1
|
Antenucci L, Virtanen S, Thapa C, Jartti M, Pitkänen I, Tossavainen H, Permi P. Reassessing the substrate specificities of the major Staphylococcus aureus peptidoglycan hydrolases lysostaphin and LytM. eLife 2024; 13:RP93673. [PMID: 39495121 PMCID: PMC11534333 DOI: 10.7554/elife.93673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Salla Virtanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Chandan Thapa
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Minne Jartti
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
- Department of Chemistry, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| |
Collapse
|
2
|
Karyagina AS, Grishin AV, Kudinova AG, Bulygina IN, Koudan EV, Orlova PA, Datsenko VP, Zhulina AV, Grunina TM, Poponova MS, Krivozubov MS, Gromova MS, Strukova NV, Generalova MS, Nikitin KE, Shchetinin IV, Luchnikov LO, Zaitseva SV, Kirsanova MA, Statnik ES, Senatov FS, Lunin VG, Gromov AV. Dual-Functional Implant Based on Gellan-Xanthan Hydrogel with Diopside, BMP-2 and Lysostaphin for Bone Defect Repair and Control of Staphylococcal Infection. Macromol Biosci 2024; 24:e2400205. [PMID: 39140453 DOI: 10.1002/mabi.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Grishin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alina G Kudinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Inna N Bulygina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Elizaveta V Koudan
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vera P Datsenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Gromova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Generalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Shchetinin
- Material Science Department, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Lev O Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Svetlana V Zaitseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | | | - Eugene S Statnik
- "LUCh" Laboratory, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
3
|
Krishnan M, Tham HY, Wan Nur Ismah WAK, Yusoff K, Song AAL. Effect of Domain Manipulation in the Staphylococcal Phage Endolysin, Endo88, on Lytic Efficiency and Host Range. Mol Biotechnol 2024:10.1007/s12033-024-01216-4. [PMID: 38904894 DOI: 10.1007/s12033-024-01216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
The bacteriophage endolysin Endo88 targeting Staphylococcus aureus PS88 consists of the CHAP and Amidase-2 enzymatic domains and one SH3b targeting domain. In this study, the effects of domain manipulations on Endo88 functionality were determined. Three truncated mutants of Endo88 (CHAP, CHAPAmidase and CHAPSH3) and two chimeras (CHAPAmidase-Cpl7Cpl7 and Endo88-Cpl7Cpl7) containing the Cpl7Cpl7 targeting domains of the streptococcal LambdaSa2-ECC endolysin were cloned in E. coli (pET28a), expressed, and then purified. Lytic efficiency and host range were assessed through plate lysis assays and turbidity reduction assays. Endo88 required all domains for maximum functionality, with activity detected against Staphylococcus aureus PS88 (host strain), S. aureus Mu50 (VISA), CoNS (Staphylococcus epidermidis and Staphylococcus hominis), and Enterococcus faecalis. The truncated constructs maintained the original host range but with reduced lytic efficiency. The Amidase-2 and SH3b domains are interdependent in maximizing functionality. The chimera constructs demonstrated reduced functionality, without activity against Streptococcus agalactiae in both assays. This study provides insights into domain function in a staphylococcal endolysin, which could enable the development of prospective engineered antimicrobials against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Melvina Krishnan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hong Yun Tham
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan Ahmad Kamil Wan Nur Ismah
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, 43000, Kajang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Landa G, Aguerri L, Irusta S, Mendoza G, Arruebo M. PLGA nanoparticle-encapsulated lysostaphin for the treatment of Staphylococcus aureus infections. Int J Biol Macromol 2024; 271:132563. [PMID: 38782313 DOI: 10.1016/j.ijbiomac.2024.132563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Staphylococcus aureus possesses the ability to become pathogenic, leading to severe and life-threatening infections. Its methicillin-resistant variant MRSA has garnered high-priority status due to its increased morbidity and associated mortality. This emphasizes the urgency for novel anti-staphylococcal agents. The bacteriocin lysostaphin stands out for its remarkable bactericidal activity against S. aureus, including MRSA, outperforming conventional antibiotics. However, the clinical application of lysostaphin faces challenges, including enzymatic activity loss under physiological conditions and potential immunogenicity. This study introduces a novel approach by encapsulating lysostaphin within polylactic-co-glycolic acid (PLGA) nanoparticles, a biodegradable copolymer known for its biocompatibility and sustained drug release ability. The study assesses the antimicrobial activity of lysostaphin-loaded PLGA nanoparticles against different S. aureus strains, and we also used GFP-expressing S. aureus for facilitating its traceability in planktonic, biofilm, and intracellular infection models. The results showed the significant reduction in bacteria viability both in planktonic and biofilm states. The in vitro intracellular infection model demonstrated the significantly enhanced efficiency of the developed nanoparticles compared to the treatment with the free bacteriocin. This research presents lysostaphin encapsulation within PLGA nanoparticles and offers promising avenues for enhancing lysostaphin's therapeutic efficacy against S. aureus infections.
Collapse
Affiliation(s)
- Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Laura Aguerri
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Department of Pharmacology and Physiology, Forensic and Legal Medicine, University of Zaragoza, 50009 Zaragoza, Spain.
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Alreja AB, Appel AE, Zhu JC, Riley SP, Gonzalez-Juarbe N, Nelson DC. SP-CHAP, an endolysin with enhanced activity against biofilm pneumococci and nasopharyngeal colonization. mBio 2024; 15:e0006924. [PMID: 38470268 PMCID: PMC11005408 DOI: 10.1128/mbio.00069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Streptococcus pneumoniae (Spn), a Gram-positive bacterium, is responsible for causing a wide variety of invasive infections. The emergence of multi-drug antibiotic resistance has prompted the search for antimicrobial alternatives. Phage-derived peptidoglycan hydrolases, known as endolysins, are an attractive alternative. In this study, an endolysin active against Spn, designated SP-CHAP, was cloned, produced, purified, biochemically characterized, and evaluated for its antimicrobial properties. Cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains are widely represented in bacteriophage endolysins but have never previously been reported for pneumococcal endolysins. Here, we characterize the first pneumococcal endolysin with a CHAP catalytic domain. SP-CHAP was antimicrobial against all Spn serovars tested, including capsular and capsule-free pneumococci, and it was found to be more active than the most widely studied pneumococcal endolysin, Cpl-1, while not affecting various oral or nasal commensal organisms tested. SP-CHAP was also effective in eradicating Spn biofilms at concentrations as low as 1.56 µg/mL. In addition, a Spn mouse nasopharyngeal colonization model was employed, which showed that SP-CHAP caused a significant reduction in Spn colony-forming units, even more than Cpl-1. These results indicate that SP-CHAP may represent a promising alternative to combating Spn infections. IMPORTANCE Considering the high rates of pneumococcal resistance reported for several antibiotics, alternatives are urgently needed. In the present study, we report a Streptococcus pneumoniae-targeting endolysin with even greater activity than Cpl-1, the most characterized pneumococcal endolysin to date. We have employed a combination of biochemical and microbiological assays to assess the stability and lytic potential of SP-CHAP and demonstrate its efficacy on pneumococcal biofilms in vitro and in an in vivo mouse model of colonization. Our findings highlight the therapeutic potential of SP-CHAP as an antibiotic alternative to treat Streptococcus pneumoniae infections.
Collapse
Affiliation(s)
- Adit B. Alreja
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Amanda E. Appel
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Norberto Gonzalez-Juarbe
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Daniel C. Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Sychla A, Stach CS, Roach SN, Hayward AN, Langlois RA, Smanski MJ. High-throughput investigation of genetic design constraints in domesticated Influenza A Virus for transient gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580300. [PMID: 38405907 PMCID: PMC10888799 DOI: 10.1101/2024.02.14.580300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Replication-incompetent single cycle infectious Influenza A Virus (sciIAV) has demonstrated utility as a research and vaccination platform. Protein-based therapeutics are increasingly attractive due to their high selectivity and potent efficacy but still suffer from low bioavailability and high manufacturing cost. Transient RNA-mediated delivery is a safe alternative that allows for expression of protein-based therapeutics within the target cells or tissues but is limited by delivery efficiency. Here, we develop recombinant sciIAV as a platform for transient gene delivery in vivo and in vitro for therapeutic, research, and manufacturing applications (in vivo antimicrobial production, cell culture contamination clearance, and production of antiviral proteins in vitro). While adapting the system to deliver new protein cargo we discovered expression differences presumably resulting from genetic context effects. We applied a high-throughput screen to map these within the 3'-untranslated and coding regions of the hemagglutinin-encoding segment 4. This screen revealed permissible mutations in the 3'-UTR and depletion of RNA level motifs in the N-terminal coding region.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Christopher S Stach
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Shanley N Roach
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Department of Microbiology and Immunology, University of Minnesota, Saint Paul, MN 55108
| | - Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Ryan A Langlois
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Department of Microbiology and Immunology, University of Minnesota, Saint Paul, MN 55108
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
7
|
Batugal T, Pendyala G, Tomasovic L, Varner C, Caplin JD, Page AM, Davis M, Satola SW, García AJ, Kane RS. Engineering active lysostaphin variants that incorporate noncanonical amino acids and characterizing the effects of site-specific PEGylation. Biotechnol Bioeng 2023; 120:1694-1701. [PMID: 36810983 DOI: 10.1002/bit.28360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We describe a facile strategy to identify sites for the incorporation of noncanonical amino acids into lysostaphin-an enzyme that degrades the cell wall of Staphylococcus aureus-while retaining stapholytic activity. We used this strategy to generate active variants of lysostaphin incorporating para-azidophenylalanine. The incorporation of this "reactive handle" enabled the orthogonal site-specific modification of the enzyme variants with polyethylene glycol (PEG) using copper-free click cycloaddition. PEGylated lysostaphin variants could retain their stapholytic activity, with the extent of retention depending on the site of modification and the PEG molecular weight. The site-specific modification of lysostaphin could be useful not only for PEGylation to improve biocompatibility but also for the incorporation of the enzyme into hydrogels and other biomaterials and for studies of protein structure and dynamics. Moreover, the approach described herein could be readily applied to identify suitable sites for the incorporation of reactive handles into other proteins of interest.
Collapse
Affiliation(s)
- Troy Batugal
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Geetanjali Pendyala
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke Tomasovic
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chad Varner
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy D Caplin
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alexander M Page
- Department of Medicine, Division of Infectious Diseases and Emory Investigational Clinical Microbiology Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michelle Davis
- Department of Medicine, Division of Infectious Diseases and Emory Investigational Clinical Microbiology Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah W Satola
- Department of Medicine, Division of Infectious Diseases and Emory Investigational Clinical Microbiology Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Kudinova A, Grishin A, Grunina T, Poponova M, Bulygina I, Gromova M, Choudhary R, Senatov F, Karyagina A. Antibacterial and Anti-Biofilm Properties of Diopside Powder Loaded with Lysostaphin. Pathogens 2023; 12:pathogens12020177. [PMID: 36839449 PMCID: PMC9959908 DOI: 10.3390/pathogens12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Diopside-based ceramic is a perspective biocompatible material with numerous potential applications in the field of bone prosthetics. Implantable devices and materials are often prone to colonization and biofilm formation by pathogens such as Staphylococcus aureus, which in the case of bone grafting leads to osteomyelitis, an infectious bone and bone marrow injury. To lower the risk of bacterial colonization, implanted materials can be impregnated with antimicrobials. In this work, we loaded the antibacterial enzyme lysostaphin on diopside powder and studied the antibacterial and antibiofilm properties of such material to probe the utility of this approach for diopside-based prosthetic materials. METHODS Diopside powder was synthesized by the solid-state method, lysostaphin was loaded on diopside by adsorption, the release of lysostaphin from diopside was monitored by ELISA, and antibacterial and anti-biofilm activity was assessed by standard microbiological procedures. RESULTS AND CONCLUSIONS Lysostaphin released from diopside powder showed high antibacterial activity against planktonic bacteria and effectively destroyed 24-h staphylococcal biofilms. Diopside-based materials possess a potential for the development of antibacterial bone grafting materials.
Collapse
Affiliation(s)
- Alina Kudinova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Alexander Grishin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| | - Tatiana Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Maria Poponova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Inna Bulygina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Maria Gromova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kipsala Street 6A, LV-1048 Riga, Latvia
| | - Fedor Senatov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Anna Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| |
Collapse
|
9
|
Eichenseher F, Herpers BL, Badoux P, Leyva-Castillo JM, Geha RS, van der Zwart M, McKellar J, Janssen F, de Rooij B, Selvakumar L, Röhrig C, Frieling J, Offerhaus M, Loessner MJ, Schmelcher M. Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus In Vitro, on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrob Agents Chemother 2022; 66:e0227321. [PMID: 35416713 PMCID: PMC9112974 DOI: 10.1128/aac.02273-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S. aureus-associated skin infections with antibiotics is discouraged due to their broad-range deleterious effect on healthy skin microbiota and their ability to promote the development of resistance. Thus, novel S. aureus-specific antibacterial agents are desirable. We constructed two chimeric cell wall-lytic enzymes, Staphefekt SA.100 and XZ.700, which are composed of functional domains from the bacteriophage endolysin Ply2638 and the bacteriocin lysostaphin. Both enzymes specifically killed S. aureus and were inactive against commensal skin bacteria such as Staphylococcus epidermidis, with XZ.700 proving more active than SA.100 in multiple in vitro activity assays. When surface-attached mixed staphylococcal cultures were exposed to XZ.700 in a simplified microbiome model, the enzyme selectively removed S. aureus and retained S. epidermidis. Furthermore, XZ.700 did not induce resistance in S. aureus during repeated rounds of exposure to sublethal concentrations. Finally, we demonstrated that XZ.700 formulated as a cream is effective at killing S. aureus on reconstituted human epidermis and that an XZ.700-containing gel significantly reduces bacterial numbers compared to an untreated control in a mouse model of S. aureus-induced skin infection.
Collapse
Affiliation(s)
- Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| | - Bjorn L. Herpers
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | - Paul Badoux
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | | | - Raif S. Geha
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ferd Janssen
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | | | | | | | | | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| |
Collapse
|
10
|
Sulaiman JE, Long L, Qian PY, Lam H. Proteomics and Transcriptomics Uncover Key Processes for Elasnin Tolerance in Methicillin-Resistant Staphylococcus aureus. mSystems 2022; 7:e0139321. [PMID: 35076266 PMCID: PMC8788329 DOI: 10.1128/msystems.01393-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023] Open
Abstract
Elasnin is a new antibiofilm compound that was recently reported to have excellent activity against methicillin-resistant Staphylococcus aureus (MRSA) biofilms. In this study, we established that elasnin also has antibacterial activity against growing S. aureus planktonic cells. To explore elasnin's potential as an antibiotic, we applied adaptive laboratory evolution (ALE) and produced evolved strains with elevated elasnin tolerance. Interestingly, they were more sensitive toward daptomycin and lysostaphin. Whole-genome sequencing revealed that all of the evolved strains possessed a single point mutation in a putative phosphate transport regulator. Subsequently, they exhibited increased intracellular phosphate (Pi) and polyphosphate levels. Inhibition of the phosphate transport regulator gene changed the phenotype of the wild type to one resembling those observed in the evolved strains. Proteomics and transcriptomics analyses showed that elasnin treatment resulted in the downregulation of many proteins related to cell division and cell wall synthesis, which is important for the survival of growing exponential-phase cells. Other downregulated processes and factors were fatty acid metabolism, glycolysis, the two-component system, RNA degradation, and ribosomal proteins. Most importantly, transport proteins and proteins involved in oxidative phosphorylation and the phosphotransferase system were more upregulated in the evolved strain than in the ancestral strain, indicating that they are important for elasnin tolerance. Overall, this study showed that elasnin has antibacterial activity against growing S. aureus cells and revealed the altered processes due to elasnin treatment and those associated with its tolerance. IMPORTANCE Besides the excellent antibiofilm properties of elasnin, we discovered that it can also kill growing methicillin-resistant Staphylococcus aureus (MRSA) planktonic cells. We subjected MRSA cells to an in vitro evolution experiment, and the resulting evolved strains exhibited increased elasnin tolerance, reduced growth rate, loss of pigmentation, and an increased proportion of small-colony formation, and they became more sensitive toward daptomycin and lysostaphin. Through multiomics analysis, we uncovered the affected processes in growing S. aureus planktonic cells following elasnin treatment, including the downregulation of cell wall synthesis, cell division, and some genes/proteins for the two-component system. These findings suggest that elasnin suppressed processes important for the cells' survival and adaptation to environmental stresses, making it an ideal drug adjuvant candidate. Overall, our study provides new insights into the mechanism of elasnin in S. aureus planktonic cells and pointed out the potential application of elasnin in clinics.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Lexin Long
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, People’s Republic of China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| |
Collapse
|
11
|
Han HW, Patel KD, Kwak JH, Jun SK, Jang TS, Lee SH, Knowles JC, Kim HW, Lee HH, Lee JH. Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules 2021; 11:1028. [PMID: 34356651 PMCID: PMC8301847 DOI: 10.3390/biom11071028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, multidrug-resistant (MDR) bacteria have increased rapidly, representing a major threat to human health. This problem has created an urgent need to identify alternatives for the treatment of MDR bacteria. The aim of this study was to identify the antibacterial activity of selenium nanoparticles (SeNPs) and selenium nanowires (SeNWs) against MDR bacteria and assess the potential synergistic effects when combined with a conventional antibiotic (linezolid). SeNPs and SeNWs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, and UV-visible analysis. The antibacterial effects of SeNPs and SeNWs were confirmed by the macro-dilution minimum inhibitory concentration (MIC) test. SeNPs showed MIC values against methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant enterococci (VRE) at concentrations of 20, 80, 320, and >320 μg/mL, respectively. On the other hand, SeNWs showed a MIC value of >320 μg/mL against all tested bacteria. Therefore, MSSA, MRSA, and VRSA were selected for the bacteria to be tested, and SeNPs were selected as the antimicrobial agent for the following experiments. In the time-kill assay, SeNPs at a concentration of 4X MIC (80 and 320 μg/mL) showed bactericidal effects against MSSA and MRSA, respectively. At a concentration of 2X MIC (40 and 160 μg/mL), SeNPs showed bacteriostatic effects against MSSA and bactericidal effects against MRSA, respectively. In the synergy test, SeNPs showed a synergistic effect with linezolid (LZD) through protein degradation against MSSA and MRSA. In conclusion, these results suggest that SeNPs can be candidates for antibacterial substitutes and supplements against MDR bacteria for topical use, such as dressings. However, for use in clinical situations, additional experiments such as toxicity and synergistic mechanism tests of SeNPs are needed.
Collapse
Affiliation(s)
- Hee-Won Han
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Jin-Hwan Kwak
- Department of Life Science, Handong Global University, Pohang 37554, Korea;
| | - Soo-Kyung Jun
- Department of Dental Hygiene, Hanseo University, Seosan 31962, Korea;
| | - Tae-Su Jang
- Department of Pre-Medi, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan 31116, Korea;
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
12
|
Development of a Broth Microdilution Method for Exebacase Susceptibility Testing. Antimicrob Agents Chemother 2021; 65:e0258720. [PMID: 33903102 PMCID: PMC8218677 DOI: 10.1128/aac.02587-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exebacase (CF-301) belongs to a new class of protein-based antibacterial agents, known as lysins (peptidoglycan hydrolases). Exebacase, a novel lysin with antistaphylococcal activity, is in phase 3 of clinical development. To advance into the clinic, it was necessary to develop an accurate and reproducible method for exebacase MIC determination. The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) method using cation-adjusted Mueller-Hinton broth (CAMHB) produced trailing MIC endpoints, and exebacase activity was diminished when frozen BMD panels were used. A modified BMD method was developed using CAMHB supplemented with 25% horse serum and 0.5 mM dl-dithiothreitol (CAMHB-HSD). Preliminary quality control (QC) ranges for Staphylococcus aureus ATCC 29213 of 0.25 to 1 μg/ml and for Enterococcus faecalis ATCC 29212 of 16 to 64 μg/ml were determined based on the results of a CLSI M23-defined MIC QC tier 1 study. These preliminary QC ranges validated the MIC data generated from a systematic study testing a discrete S. aureus strain collection using CAMHB-HSD to investigate the impact of parameters known to influence susceptibility test results and to evaluate the exebacase MIC distribution against clinical S. aureus isolates. Presentation of these data led to the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) approval of the use of CAMHB-HSD to determine exebacase susceptibility and commencement of a multilaboratory (tier 2) QC study. Use of a standard BMD method and concomitant QC testing provides confidence in the assessment of test performance to generate accurate and reproducible susceptibility data during antibacterial drug development.
Collapse
|
13
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
14
|
Electrostatic-Mediated Affinity Tuning of Lysostaphin Accelerates Bacterial Lysis Kinetics and Enhances In Vivo Efficacy. Antimicrob Agents Chemother 2021; 65:AAC.02199-20. [PMID: 33468459 DOI: 10.1128/aac.02199-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.
Collapse
|
15
|
Deimmunized Lysostaphin Synergizes with Small-Molecule Chemotherapies and Resensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Antimicrob Agents Chemother 2021; 65:AAC.01707-20. [PMID: 33318001 DOI: 10.1128/aac.01707-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/06/2020] [Indexed: 12/25/2022] Open
Abstract
There is an urgent need for novel agents to treat drug-resistant bacterial infections, such as multidrug-resistant Staphylococcus aureus (MRSA). Desirable properties for new antibiotics include high potency, narrow species selectivity, low propensity to elicit new resistance phenotypes, and synergy with standard-of-care (SOC) chemotherapies. Here, we describe analysis of the antibacterial potential exhibited by F12, an innovative anti-MRSA lysin that has been genetically engineered to evade detrimental antidrug immune responses in human patients. F12 possesses high potency and rapid onset of action, it has narrow selectivity against pathogenic staphylococci, and it manifests synergy with numerous SOC antibiotics. Additionally, resistance to F12 and β-lactam antibiotics appears mutually exclusive, and, importantly, we provide evidence that F12 resensitizes normally resistant MRSA strains to β-lactams both in vitro and in vivo These results suggest that combinations of F12 and SOC antibiotics are a promising new approach to treating refractory S. aureus infections.
Collapse
|
16
|
Cheleuitte-Nieves CE, Diaz LL, Pardos de la Gandara M, Gonzalez A, Freiwald WA, de Lencastre HM, Tomasz A, Euler CW. Evaluation of Topical Lysostaphin as a Novel Treatment for Instrumented Rhesus Macaques ( Macaca mulatta) Infected with Methicillin-Resistant Staphylococcus aureus. Comp Med 2020; 70:335-347. [PMID: 32792040 PMCID: PMC7574217 DOI: 10.30802/aalas-cm-19-000102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Lytic enzymes are novel antimicrobial agents that degrade bacterial cell walls, resulting in cell rupture and death. We tested one enzyme, the bacteriocin lysostaphin, for treatment of nonhuman primates (Macaca mulatta) with persistent methicillinresistant Staphylococcus aureus (MRSA) infection of their cranial implant margins. The goal of this study was to determine if topical lysostaphin, either alone or as an adjunct therapy, could eliminate MRSA. Lysostaphin had in vitro lytic activity against all 4 previously identified NHP MRSA clones, as well as against 12 MRSA isolates of the same clonal type (MLST ST3862 and spa type t4167) before and after treatment, with no resistance discovered. In an in vivo pilot study, a 2-d application of lysostaphin alone reduced MRSA in the implant margins by 3-logs during treatment of one animal; however, MRSA titers had returned to control levels by 1 wk after treatment. In the main study, all animals (n = 4) received 10 d of systemic antibiotic treatment and both the animals and their environment (cages, equipment, room) underwent 5-d of decontamination. The experimental animals (n = 2) received 5 doses of topical lysostaphin (15 mg, every other day) applied onto their implant margins. Daily cultures showed that MRSA counts decreased significantly (≤ 25 colony-forming units/mL; P < 0.05). However, sampling of the cranial implant margin 7 d after last treatment showed that MRSA counts had returned to control levels. Our study suggests that lysostaphin, coupled with other treatment modalities, can decrease MRSA infection short-term but do not completely eradicate MRSA in the long-term. This reappearance of MRSA may be due to cross-contamination or reinfection from other infected areas, an inability of the treatment to reach all colonized areas, or insufficient dosing or length of treatment. Topical lysostaphin may be more useful clinically for superficial nonimplant associated wounds in which the lytic enzyme has better access to the infected tissue.
Collapse
Affiliation(s)
- Christopher E Cheleuitte-Nieves
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Hospital for Special Surgery, New York, New York;,
| | - Leslie L Diaz
- Comparative Bioscience Center, The Rockefeller University, New York, New York
| | - Maria Pardos de la Gandara
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, New York; Present address: National Reference Centre for Escherichia coli, Shigella and Salmonella, Enteric Bacterial Pathogens Unit, Institut Pasteur, Paris, France
| | - Alejandra Gonzalez
- Laboratory of Neural Systems, The Rockefeller University, New York, New York
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, New York
| | - Hermínia M de Lencastre
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, New York; Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, New York
| | - Chad W Euler
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York
| |
Collapse
|
17
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Zhao H, Brooks SA, Eszterhas S, Heim S, Li L, Xiong YQ, Fang Y, Kirsch JR, Verma D, Bailey-Kellogg C, Griswold KE. Globally deimmunized lysostaphin evades human immune surveillance and enables highly efficacious repeat dosing. SCIENCE ADVANCES 2020; 6:6/36/eabb9011. [PMID: 32917596 PMCID: PMC7467700 DOI: 10.1126/sciadv.abb9011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
There is a critical need for novel therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant pathogens, and lysins are among the vanguard of innovative antibiotics under development. Unfortunately, lysins' own microbial origins can elicit detrimental antidrug antibodies (ADAs) that undermine efficacy and threaten patient safety. To create an enhanced anti-MRSA lysin, a novel variant of lysostaphin was engineered by T cell epitope deletion. This "deimmunized" lysostaphin dampened human T cell activation, mitigated ADA responses in human HLA transgenic mice, and enabled safe and efficacious repeated dosing during a 6-week longitudinal infection study. Furthermore, the deimmunized lysostaphin evaded established anti-wild-type immunity, thereby providing significant anti-MRSA protection for animals that were immune experienced to the wild-type enzyme. Last, the enzyme synergized with daptomycin to clear a stringent model of MRSA endocarditis. By mitigating T cell-driven antidrug immunity, deimmunized lysostaphin may enable safe, repeated dosing to treat refractory MRSA infections.
Collapse
Affiliation(s)
- Hongliang Zhao
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA
| | - Seth A Brooks
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA
| | - Susan Eszterhas
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA
| | - Spencer Heim
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA
| | - Liang Li
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yan Q Xiong
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yongliang Fang
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA
- Lyticon LLC, Lebanon, NH 03766, USA
| | - Jack R Kirsch
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA
| | - Deeptak Verma
- Department of Computer Science, Dartmouth, Hanover, NH 03755, USA
| | - Chris Bailey-Kellogg
- Lyticon LLC, Lebanon, NH 03766, USA
- Department of Computer Science, Dartmouth, Hanover, NH 03755, USA
- Stealth Biologics LLC, Lebanon, NH 03766, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA.
- Lyticon LLC, Lebanon, NH 03766, USA
- Stealth Biologics LLC, Lebanon, NH 03766, USA
| |
Collapse
|
19
|
Selective Eradication of Staphylococcus aureus by the Designer Genetically Programmed Yeast Biocontrol Agent. Antibiotics (Basel) 2020; 9:antibiotics9090527. [PMID: 32824911 PMCID: PMC7559405 DOI: 10.3390/antibiotics9090527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is a common human pathogen that is particularly often associated with antibiotic resistance. The eradication of this ubiquitous infectious agent from its ecological niches and contaminated surfaces is especially complicated by excessive biofilm formation and persisting cells, which evade the antibacterial activity of conventional antibiotics. Here, we present an alternative view of the problem of specific S. aureus eradication. The constitutive heterologous production of highly specific bacteriolytic protease lysostaphin in yeast Pichia pastoris provides an efficient biocontrol agent, specifically killing S. aureus in coculture. A yeast-based anti-S. aureus probiotic was efficient in a high range of temperatures and target-to-effector ratios, indicating its robustness and versatility in eliminating S. aureus cells. The efficient eradication of S. aureus by live lysostaphin-producing P. pastoris was achieved at high scales, providing a simple, biocompatible and cost-effective strategy for S. aureus lysis in bioproduction and surface decontamination. Future biomedical applications based on designer yeast biocontrol agents require evaluation in in vivo models. However, we believe that this strategy is very promising since it provides highly safe, efficient and selective genetically programmed probiotics and targeted biocontrol agents.
Collapse
|
20
|
Swift SM, Reid KP, Donovan DM, Ramsay TG. Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens. Antibiotics (Basel) 2019; 8:antibiotics8040214. [PMID: 31717357 PMCID: PMC6963370 DOI: 10.3390/antibiotics8040214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens is a bacterial pathogen that causes necrotic enteritis in poultry and livestock, and is a source of food poisoning and gas gangrene in humans. As the agriculture industry eliminates the use of antibiotics in animal feed, alternatives to antibiotics will be needed. Bacteriophage endolysins are enzymes used by the virus to burst their bacterial host, releasing bacteriophage particles. This type of enzyme represents a potential replacement for antibiotics controlling C. perfringens. As animal feed is often heat-treated during production of feed pellets, thermostable enzymes would be preferred for use in feed. To create thermostable endolysins that target C. perfringens, thermophile endolysin catalytic domains were fused to cell wall binding domains from different C. perfringens prophage endolysins. Three thermostable catalytic domains were used, two from prophage endolysins from two Geobacillus strains, and a third endolysin from the deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2). These domains harbor predicted L-alanine-amidase, glucosaminidase, and L-alanine-amidase activities, respectively and degrade the peptidoglycan of the bacterial cell wall. The cell wall binding domains were from C. perfringens prophage endolysins (Phage LYtic enzymes; Ply): PlyCP18, PlyCP10, PlyCP33, PlyCP41, and PlyCP26F. The resulting fifteen chimeric proteins were more thermostable than the native C. perfringens endolysins, and killed swine and poultry disease-associated strains of C. perfringens.
Collapse
Affiliation(s)
- Steven M. Swift
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
- Contrafect Corporation., Yonkers, NY 10701, USA
| | - Kevin P. Reid
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
| | - David M. Donovan
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Timothy G. Ramsay
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
- Correspondence: or
| |
Collapse
|
21
|
Ehsani G, Fahmide F, Norouzian D, Atyabi SM, Ehsani P. Bioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.4.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
22
|
Grishin AV, Shestak NV, Lavrova NV, Lyashchuk AM, Popova LI, Strukova NV, Generalova MS, Ryazanova AV, Polyakov NB, Galushkina ZM, Soboleva LA, Boksha IS, Karyagina AS, Lunin VG. Fusion of Lysostaphin to an Albumin Binding Domain Prolongs Its Half-Life and Bactericidal Activity in the Systemic Circulation. Molecules 2019; 24:E2892. [PMID: 31395814 PMCID: PMC6719061 DOI: 10.3390/molecules24162892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 11/17/2022] Open
Abstract
Antibacterial lysins are promising proteins that are active against both antibiotic-susceptible and antibiotic-resistant bacterial strains. However, a major limitation of antibacterial lysins is their fast elimination from systemic circulation. PEGylation increases the plasma half-life of lysins but renders them inactive. Here we report the construction of a fusion protein of lysostaphin, a potent anti-staphylococcal lysin, and an albumin-binding domain from streptococcal protein G. The resulting fusion protein was less active than the parent enzyme lysostaphin, but it still retained significant antibacterial activity even when bound to serum albumin. The terminal half-life of the fusion protein in rats was five-fold greater than that of lysostaphin (7.4 vs. 1.5 h), and the area under the curve increased more than 115 times. Most importantly, this increase in systemic circulation time compensated for the decrease in activity. The plasma from rats that received an injection of the fusion protein retained bactericidal activity for up to 7 h, while plasma from rats that received plain lysostaphin lacked any detectable activity after 4 h. To the best of our knowledge, this is the first report of an antibacterial lysin with both improved pharmacokinetic parameters and prolonged bactericidal activity in the systemic circulation.
Collapse
Affiliation(s)
- Alexander V Grishin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia.
| | | | - Natalia V Lavrova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Alexander M Lyashchuk
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Liubov I Popova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Natalia V Strukova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Maria S Generalova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Anna V Ryazanova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Nikita B Polyakov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Zoya M Galushkina
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Lyubov A Soboleva
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Irina S Boksha
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Mental Health Research Center, 115522 Moscow, Russia
| | - Anna S Karyagina
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladimir G Lunin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
23
|
Chandra Ojha S, Imtong C, Meetum K, Sakdee S, Katzenmeier G, Angsuthanasombat C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans : Adverse influence of Zn 2+ on bacteriolytic activity. Protein Expr Purif 2018; 151:106-112. [DOI: 10.1016/j.pep.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
|
24
|
Liu Y, Bai P, Woischnig AK, Charpin-El Hamri G, Ye H, Folcher M, Xie M, Khanna N, Fussenegger M. Immunomimetic Designer Cells Protect Mice from MRSA Infection. Cell 2018; 174:259-270.e11. [PMID: 29937224 PMCID: PMC6057273 DOI: 10.1016/j.cell.2018.05.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/26/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era. Video Abstract
A closed-loop gene network with bacterial sense-and-destroy actuation Direct diagnosis of implant-associated infections through blood biomarkers Early prevention of MRSA infection, as well as biofilm formation, in vivo Curing acute MRSA infections as an alternative to antibiotic therapy
Collapse
Affiliation(s)
- Ying Liu
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, 200241 Shanghai, People's Republic of China
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Science, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
25
|
Matolygina DA, Dushutina NS, Ovchinnikova ED, Eremeev NL, Belogurova NG, Atroshenko DL, Smirnov SA, Savin SS, Tishkov VI, Levashov AV, Levashov PA. Enzymatic Lysis of Living Microbial Cells: A Universal Approach to Calculating the Rate of Cell Lysis in Turbidimetric Measurements. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0027131418020104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Hosseini ES, Moniri R, Goli YD, Kashani HH. Purification of Antibacterial CHAP K Protein Using a Self-Cleaving Fusion Tag and Its Activity Against Methicillin-Resistant Staphylococcus aureus. Probiotics Antimicrob Proteins 2018; 8:202-210. [PMID: 27797005 DOI: 10.1007/s12602-016-9236-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Therapeutic LysK-CHAP is a potent anti-staphylococcal protein that could be utilized as an antibiotic substitute. Intein-mediated protein purification is a reasonable and cost-effective method that is most recently used for recombinant therapeutic protein production. Intein (INT) is the internal parts of the protein that can be separated from the immature protein during protein splicing process. This sequence requires no specific enzyme or cofactor for separation. INT sequence and their characteristic of self-cleavage by thiol induction, temperature, and pH changes are used for protein purification. The current study presents the expression of CHAPK262 domain of LysK gene that is fused with INT/chitin-binding sequence while evaluating its purification procedure and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The coding gene sequence of LysK-CHAP (CHAPK262) in pET22-b was amplified with polymerase chain reaction (PCR); the digested product was then cloned into the pTXB1 vector. Electrophoresis confirmed the cloning accuracy of the gene. The pTXB1-CHAPK262 plasmid was transformed to the Escherichia coli ER2566 (E. coli ER2566) expression strain and analyzed for expression of the recombinant protein by SDS-PAGE and Western blotting methods. Finally, CHAPK262 was purified by chitin affinity column using INT tag technology and confirmed by SDS-PAGE. Lytic activity of the purified protein was investigated by disk diffusion method. Cloning of CHAPK262 into the pTXB1 vector, which comprised INT/chitin-binding sequence, was successfully achieved. The SDS-PAGE data also revealed successful expression of the CHAPK262-INT fusion protein and Western blotting method validated the accuracy of the protein. Moreover, purification of CHAPK262 protein was induced by dithiothreitol (DTT) and confirmed by SDS-PAGE. Finally, inhibition zone in MRAS culture medium confirmed antibacterial activity of the protein. Application of intein-mediated antibacterial protein is an appropriate and streamlined method for one-step purification of CHAPK262 as a therapeutic and antibacterial protein. Self-cleaving tags like intein are cost-effective and could be used as a proper purification method for industrial purposes.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
27
|
Haddad Kashani H, Fahimi H, Dasteh Goli Y, Moniri R. A Novel Chimeric Endolysin with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:290. [PMID: 28713777 PMCID: PMC5491540 DOI: 10.3389/fcimb.2017.00290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubility of protein, which was achieved through improving the properties of primary, secondary and tertiary structures. The coding gene sequence of the chimeric CHAP-amidase was synthesized and subcloned into the pET-22(+) expression vector, and the recombinant protein was expressed in E. coli BL21 (DE3) strain. Subsequent affinity-based purification yielded ~12 mg soluble protein per liter of E. coli culture. Statistical analysis indicated that concentrations of ≥1 μg/mL of the purified protein have significant antibacterial activity against S. aureus MRSA252 cells. The engineered chimeric CHAP-amidase exhibited 3.2 log reduction of MRSA252 cell counts at the concentration of 10 μg/mL. A synergistic interaction between CHAP-amidase and vancomycin was detected by using checkerboard assay and calculating the fractional inhibitory concentration (FIC) index. This synergistic effect was shown by 8-fold reduction in the minimum inhibitory concentration of vancomycin. The chimeric CHAP-amidase displayed strong antibacterial activity against S. aureus, S. epidermidis, and enterococcus. However, it did not indicate any significant antibacterial activity against E. coli and Lactococcus lactis. Taken together, these findings suggest that our chimeric CHAP-amidase might represent potential to be used for the development of efficient antibacterial therapies targeting MRSA and certain Gram-positive bacteria.
Collapse
Affiliation(s)
- Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical SciencesKashan, Iran
| | - Hossein Fahimi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad UniversityTehran, Iran
| | - Yasaman Dasteh Goli
- Department of Biology, University of MarylandCollege Park, MD, United States
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical SciencesKashan, Iran
| |
Collapse
|
28
|
'Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci Rep 2016; 6:35382. [PMID: 27775093 PMCID: PMC5075790 DOI: 10.1038/srep35382] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/23/2016] [Indexed: 11/08/2022] Open
Abstract
Endolysins constitute a promising class of antibacterials against Gram-positive bacteria. Recently, endolysins have been engineered with selected peptides to obtain a new generation of lytic proteins, Artilysins, with specific activity against Gram-negative bacteria. Here, we demonstrate that artilysation can also be used to enhance the antibacterial activity of endolysins against Gram-positive bacteria and to reduce the dependence on external conditions. Art-240, a chimeric protein of the anti-streptococcal endolysin λSa2lys and the polycationic peptide PCNP, shows a similar species specificity as the parental endolysin, but the bactericidal activity against streptococci increases and is less affected by elevated NaCl concentrations and pH variations. Time-kill experiments and time-lapse microscopy demonstrate that the killing rate of Art-240 is approximately two-fold higher compared to wildtype endolysin λSa2lys, with a reduction in viable bacteria of 3 log units after 10 min. In addition, lower doses of Art-240 are required to achieve the same bactericidal effect.
Collapse
|
29
|
Jagielska E, Chojnacka O, Sabała I. LytM Fusion with SH3b-Like Domain Expands Its Activity to Physiological Conditions. Microb Drug Resist 2016; 22:461-9. [PMID: 27351490 PMCID: PMC5036312 DOI: 10.1089/mdr.2016.0053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus remains one of the most common and at the same time the most dangerous bacteria. The spreading antibiotic resistance calls for intensification of research on staphylococcal physiology and development of new strategies for combating this threatening pathogen. We have engineered new chimeric enzymes comprising the enzymatically active domain (EAD) of autolysin LytM from S. aureus and the cell wall binding domain (CBD) from bacteriocin lysostaphin. They display potent activity in extended environmental conditions. Our results exemplify the possibility of exploring autolytic enzymes in engineering lysins with desired features. Moreover, they suggest a possible mechanism of autolysin physiological activity regulation by local ionic environments in the cell wall.
Collapse
Affiliation(s)
- Elzbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw , Warsaw, Poland
| | - Olga Chojnacka
- International Institute of Molecular and Cell Biology in Warsaw , Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw , Warsaw, Poland
| |
Collapse
|
30
|
Watters CM, Burton T, Kirui DK, Millenbaugh NJ. Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma. Infect Drug Resist 2016; 9:71-8. [PMID: 27175088 PMCID: PMC4854256 DOI: 10.2147/idr.s103101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enzymatic debridement is a therapeutic strategy used clinically to remove necrotic tissue from wounds. Some of the enzymes utilized for debridement have been tested against bacterial pathogens, but the effectiveness of these agents in dispersing clinically relevant biofilms has not been fully characterized. Here, we developed an in vitro Staphylococcus aureus biofilm model that mimics wound-like conditions and employed this model to investigate the antibiofilm activity of four enzymatic compounds. Human plasma at concentrations of 0%–50% was supplemented into growth media and used to evaluate biofilm biomass accumulation over 24 hours and 48 hours in one methicillin-sensitive and five methicillin-resistant strains of S. aureus. Supplementation of media with 10% human plasma resulted in the most robust biofilms in all six strains. The enzymes α-amylase, bromelain, lysostaphin, and papain were then tested against S. aureus biofilms cultured in 10% human plasma. Quantification of biofilms after 2 hours and 24 hours of treatment using the crystal violet assay revealed that lysostaphin decreased biomass by up to 76%, whereas α-amylase, bromelain, and papain reduced biomass by up to 97%, 98%, and 98%, respectively. Scanning electron microscopy confirmed that the dispersal agents detached the biofilm exopolysaccharide matrix and bacteria from the growth surface. Lysostaphin caused less visible dispersal of the biofilms, but unlike the other enzymes, induced morphological changes indicative of bacterial cell damage. Overall, our results indicate that use of enzymes may be an effective means of eradicating biofilms and a promising strategy to improve treatment of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chase M Watters
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA; Wound Infections Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Tarea Burton
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA
| | - Dickson K Kirui
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA
| | - Nancy J Millenbaugh
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA
| |
Collapse
|
31
|
O’Brien-Simpson NM, Pantarat N, Attard TJ, Walsh KA, Reynolds EC. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity. PLoS One 2016; 11:e0151694. [PMID: 26986223 PMCID: PMC4795541 DOI: 10.1371/journal.pone.0151694] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022] Open
Abstract
We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy.
Collapse
Affiliation(s)
- Neil M. O’Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Namfon Pantarat
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Troy J. Attard
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Katrina A. Walsh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
32
|
Tuchscherr L, Kreis CA, Hoerr V, Flint L, Hachmeister M, Geraci J, Bremer-Streck S, Kiehntopf M, Medina E, Kribus M, Raschke M, Pletz M, Peters G, Löffler B. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J Antimicrob Chemother 2015; 71:438-48. [PMID: 26589581 DOI: 10.1093/jac/dkv371] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/04/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Staphylococcus aureus osteomyelitis often develops to chronicity despite antimicrobial treatments that have been found to be susceptible in in vitro tests. The complex infection strategies of S. aureus, including host cell invasion and intracellular persistence via the formation of dynamic small colony variant (SCV) phenotypes, could be responsible for therapy-refractory infection courses. METHODS To analyse the efficacy of antibiotics in the acute and chronic stage of bone infections, we established long-term in vitro and in vivo osteomyelitis models. Antibiotics that were tested include β-lactams, fluoroquinolones, vancomycin, linezolid, daptomycin, fosfomycin, gentamicin, rifampicin and clindamycin. RESULTS Cell culture infection experiments revealed that all tested antibiotics reduced bacterial numbers within infected osteoblasts when treatment was started immediately, whereas some antibiotics lost their activity against intracellular persisting bacteria. Only rifampicin almost cleared infected osteoblasts in the acute and chronic stages. Furthermore, we detected that low concentrations of gentamicin, moxifloxacin and clindamycin enhanced the formation of SCVs, and these could promote chronic infections. Next, we treated a murine osteomyelitis model in the acute and chronic stages. Only rifampicin significantly reduced the bacterial load of bones in the acute phase, whereas cefuroxime and gentamicin were less effective and gentamicin strongly induced SCV formation. During chronicity none of the antimicrobial compounds tested showed a beneficial effect on bone deformation or reduced the numbers of persisting bacteria. CONCLUSIONS In all infection models rifampicin was most effective at reducing bacterial loads. In the chronic stage, particularly in the in vivo model, many tested compounds lost activity against persisting bacteria and some antibiotics even induced SCV formation.
Collapse
Affiliation(s)
- L Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - C A Kreis
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Münster, Münster, Germany
| | - V Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany Department for Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - L Flint
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - M Hachmeister
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - J Geraci
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - S Bremer-Streck
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - M Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - E Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - M Kribus
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Jena, Germany
| | - M Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Münster, Münster, Germany
| | - M Pletz
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - G Peters
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - B Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Guillaume O, Teuschl AH, Gruber-Blum S, Fortelny RH, Redl H, Petter-Puchner A. Emerging Trends in Abdominal Wall Reinforcement: Bringing Bio-Functionality to Meshes. Adv Healthc Mater 2015; 4:1763-89. [PMID: 26111309 DOI: 10.1002/adhm.201500201] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Abdominal wall hernia is a recurrent issue world-wide and requires the implantation of over 1 million meshes per year. Because permanent meshes such as polypropylene and polyester are not free of complications after implantation, many mesh modifications and new functionalities have been investigated over the last decade. Indeed, mesh optimization is the focus of intense development and the biomaterials utilized are now envisioned as being bioactive substrates that trigger various physiological processes in order to prevent complications and to promote tissue integration. In this context, it is of paramount interest to review the most relevant bio-functionalities being brought to new meshes and to open new avenues for the innovative development of the next generation of meshes with enhanced properties for functional abdominal wall hernia repair.
Collapse
Affiliation(s)
- Olivier Guillaume
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
| | - Andreas Herbert Teuschl
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
- University of Applied Sciences Technikum Wien; Department of Biochemical Engineering; Höchstädtplatz 5 1200 Vienna Austria
| | - Simone Gruber-Blum
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
- Department of General Visceral and Oncological Surgery; Wilhelminenspital der Stadt Wien; Montleartstraße 37 A-1171 Vienna Austria
| | - René Hartmann Fortelny
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
- Department of General Visceral and Oncological Surgery; Wilhelminenspital der Stadt Wien; Montleartstraße 37 A-1171 Vienna Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
| | - Alexander Petter-Puchner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
| |
Collapse
|
34
|
The natural, peptaibolic peptide SPF-5506-A4 adopts a β-bend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:882-9. [PMID: 25796141 DOI: 10.1016/j.bbapap.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
The medium-length fungal peptaibol SPF-5506-A(4) has been shown to inhibit formation of the Aβ peptide involved in Alzheimer''s disease. As Aβ is a cleavage-product from the membrane-bound APP protein, we hypothesized that SPF-5506-A(4)'s activity might be linked to membrane interactions in general. Here we describe the synthesis, structure and membrane interactions of SPF-5506-A4. The challenging synthesis was carried out on solid phase and a detailed conformational analysis in solution revealed a β-bend ribbon spiral core structure with flexible termini. Investigations of its membrane activity revealed low hemolytic activity, limited inhibition of both Gram-positive and Gram-negative cell growth and a preference for an overall negatively charged membrane surface mimicking the bacterial cell surface. SPF-5506-A(4) is the first peptaibol to be shown to facilitate leakage of large (4.6 nm diameter) fluorescence-labeled dextran from vesicles while leaving the vesicles intact. We conclude that SPF-5506-A(4) follows the toroidal pore model in its mode of action.
Collapse
|
35
|
Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC, Foster-Frey J, Donovan DM. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother 2015; 70:1453-65. [PMID: 25630640 DOI: 10.1093/jac/dku552] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. METHODS PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park-Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. RESULTS Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. CONCLUSIONS Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Marcel R Eugster
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Daniela C Hanke
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Shengli Dong
- Department of Biochemistry and Molecular Genetics, MCLM 552, University of Alabama at Birmingham, 1530 3rd Ave., Birmingham, AL 35294-0005, USA
| | - David G Pritchard
- Department of Biochemistry and Molecular Genetics, MCLM 552, University of Alabama at Birmingham, 1530 3rd Ave., Birmingham, AL 35294-0005, USA
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Becker
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| | - Juli Foster-Frey
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| | - David M Donovan
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| |
Collapse
|
36
|
Becker SC, Swift S, Korobova O, Schischkova N, Kopylov P, Donovan DM, Abaev I. Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain. FEMS Microbiol Lett 2014; 362:1-8. [PMID: 25790497 DOI: 10.1093/femsle/fnu019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increases in the prevalence of antibiotic-resistant strains of Staphylococcus aureus have elicited efforts to develop novel antimicrobials to treat these drug-resistant pathogens. One potential treatment repurposes the lytic enzymes produced by bacteriophages as antimicrobials. The phage Twort endolysin (PlyTW) harbors three domains, a cysteine, histidine-dependent amidohydrolases/peptidase domain (CHAP), an amidase-2 domain and a SH3b-5 cell wall binding domain (CBD). Our results indicate that the CHAP domain alone is necessary and sufficient for lysis of live S. aureus, while the amidase-2 domain is insufficient for cell lysis when provided alone. Loss of the CBD results in ∼10X reduction of enzymatic activity in both turbidity reduction and plate lysis assays compared to the full length protein. Deletion of the amidase-2 domain resulted in a protein (PlyTW Δ172-373) with lytic activity that exceeded the activity of the full length construct in both the turbidity reduction and plate lysis assays. Addition of Ca(2+) enhanced the turbidity reduction activity of both the full length protein and truncation constructs harboring the CHAP domain. Chelation by addition of EDTA or the addition of zinc inhibited the activity of all PlyTW constructs.
Collapse
Affiliation(s)
- Stephen C Becker
- Animal Biosciences and Biotechnology Laboratory, BARC, NEA, ARS, USDA, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA
| | - Steven Swift
- Animal Biosciences and Biotechnology Laboratory, BARC, NEA, ARS, USDA, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA
| | - Olga Korobova
- Federal Budget Institution of Science, State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Serpukhov district, Moscow Region, Russia
| | - Nina Schischkova
- Federal Budget Institution of Science, State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Serpukhov district, Moscow Region, Russia
| | - Pavel Kopylov
- Federal Budget Institution of Science, State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Serpukhov district, Moscow Region, Russia
| | - David M Donovan
- Animal Biosciences and Biotechnology Laboratory, BARC, NEA, ARS, USDA, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA
| | - Igor Abaev
- Federal Budget Institution of Science, State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Serpukhov district, Moscow Region, Russia
| |
Collapse
|
37
|
Bastos MDCDF, Coelho MLV, Santos OCDS. Resistance to bacteriocins produced by Gram-positive bacteria. MICROBIOLOGY-SGM 2014; 161:683-700. [PMID: 25406453 DOI: 10.1099/mic.0.082289-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, sala I-1-59, Rio de Janeiro
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, sala I-1-59, Rio de Janeiro Instituto Nacional da Propriedade Industrial, INPI, Rio de Janeiro, Brazil
| | - Olinda Cabral da Silva Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, sala I-1-59, Rio de Janeiro
| |
Collapse
|
38
|
Linden SB, Zhang H, Heselpoth RD, Shen Y, Schmelcher M, Eichenseher F, Nelson DC. Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 2014; 99:741-52. [DOI: 10.1007/s00253-014-5930-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
|
39
|
Rebets Y, Lupoli T, Qiao Y, Schirner K, Villet R, Hooper D, Kahne D, Walker S. Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division. ACS Chem Biol 2014; 9:459-67. [PMID: 24255971 DOI: 10.1021/cb4006744] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus is a Gram-positive pathogen with an unusual mode of cell division in that it divides in orthogonal rather than parallel planes. Through selection using moenomycin, an antibiotic proposed to target peptidoglycan glycosyltransferases (PGTs), we have generated resistant mutants containing a single point mutation in the active site of the PGT domain of an essential peptidoglycan (PG) biosynthetic enzyme, PBP2. Using cell free polymerization assays, we show that this mutation alters PGT activity so that much shorter PG chains are made. The same mutation in another S. aureus PGT, SgtB, has a similar effect on glycan chain length. Moenomycin-resistant S. aureus strains containing mutated PGTs that make only short glycan polymers display major cell division defects, implicating PG chain length in determining bacterial cell morphology and division site placement.
Collapse
Affiliation(s)
- Yuriy Rebets
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tania Lupoli
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yuan Qiao
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kathrin Schirner
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Regis Villet
- Division
of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Hooper
- Division
of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daniel Kahne
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Suzanne Walker
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris. Appl Environ Microbiol 2014; 80:2746-53. [PMID: 24561590 DOI: 10.1128/aem.03914-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can be overcome with a synthetic gene incorporating improved codon usage and balanced A+T/G+C content, and the second barrier can be overcome by disrupting an N-linked glycosylation sequon using a broadened choice of mutations that yield aglyscosylated and fully active lysostaphin. The optimized lysostaphin variants could be produced at approximately 500 mg/liter in a small-scale bioreactor, and 50% of that material could be recovered at high purity with a simple 2-step purification. It is anticipated that this novel high-level expression system will bring down one of the major barriers to future development of biomedical, veterinary, and research applications of lysostaphin and its engineered variants.
Collapse
|
41
|
Abstract
Pseudomonas aeruginosa secretes into its environment at least seven extracellular proteases: pseudolysin (LasB protease; elastase), aeruginolysin (alkaline proteinase), staphylolysin (staphylolytic endopeptidase; LasA protease), lysyl endopeptidase (protease IV; PrpL), PASP (P. aeruginosa small protease), LepA (Large ExoProtease A), and an aminopeptidase. Their action on host proteins, both individually and synergistically, plays important roles in pathogenesis of P. aeruginosa infections. Methods to measure/detect their activities are fundamental for understanding their physiological functions, roles in pathogenesis, mechanisms of action, regulation, and secretion. Most assays for determination/detection of proteolytic activity employ modified/non-modified casein or gelatin as substrates. In the quantitative assay, fragments generated from azocasein are separated from undigested substrate by trichloroacetic acid precipitation and their absorbance is measured. In non-quantitative assays, proteolytic activity is detected as clearing zones around bacterial growth or samples of culture supernatants on casein containing solid media formed due to local casein degradation. In zymography, individual proteases are detected as clear bands in gelatin/casein containing gels after SDS-PAGE separation, renaturation and protein staining. The elastinolytic capacity of P. aeruginosa is reflected by clearing zones on nutrient agar plates containing insoluble elastin instead of casein. Mueller-Hinton agar plates on which S. aureus cells are grown as a lawn are used to assess the susceptibility of S. aureus isolates to staphylolysin. A clear zone around a staphylolysin-containing sample indicates inhibition of S. aureus growth. Methods for measuring the activity of individual proteases are based on their cleavage specificity. These include assays of elastinolytic activity of pseudolysin and/or staphylolysin using elastin-Congo red as a substrate, a method for determination of staphylolytic activity in which the rate of S. aureus cell lysis is determined spectrophotometrically, and methods for determination of peptidase activity of pseudolysin, staphylolysin, lysyl endopeptidase, and the aminopeptidase. The latter methods employ chromogenic or fluorogenic peptide derivatives comprising a short amino acid sequence matching the preferred cleavage site of the protease as substrates. As only one peptide bond is cleaved in each substrate, these assays permit kinetic studies.
Collapse
|
42
|
Szweda P, Schielmann M, Frankowska A, Kot B, Zalewska M. Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents: lysostaphin, nisin and polymyxin B. J Vet Med Sci 2013; 76:355-62. [PMID: 24212507 PMCID: PMC4013361 DOI: 10.1292/jvms.13-0177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to analyze the resistance of Staphylococcus
aureus isolates from bovine mastitis in the eastern part of Poland to a set of
20 antibiotics and three alternative agents: lysostaphin, nisin and polymyxin B.
Eighty-six out of 123 examined isolates were susceptible to all 20 tested antibiotics
(70%). The highest percentage of resistance was observed in the case of β-lactam
antibiotics: amoxicillin (n=22, 17.9%), ampicillin (n=28, 22.8%), penicillin (n=29, 23.6%)
and streptomycin (n=13; 10.6%). Twenty-five of the penicillin-resistant strains were found
to carry the blaZ gene coding for β-lactamases. Two strains were found to
be mecA positive and a few strains were classified as multidrug resistant
(MDR), one of them was simultaneously resistant to six antibiotics. All strains, resistant
to at least one antibiotic (n=37) and two control strains, were susceptible to lysostaphin
with MIC values of 0.008–0.5 µg/ml (susceptibility
breakpoint 32 µg/ml). Twenty-one (54%) isolates were
susceptible to nisin. The MIC value of this agent for 17 (44%) strains was 51.2
µg/ml and was not much higher
than the susceptibility breakpoint value (32 µg/ml).
Polymyxin B was able to inhibit the growth of the strains only at a high concentration
(32–128 µg/ml). The presented results confirmed the
observed worldwide problem of spreading antibiotic resistance among staphylococci isolated
from bovine mastitis; on the other hand, we have indicated a high level of bactericidal
activity of nisin and especially lysostaphin.
Collapse
Affiliation(s)
- Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | | | | | | | |
Collapse
|
43
|
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2013; 7:1147-71. [PMID: 23030422 DOI: 10.2217/fmb.12.97] [Citation(s) in RCA: 513] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition & Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Hydrogen/deuterium exchange mass spectrometry and site-directed disulfide cross-linking suggest an important dynamic interface between the two lysostaphin domains. Antimicrob Agents Chemother 2013; 57:1872-81. [PMID: 23380729 DOI: 10.1128/aac.02348-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysostaphin is a peptidoglycan hydrolase secreted by Staphylococcus simulans. It can specifically lyse Staphylococcus aureus and is being tested as a novel antibacterial agent. The protein contains an N-terminal catalytic domain and a C-terminal cell wall targeting domain. Although the two domains from homologous enzymes were structurally determined, the structural organization of lysostaphin domains remains unknown. We used hydrogen/deuterium exchange mass spectrometry (H/DX-MS) and site-directed disulfide cross-linking to probe the interface between the lysostaphin catalytic and targeting domains. H/DX-MS-mediated comparison of peptides from full-length lysostaphin and the separated domains identified four peptides of lower solvent accessibility in the full-length protein. Cross-linking analysis using cysteine pair substitutions within those peptides showed that two pairs of cysteines can form disulfide bonds, supporting the domain association role of the targeted peptides. The cross-linked mutant exhibited a binding capacity to S. aureus that was similar to that of the wild-type protein but reduced bacteriolytic activity probably because of restraint in conformation. The diminished activity was further reduced with increasing NaCl concentrations that can cause contractions of bacterial peptidoglycan. The lytic activity, however, could be fully recovered by reducing the disulfide bonds. These results suggest that lysostaphin may require dynamic association of the two domains for coordinating substrate binding and target cleavage on the elastic peptidoglycan. Our study will help develop site-specific PEGylated lysostaphin to treat systemic S. aureus infections.
Collapse
|
45
|
Jun SY, Jung GM, Yoon SJ, Oh MD, Choi YJ, Lee WJ, Kong JC, Seol JG, Kang SH. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents 2012; 41:156-61. [PMID: 23276502 DOI: 10.1016/j.ijantimicag.2012.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 11/16/2022]
Abstract
To evaluate the phage endolysin SAL-1 as a therapeutic agent for Staphylococcus aureus infections, the in vitro and in vivo antibacterial properties of a pre-formulation containing recombinant SAL-1 as an active pharmaceutical ingredient were investigated. The stable pre-formulation (designated SAL200) uniquely included calcium ions and Poloxamer 188 as enhancing and stabilising ingredients, respectively. SAL-1 was successfully produced with no extraneous amino acids by decreasing the culture temperature and was highly purified using a two-step chromatography procedure consisting of ion exchange and hydrophobic interaction chromatography. SAL200 exhibited rapid and effective bactericidal activity against encapsulated and biofilm-forming S. aureus as well as against planktonic S. aureus cells. In addition, SAL200 demonstrated increased effectiveness in the serum environment, with a significantly reduced minimum bactericidal concentration compared with that determined in culture medium. In in vitro antibacterial tests performed against 425 clinical isolates [including 336 meticillin-resistant S. aureus (MRSA) isolates and 1 vancomycin-intermediate S. aureus isolate], collected from 421 patients and four animals, SAL200 exhibited obvious antibacterial activity against all S. aureus isolates tested. Intravenous injection of SAL200 in a mouse model of MRSA infection prolonged the viability of mice and significantly reduced bacterial counts in the bloodstream and splenic tissue. The results presented in this article strongly support SAL200 as a highly potent bactericidal agent against MRSA with an adequate pharmaceutical formulation.
Collapse
Affiliation(s)
- Soo Youn Jun
- iNtRON Biotechnology, Inc., Room 903, JungAng Induspia V, 138-6, Sangdaewon-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-120, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Peptidoglycan (PG) is the major structural component of the bacterial cell wall. Bacteria have autolytic PG hydrolases that allow the cell to grow and divide. A well-studied group of PG hydrolase enzymes are the bacteriophage endolysins. Endolysins are PG-degrading proteins that allow the phage to escape from the bacterial cell during the phage lytic cycle. The endolysins, when purified and exposed to PG externally, can cause "lysis from without." Numerous publications have described how this phenomenon can be used therapeutically as an effective antimicrobial against certain pathogens. Endolysins have a characteristic modular structure, often with multiple lytic and/or cell wall-binding domains (CBDs). They degrade the PG with glycosidase, amidase, endopeptidase, or lytic transglycosylase activities and have been shown to be synergistic with fellow PG hydrolases or a range of other antimicrobials. Due to the coevolution of phage and host, it is thought they are much less likely to invoke resistance. Endolysin engineering has opened a range of new applications for these proteins from food safety to environmental decontamination to more effective antimicrobials that are believed refractory to resistance development. To put phage endolysin work in a broader context, this chapter includes relevant studies of other well-characterized PG hydrolase antimicrobials.
Collapse
|
47
|
Schmelcher M, Korobova O, Schischkova N, Kiseleva N, Kopylov P, Pryamchuk S, Donovan DM, Abaev I. Staphylococcus haemolyticus prophage ΦSH2 endolysin relies on cysteine, histidine-dependent amidohydrolases/peptidases activity for lysis 'from without'. J Biotechnol 2012; 162:289-98. [PMID: 23026556 DOI: 10.1016/j.jbiotec.2012.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/07/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus is an important pathogen, with methicillin-resistant (MRSA) and multi-drug resistant strains becoming increasingly prevalent in both human and veterinary clinics. S. aureus causing bovine mastitis yields high annual losses to the dairy industry. Conventional treatment of mastitis by broad range antibiotics is often not successful and may contribute to development of antibiotic resistance. Bacteriophage endolysins present a promising new source of antimicrobials. The endolysin of prophage ΦSH2 of Staphylococcus haemolyticus strain JCSC1435 (ΦSH2 lysin) is a peptidoglycan hydrolase consisting of two catalytic domains (CHAP and amidase) and an SH3b cell wall binding domain. In this work, we demonstrated its lytic activity against live staphylococcal cells and investigated the contribution of each functional module to bacterial lysis by testing a series of deletion constructs in zymograms and turbidity reduction assays. The CHAP domain exhibited three-fold higher activity than the full length protein and optimum activity in physiological saline. This activity was further enhanced by the presence of bivalent calcium ions. The SH3b domain was shown to be required for full activity of the complete ΦSH2 lysin. The full length enzyme and the CHAP domain showed activity against multiple staphylococcal strains, including MRSA strains, mastitis isolates, and CoNS.
Collapse
Affiliation(s)
- Mathias Schmelcher
- ANRI, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Building 230, BARC-EAST, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site. Appl Microbiol Biotechnol 2012; 97:3449-56. [PMID: 22777279 DOI: 10.1007/s00253-012-4252-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is a notorious pathogen highly successful at developing resistance to virtually all antibiotics to which it is exposed. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for S. aureus when exposed externally, making it a new candidate antimicrobial. It shares a common protein organization with more than 40 other reported staphylococcal peptidoglycan hydrolases. There is an N-terminal M23 peptidase domain, a mid-protein amidase 2 domain (N-acetylmuramoyl-L-alanine amidase), and a C-terminal SH3b cell wall-binding domain. It is the first phage endolysin reported with a secondary translational start site in the inter-lytic-domain region between the peptidase and amidase domains. Deletion analysis indicates that the amidase domain confers most of the lytic activity and requires the full SH3b domain for maximal activity. Although it is common for one domain to demonstrate a dominant activity over the other, the 2638A endolysin is the first in this class of proteins to have a high-activity amidase domain (dominant over the N-terminal peptidase domain). The high activity amidase domain is an important finding in the quest for high-activity staphylolytic domains targeting novel peptidoglycan bonds.
Collapse
|
49
|
Sabala I, Jonsson IM, Tarkowski A, Bochtler M. Anti-staphylococcal activities of lysostaphin and LytM catalytic domain. BMC Microbiol 2012; 12:97. [PMID: 22672475 PMCID: PMC3413552 DOI: 10.1186/1471-2180-12-97] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/06/2012] [Indexed: 11/24/2022] Open
Abstract
Background Lysostaphin and the catalytic domain of LytM cleave pentaglycine crossbridges of Staphylococcus aureus peptidoglycan. The bacteriocin lysostaphin is secreted by Staphylococcus simulans biovar staphylolyticus and directed against the cell walls of competing S. aureus. LytM is produced by S. aureus as a latent autolysin and can be activated in vitro by the removal of an N-terminal domain and occluding region. Results We compared the efficacies of the lysostaphin and LytM catalytic domains using a newly developed model of chronic S. aureus infected eczema. Lysostaphin was effective, like in other models. In contrast, LytM was not significantly better than control. The different treatment outcomes could be correlated with in vitro properties of the proteins, including proteolytic stability, affinity to cell wall components other than peptidoglycan, and sensitivity to the ionic milieu. Conclusions Although lysostaphin and LytM cleave the same peptide bond in the peptidoglycan, the two enzymes have very different environmental requirements what is reflected in their contrasting performance in mouse eczema model.
Collapse
Affiliation(s)
- Izabela Sabala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| | | | | | | |
Collapse
|
50
|
Vipra AA, Desai SN, Roy P, Patil R, Raj JM, Narasimhaswamy N, Paul VD, Chikkamadaiah R, Sriram B. Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol 2012; 12:41. [PMID: 22439788 PMCID: PMC3362776 DOI: 10.1186/1471-2180-12-41] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background Bacterial drug resistance is one of the most significant challenges to human health today. In particular, effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) are urgently needed. A causal relationship between nasal commensal S. aureus and infection has been reported. Accordingly, elimination of nasal S. aureus reduces the risk of infection. Enzymes that degrade bacterial cell walls show promise as antibacterial agents. Bacteriophage-encoded bacterial cell wall-degrading enzymes exhibit intrinsic bactericidal activity. P128 is a chimeric protein that combines the lethal activity of the phage tail-associated muralytic enzyme of Phage K and the staphylococcal cell wall targeting-domain (SH3b) of lysostaphin. Here we report results of in vitro studies evaluating the susceptibility of staphylococcal strains to this novel protein. Results Using the broth microdilution method adapted for lysostaphin, we found that P128 is effective against S. aureus clinical strains including MRSA, methicillin-sensitive S. aureus (MSSA), and a mupirocin-resistant S. aureus. Minimum bactericidal concentrations and minimum inhibitory concentrations of P128 (1-64 μg/mL) were similar across the 32 S. aureus strains tested, demonstrating its bactericidal nature. In time-kill assays, P128 reduced colony-forming units by 99.99% within 1 h and inhibited growth up to 24 h. In an assay simulating topical application of P128 to skin or other biological surfaces, P128 hydrogel was efficacious when layered on cells seeded on solid media. P128 hydrogel was lethal to Staphylococci recovered from nares of healthy people and treated without any processing or culturing steps, indicating its in situ efficacy. This methodology used for in vitro assessment of P128 as an agent for eradicating nasal carriage is unique. Conclusions The novel chimeric protein P128 is a staphylococcal cell wall-degrading enzyme under development for clearance of S. aureus nasal colonization and MRSA infection. The protein is active against globally prevalent antibiotic-resistant clinical isolates and other clinically significant staphylococcal species including S. epidermidis. The P128 hydrogel formulation was bactericidal against Staphylococci including S. aureus recovered from the nares of 31 healthy people, demonstrating its in situ efficacy.
Collapse
Affiliation(s)
- Aradhana A Vipra
- Gangagen Biotechnologies Pvt, Ltd., Yeshwantpur, Bangalore, Karnataka, India
| | | | | | | | | | | | | | | | | |
Collapse
|