lytic enzymes such as endolysins and structural peptidoglycan (PG) hydrolases have received considerable attention as possible antimicrobials against gram-positive bacteria. Results S. aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encoded by staphylococcal phages. The protein consists of 634 amino acid residues. Two putative lytic domains were identified: an N-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain (135 amino acid residues), and a C-terminal LYZ2 (lysozyme subfamily 2) domain (147 amino acid residues). These domains were also found when a predicted three-dimensional structure of HydH5 was made which provided the basis for deletion analysis. The complete HydH5 protein and truncated proteins containing only each catalytic domain were overproduced in E. coli and purified from inclusion bodies by subsequent refolding. Truncated and full-length HydH5 proteins were all able to bind and lyse S. aureus Sa9 cells as shown by binding assays, zymogram analyses and CFU reduction analysis. HydH5 demonstrated high antibiotic activity against early exponential cells, at 45°C and in the absence of divalent cations (Ca2+, Mg2+, Mn2+). Thermostability assays showed that HydH5 retained 72% of its activity after 5 min at 100°C. Conclusions The virion-associated PG hydrolase HydH5 has lytic activity against S. aureus, which makes it attractive as antimicrobial for food biopreservation and anti-staphylococcal therapy.
Collapse
Affiliation(s)
- Lorena Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Apdo, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Gupta R, Prasad Y. P-27/HP Endolysin as Antibacterial Agent for Antibiotic Resistant Staphylococcus aureus of Human Infections. Curr Microbiol 2011; 63:39-45. [DOI: 10.1007/s00284-011-9939-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/14/2011] [Indexed: 11/30/2022]
|
33
|
Manoharadas S, Witte A, Bläsi U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol 2008; 139:118-23. [PMID: 18940209 DOI: 10.1016/j.jbiotec.2008.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Phage lytic enzymes (enzybiotics) have gained attention as prospective tools to eradicate Gram-positive pathogens resistant to antibiotics. Attempts to purify the P16 endolysin of Staphylococcus aureus phage P68 were unsuccessful owing to the poor solubility of the protein. To overcome this limitation, we constructed a chimeric endolysin (P16-17) comprised of the inferred N-terminal d-alanyl-glycyl endopeptidase domain and the C-terminal cell wall targeting domain of the S. aureus phage P16 endolysin and the P17 minor coat protein, respectively. The domain swapping approach and the applied purification procedure resulted in soluble P16-17 protein, which exhibited antimicrobial activity towards S. aureus. In addition, P16-17 augmented the antimicrobial efficacy of the antibiotic gentamicin. This synergistic effect could be useful to reduce the effective dose of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Salim Manoharadas
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
34
|
Veiga-Crespo P, Ageitos JM, Poza M, Villa TG. Enzybiotics: A Look to the Future, Recalling the Past. J Pharm Sci 2007; 96:1917-24. [PMID: 17518365 DOI: 10.1002/jps.20853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The discovery and development of antibiotics was one of the greatest successes of Medicine in the 20th century and allowed the control of many diseases caused by microorganisms. Nevertheless, it is necessary to search constantly for new therapeutic tools in the continuing fight against disease-causing microorganisms and this probably leads us to today's concept of enzybiotics. Although microorganism-degrading enzymes have been known since the beginning of the last century, their use was soon forgotten because of the widespread use of antibiotics. The term enzybiotic is a hybrid word from "enzyme" and "antibiotic" and refers to phages: that is, viruses that attack and lyse bacteria and that can potentially help us to fight bacterial diseases. If the concept of enzybiotic is extended to antifungal enzymes, an enormous potential in the struggle against microorganism-due diseases may become available in the foreseeable future.
Collapse
Affiliation(s)
- Patricia Veiga-Crespo
- Department of Microbiology, Faculty of Pharmacy, Campus Sur, 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | |
Collapse
|