1
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
2
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
3
|
Coston TD, Wright SW, Phunpang R, Dulsuk A, Thiansukhon E, Chaisuksant S, Tanwisaid K, Chuananont S, Morakot C, Sangsa N, Chayangsu S, Silakun W, Buasi N, Chetchotisakd P, Day NPJ, Lertmemongkolchai G, Chantratita N, West TE. Statin Use and Reduced Risk of Pneumonia in Patients with Melioidosis: A Lung-Specific Statin Association. Ann Am Thorac Soc 2024; 21:228-234. [PMID: 37862263 PMCID: PMC10848899 DOI: 10.1513/annalsats.202306-552oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
Rationale: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin) use is associated with a lower risk of incident pneumonia and, less robustly, with nonpulmonary infections. Whether statin use is associated with a lower risk of pneumonia than other clinical presentations of infection with the same pathogen is unknown. Objectives: To assess whether preadmission statin use is associated with a lower risk of pneumonia than nonpneumonia presentations among patients hospitalized with Burkholderia pseudomallei infection (melioidosis). Methods: We performed a secondary analysis of a prospective multicenter cohort study of patients hospitalized with culture-confirmed B. pseudomallei infection (melioidosis). We used Poisson regression with robust standard errors to test for an association between statin use and pneumonia. We then performed several sensitivity analyses that addressed healthy user effect and indication bias. Results: Of 1,372 patients with melioidosis enrolled in the parent cohort, 1,121 were analyzed. Nine hundred eighty (87%) of 1,121 were statin nonusers, and 141 (13%) of 1,121 were statin users. Forty-six (33%) of 141 statin users presented with pneumonia compared with 432 (44%) of 980 statin nonusers. Statin use was associated with a lower risk of pneumonia in unadjusted analysis (relative risk, 0.74; 95% confidence interval, 0.58-0.95; P = 0.02) and, after adjustment for demographic variables, comorbidities, environmental exposures, and symptom duration (relative risk, 0.73; 95% confidence interval, 0.57-0.94; P = 0.02). The results of sensitivity analyses, including active comparator analysis and inverse probability of treatment weighting, were consistent with the primary analysis. Conclusions: In hospitalized patients with melioidosis, preadmission statin use was associated with a lower risk of pneumonia than other clinical presentations of melioidosis, suggesting a lung-specific protective effect of statins.
Collapse
Affiliation(s)
- Taylor D. Coston
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine
| | - Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, and
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology and
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology and
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Seksan Chaisuksant
- Department of Medicine, Khon Kaen Regional Hospital, Khon Kaen, Thailand
| | | | | | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | | | | | - Noppol Buasi
- Department of Medicine, Sisaket Hospital, Sisaket, Thailand
| | | | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center of Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom; and
| | - Ganjana Lertmemongkolchai
- Center for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
- Department of Medical Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology and
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Parihar SP, Guler R, Brombacher F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat Rev Immunol 2019; 19:104-117. [PMID: 30487528 DOI: 10.1038/s41577-018-0094-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Statins were first identified over 40 years ago as lipid-lowering drugs and have been remarkably effective in treating cardiovascular diseases. As research advanced, the protective effects of statins were additionally attributed to their anti-inflammatory, antioxidative, anti-thrombotic and immunomodulatory functions rather than lipid-lowering abilities alone. By promoting host defence mechanisms and inhibiting pathological inflammation, statins increase survival in human infectious diseases. At the cellular level, statins inhibit the intermediates of the host mevalonate pathway, thus compromising the immune evasion strategies of pathogens and their survival. Here, we discuss the potential use of statins as an inexpensive and practical alternative or adjunctive host-directed therapy for infectious diseases caused by intracellular pathogens, such as viruses, protozoa, fungi and bacteria.
Collapse
Affiliation(s)
- Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa. .,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa. .,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Guerra-De-Blas PDC, Torres-González P, Bobadilla-Del-Valle M, Sada-Ovalle I, Ponce-De-León-Garduño A, Sifuentes-Osornio J. Potential Effect of Statins on Mycobacterium tuberculosis Infection. J Immunol Res 2018; 2018:7617023. [PMID: 30581876 PMCID: PMC6276473 DOI: 10.1155/2018/7617023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis is one of the 10 leading causes of death in the world. The current treatment is based on a combination of antimicrobials administered for six months. It is essential to find therapeutic agents with which the treatment time can be shortened and strengthen the host immune response against Mycobacterium tuberculosis. M. tuberculosis needs cholesterol to infect and survive inside the host, but the progression of the infection depends to a large extent on the capacity of the immune response to contain the infection. Statins inhibit the synthesis of cholesterol and have pleiotropic effects on the immune system, which have been associated with better results in the treatment of several infectious diseases. Recently, it has been reported that cells treated with statins are more resistant to M. tuberculosis infection, and they have even been proposed as adjuvants in the treatment of M. tuberculosis infection. The aim of this review is to summarize the immunopathogenesis of tuberculosis and its mechanisms of evasion and to compile the available scientific information on the effect of statins in the treatment of tuberculosis.
Collapse
Affiliation(s)
- Paola Del Carmen Guerra-De-Blas
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro Torres-González
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabel Sada-Ovalle
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alfredo Ponce-De-León-Garduño
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
7
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
8
|
Huang FC, Huang SC. Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells. Int J Mol Sci 2018; 19:ijms19061650. [PMID: 29865262 PMCID: PMC6032317 DOI: 10.3390/ijms19061650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Alternative therapies are needed to reduce the use of antibiotics and incidence of drug-resistant Salmonellosis. Previous studies have revealed important roles of statins in regulating innate immunity. Therefore, we investigated the effects of statins on innate immunity in Salmonella-infected intestinal epithelial cells (IECs), which are involved in mucosal innate immunity. SW480 cells and Akt siRNA- or vitamin D receptor (VDR) siRNA-transfected SW480 cells were infected by wild-type S. Typhimurium strain SL1344 in the presence or absence of statins. The mRNA or protein expression was analyzed by real-time quantitative PCR or western blot analysis, respectively. Simvastatin or fluvastatin caused IL-8 (interleukin-8) suppression, but increased hBD-2 mRNA expression in Salmonella-infected SW480 cells. Both statins enhanced phosphorylated Akt and VDR expressions. Akt or VDR knockdown by siRNA counteracted the suppressive effect of simvastatin on IL-8 expression, whereas VDR knockdown diminished the enhanced hBD-2 expression in Salmonella-infected SW480 cells. Therefore, we observed differential regulation of statins on inflammatory IL-8 and anti-microbial hBD-2 expressions in Salmonella-infected IECs via PI3K/Akt signaling and VDR protein expression, respectively. The enhanced activity of antimicrobial peptides by statins in Salmonella-infected IECs could protect the host against infection, and modulation of pro-inflammatory responses could prevent the detrimental effects of overwhelming inflammation in the host.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Shun-Chen Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
9
|
Asalla S, Mohareer K, Banerjee S. Small Molecule Mediated Restoration of Mitochondrial Function Augments Anti-Mycobacterial Activity of Human Macrophages Subjected to Cholesterol Induced Asymptomatic Dyslipidemia. Front Cell Infect Microbiol 2017; 7:439. [PMID: 29067283 PMCID: PMC5641336 DOI: 10.3389/fcimb.2017.00439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection manifests into tuberculosis (TB) in a small fraction of the infected population that comprises the TB susceptible group. Identifying the factors potentiating susceptibility to TB persistence is one of the prime agenda of TB control programs. Recently, WHO recognized diabetes as a risk factor for TB disease progression. The closely related pathological state of metabolic imbalance, dyslipidemia, is yet another emerging risk factor involving deregulation in host immune responses. While high cholesterol levels are clinically proven condition for perturbations in cardiac health, a significant fraction of population these days suffer from borderline risk cholesterol profiles. This apparently healthy population is susceptible to various health risks placing them in the "pre-disease" range. Our study focuses on determining the role of such asymptomatic dyslipidemia as a potential risk factor for susceptibility to TB persistence. Macrophages exposed to sub-pathological levels of cholesterol for chronic period, besides impaired release of TNF-α, could not clear intracellular pathogenic mycobacteria effectively as compared to the unexposed cells. These cells also allowed persistence of opportunistic mycobacterial infection by M. avium and M. bovis BCG, indicating highly compromised immune response. The cholesterol-treated macrophages developed a foamy phenotype with a significant increase in intracellular lipid-bodies prior to M.tb infection, potentially contributing to pre-disease state for tuberculosis infection. The foamy phenotype, known to support M.tb infection, increased several fold upon infection in these cells. Additionally, mitochondrial morphology and function were perturbed, more so during infection in cholesterol treated cells. Pharmacological supplementation with small molecule M1 that restored mitochondrial structural and functional integrity limited M.tb survival more effectively in cholesterol exposed macrophages. Mechanistically, M1 molecule promoted clearance of mycobacteria by reducing total cellular lipid content and restoring mitochondrial morphology and function to its steady state. We further supported our observations by infection assays in PBMC-derived macrophages from clinically healthy volunteers with borderline risk cholesterol profiles. With these observations, we propose that prolonged exposure to sub-pathological cholesterol can lead to asymptomatic susceptibility to M.tb persistence. Use of small molecules like M1 sets yet another strategy for host-directed therapy where re-functioning of mitochondria in cholesterol abused macrophages can improve M.tb clearance.
Collapse
Affiliation(s)
- Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
10
|
Zigangirova NA, Morgunova EY, Fedina ED, Shevyagina NV, Borovaya TG, Zhukhovitsky VG, Kyle NH, Petyaev IM. Lycopene Inhibits Propagation of Chlamydia Infection. SCIENTIFICA 2017; 2017:1478625. [PMID: 28948060 PMCID: PMC5602621 DOI: 10.1155/2017/1478625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/11/2017] [Indexed: 06/07/2023]
Abstract
Chlamydiaceae is a family of obligate intracellular pathogenic bacteria with similar developmental cycles and cell biology responsible for a wide range of diseases in different hosts including genital and eye inflammatory diseases, arthritis, and inflammatory diseases of the respiratory and cardiovascular systems. In the present paper, we report that lycopene, one of the main dietary carotenoids, which is present in tomato and some other fruits, has a strong inhibitory effect on C. trachomatis and C. pneumoniae infections in alveolar macrophages. This finding was documented by both immunofluorescence analysis and electron microscopy. It was noted that lycopene treatment inhibited intracellular phase of the chlamydial developmental cycle and resulted in a significant loss of infectious progeny. The antichlamydial effect of lycopene was also confirmed in a clinical setting. There was a significant reduction of IgG antibodies against C. pneumoniae in the serum of volunteers treated for a month with oral ingestion of 7 mg of lycopene. Additional studies are needed to further explore the antichlamydial activity of lycopene and its possible effect on C. pneumoniae in relation to antichlamydial activity of lycopene to mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Naylia A. Zigangirova
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Elena Y. Morgunova
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Elena D. Fedina
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Natalia V. Shevyagina
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Tatiana G. Borovaya
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | | | - Nigel H. Kyle
- Lycotec Ltd., Granta Park Campus, Cambridge CB21 6GP, UK
| | | |
Collapse
|
11
|
Batais MA, Khan AR, Bin Abdulhak AA. The Use of Statins and Risk of Community-Acquired Pneumonia. Curr Infect Dis Rep 2017. [PMID: 28639080 DOI: 10.1007/s11908-017-0581-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF THE REVIEW Community-acquired pneumonia (CAP) is still associated with a large burden and causes significant morbidity and mortality. Besides universal vaccination and antibiotic treatment, statins as adjunctive therapy may also have a beneficial role in the prevention and treatment of CAP. Our goal from this review is to discuss the epidemiology of CAP, and role of statins as adjunctive therapy in the development of CAP. RECENT FINDINGS Statins are lipid-lowering medications characterized by their ability to control hypercholesterolemia in addition to other pleiotropic effects that could explain their role in the pathogenesis of CAP. While most observational studies have shown that statins reduce risk of pneumonia in the general population, patients with diabetes, and recently in patients with myocardial infarction, no randomized controlled trial (RCT) to date has been conducted to assess the efficacy of statins to prevent development of CAP. Given the paucity of robust randomized evidence to assess statin use and the development of CAP, and considering conflicting results of the observational studies, we are not in favor of initiation of statins for either the prevention or treatment of CAP.
Collapse
Affiliation(s)
- Mohammed A Batais
- College of Medicine, King Saud University, Riyadh, 29391, Saudi Arabia.
| | - Abdur Rahman Khan
- Department of Medicine, Division of Cardiovascular Diseases, University of Louisville, Louisville, KY, USA
| | - Aref A Bin Abdulhak
- Department of Medicine, Division of Cardiovascular Diseases, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Int. Med. E315 GH, Iowa City, IA, 52242, USA
| |
Collapse
|
12
|
Munguia J, Nizet V. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs. Trends Pharmacol Sci 2017; 38:473-488. [PMID: 28283200 DOI: 10.1016/j.tips.2017.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/17/2023]
Abstract
The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms.
Collapse
Affiliation(s)
- Jason Munguia
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
13
|
Liao WC, Huang MZ, Wang ML, Lin CJ, Lu TL, Lo HR, Pan YJ, Sun YC, Kao MC, Lim HJ, Lai CH. Statin Decreases Helicobacter pylori Burden in Macrophages by Promoting Autophagy. Front Cell Infect Microbiol 2017; 6:203. [PMID: 28144585 PMCID: PMC5239775 DOI: 10.3389/fcimb.2016.00203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been found to provide protective effects against several bacterial infectious diseases. Although the use of statins has been shown to enhance antimicrobial treated Helicobacter pylori eradication and reduce H. pylori-mediated inflammation, the mechanisms underlying these effects remain unclear. In this study, in vitro and ex vivo macrophage models were established to investigate the molecular pathways involved in statin-mediated inhibition of H. pylori-induced inflammation. Our study showed that statin treatment resulted in a dose-dependent decrease in intracellular H. pylori burden in both RAW264.7 macrophage cells and murine peritoneal exudate macrophages (PEMs). Furthermore, statin yielded enhanced early endosome maturation and subsequent activation of the autophagy pathway, which promotes lysosomal fusion resulting in degradation of sequestered bacteria, and in turn attenuates interleukin (IL)-1β production. These results indicate that statin not only reduces cellular cholesterol but also decreases the H. pylori burden in macrophages by promoting autophagy, consequently alleviating H. pylori-induced inflammation.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Graduate Institute of Clinical Medical Science, China Medical UniversityTaichung, Taiwan; Department of Pulmonary and Critical Care Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mei-Zi Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical UniversityTaichung, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Michelle Lily Wang
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University Taichung, Taiwan
| | - Chun-Jung Lin
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical UniversityTaichung, Taiwan; Department of Urology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University Taichung, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University Kaohsiung, Taiwan
| | - Yi-Jiun Pan
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University Taichung, Taiwan
| | - Yu-Chen Sun
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Taoyuan, Taiwan
| | - Min-Chuan Kao
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Hui-Jing Lim
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Graduate Institute of Basic Medical Science, School of Medicine, China Medical UniversityTaichung, Taiwan; Department of Nursing, Asia UniversityTaichung, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial HospitalTaoyuan, Taiwan
| |
Collapse
|
14
|
Is There Potential for Repurposing Statins as Novel Antimicrobials? Antimicrob Agents Chemother 2016; 60:5111-21. [PMID: 27324773 DOI: 10.1128/aac.00192-16] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Statins are members of a class of pharmaceutical widely used to reduce high levels of serum cholesterol. In addition, statins have so-called "pleiotropic effects," which include inflammation reduction, immunomodulation, and antimicrobial effects. An increasing number of studies are emerging which detail the attenuation of bacterial growth and in vitro and in vivo virulence by statin treatment. In this review, we describe the current information available concerning the effects of statins on bacterial infections and provide insight regarding the potential use of these compounds as antimicrobial therapeutic agents.
Collapse
|
15
|
Vandevelde NM, Tulkens PM, Van Bambeke F. Modulating antibiotic activity towards respiratory bacterial pathogens by co-medications: a multi-target approach. Drug Discov Today 2016; 21:1114-29. [PMID: 27094105 DOI: 10.1016/j.drudis.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
Abstract
Non-antibiotic drugs can modulate bacterial physiology and/or antibiotic activity, opening perspectives for innovative therapeutic strategies. Focusing on respiratory pathogens and considering in vitro, in vivo, and clinical data, here we examine the effect of these drugs on the expression of resistance mechanisms, biofilm formation, and intracellular survival, as well as their influence on the activity of antibiotics on bacteria. Beyond the description of the effects observed, we also comment on concentrations that are active and discuss the mechanisms of drug-drug or drug-target interactions. This discussion should be helpful in defining useful targets for adjuvant therapy and establishing the corresponding pharmacophores for further drug fine-tuning.
Collapse
Affiliation(s)
- Nathalie M Vandevelde
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
16
|
Lai CK, Su JC, Lin YH, Chang CS, Feng CL, Lin HJ, Lin CJ, Tseng GC, Liu HH, Hsieh JT, Su HL, Lai CH. Involvement of cholesterol in Campylobacter jejuni cytolethal distending toxin-induced pathogenesis. Future Microbiol 2016; 10:489-501. [PMID: 25865189 DOI: 10.2217/fmb.14.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM The aim of this study was to investigate whether cholesterol plays a pivotal role in cytolethal distending toxin (CDT) mediated pathogenic effects in hosts. MATERIALS & METHODS The molecular mechanisms underlying cholesterol sequestering conferred resistance to CDT-induced DNA double-strand breaks (DSBs) and cell cycle arrest were investigated. Histopathological analysis was conducted for evaluating CDT-induced intestinal inflammation in mouse. RESULTS CDT actions were attenuated by treatment of cells with methyl-β-cyclodextrin (MβCD). Severe intestinal inflammation induced by CDT treatment was observed in high-cholesterol diet-fed mice, but not in normal diet-fed mice, indicating that cholesterol is essential for CDT intoxication. CONCLUSION Our findings demonstrate a molecular link between Campylobacter jejuni CDT and cholesterol, which is crucial to facilitate CDT-induced pathogenesis in hosts.
Collapse
Affiliation(s)
- Cheng-Kuo Lai
- School of Medicine & Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lin CJ, Liao WC, Lin HJ, Hsu YM, Lin CL, Chen YA, Feng CL, Chen CJ, Kao MC, Lai CH, Kao CH. Statins Attenuate Helicobacter pylori CagA Translocation and Reduce Incidence of Gastric Cancer: In Vitro and Population-Based Case-Control Studies. PLoS One 2016; 11:e0146432. [PMID: 26730715 PMCID: PMC4701455 DOI: 10.1371/journal.pone.0146432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-related death worldwide. The correlation of Helicobacter pylori and the etiology of gastric cancer was substantially certain. Cholesterol-rich microdomains (also called lipid rafts), which provide platforms for signaling, are associated with H. pylori-induced pathogenesis leading to gastric cancer. Patients who have been prescribed statins, inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase, have exhibited a reduced risk of several types of cancer. However, no studies have addressed the effect of statins on H. pylori-associated gastric cancer from the antineoplastic perspective. In this study, we showed that treatment of gastric epithelial cells with simvastatin reduced the level of cellular cholesterol and led to attenuation of translocation and phosphorylation of H. pylori cytotoxin-associated gene A (CagA), which is recognized as a major determinant of gastric cancer development. Additionally, a nationwide case-control study based on data from the Taiwanese National Health Insurance Research Database (NHIRD) was conducted. A population-based case-control study revealed that patients who used simvastatin exhibited a significantly reduced risk of gastric cancer (adjusted odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.70–0.83). In patients exhibiting H. pylori infection who were prescribed simvastatin, the adjusted OR for gastric cancer was 0.25 (95% CI = 0.12–0.50). Our results combined an in vitro study with a nationwide population analysis reveal that statin use might be a feasible approach to prevent H. pylori-associated gastric cancer.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Chih Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hwai-Jeng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-An Chen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Lung Feng
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Jung Chen
- Division of Paediatric Infectious Diseases, Department of Paediatrics, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Min-Chuan Kao
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (C-HK); ; (C-HL)
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine, PET Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (C-HK); ; (C-HL)
| |
Collapse
|
18
|
Haeri MR, White K, Qharebeglou M, Ansar MM. Cholesterol suppresses antimicrobial effect of statins. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1253-6. [PMID: 26877857 PMCID: PMC4744367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. MATERIALS AND METHODS To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria using gel diffusion assay. RESULTS Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. CONCLUSION It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.
Collapse
Affiliation(s)
- Mohammad Reza Haeri
- Department of Clinical Biochemistry, School of Medicine, Qom University of Medical Sciences, Qom, Iran,Institute for Health Research and Policy, London Metropolitan University, London, United Kingdom,Corresponding author: Mohammad Reza Haeri. Basic Science Department, Qom University of Medical Sciences, Moallem st. Qom 37157, Qom, Iran. Tel: +98-251-7831370; Fax: +98-251-7737923;
| | - Kenneth White
- Institute for Health Research and Policy, London Metropolitan University, London, United Kingdom
| | | | - Malek Moein Ansar
- Department of Clinical Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
Manitsopoulos N, Orfanos SE, Kotanidou A, Nikitopoulou I, Siempos I, Magkou C, Dimopoulou I, Zakynthinos SG, Armaganidis A, Maniatis NA. Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation. Respir Res 2015; 16:24. [PMID: 25848815 PMCID: PMC4336762 DOI: 10.1186/s12931-015-0173-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/17/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. METHODS Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. RESULTS Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were induced by HVt but were significantly attenuated by simvastatin. Microvascular protein permeability increase 20-fold by injurious ventilation but only 4-fold with simvastatin. There was a 3-fold increase in plasma Tumor Necrosis Factor-α, a 7-fold increase in plasma Interleukin-6 and a 20-fold increase in lavage fluid Matrix-Metalloprotease-9 by HVt but simvastatin reduced these levels to control. Lung tissue vascular endothelial cadherin expression was significantly reduced by injurious ventilation but remained preserved by simvastatin. CONCLUSION High-dose simvastatin prevents experimental hyperinflation lung injury by angioprotective and anti-inflammatory effects.
Collapse
|
20
|
The impact of simvastatin on pulmonary effectors of Pseudomonas aeruginosa infection. PLoS One 2014; 9:e102200. [PMID: 25010049 PMCID: PMC4092124 DOI: 10.1371/journal.pone.0102200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
The statin family of cholesterol-lowering drugs is known to have pleiotropic properties which include anti-inflammatory and immunomodulatory effects. Statins exert their pleiotropic effects by altering expression of human immune regulators including pro-inflammatory cytokines. Previously we found that statins modulate virulence phenotypes of the human pathogen Pseudomonas aeruginosa, and sought to investigate if simvastatin could alter the host response to this organism in lung epithelial cells. Simvastatin increased the expression of the P. aeruginosa target genes KLF2, KLF6, IL-8 and CCL20. Furthermore, both simvastatin and P. aeruginosa induced alternative splicing of KLF6. The novel effect of simvastatin on wtKLF6 expression was found to be responsible for induction of the KLF6 regulated genes CCL20 and iNOS. Simvastatin also increased the adhesion of P. aeruginosa to host cells, without altering invasion or cytotoxicity. This study demonstrated that simvastatin had several novel effects on the pulmonary cellular immune response.
Collapse
|
21
|
Skerry C, Pinn ML, Bruiners N, Pine R, Gennaro ML, Karakousis PC. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J Antimicrob Chemother 2014; 69:2453-7. [PMID: 24855121 DOI: 10.1093/jac/dku166] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The need to develop new, improved treatments for tuberculosis (TB) remains urgent, and the repurposing of existing drugs represents a possible shortcut to market. Recently, there has been significant interest in host-directed adjuvant therapy to enhance bacillary killing. HMG-CoA reductase inhibitors (statins), which are among the most commonly prescribed drugs, have immunomodulatory properties and improve the clinical outcomes of bacterial infections. METHODS We studied the tuberculocidal activity of simvastatin alone and in combination with first-line anti-TB drugs in J774 macrophages and during chronic TB infection. RESULTS Exposure to 5 μM simvastatin significantly increased the tuberculocidal activity of isoniazid in J774 macrophages at Day 3 after infection versus isoniazid alone (P=0.02). Similarly, relative to the standard oral regimen of rifampicin (10 mg/kg), isoniazid (10 mg/kg) and pyrazinamide (150 mg/kg) given five times weekly, the addition of 25 mg/kg simvastatin enhanced bacillary killing, reducing the number of lung cfu by an additional 1 log10 at Day 28 (P<0.01) and by a further 1.25 log10 at Day 56 (P<0.01). CONCLUSIONS The potential additive activity of simvastatin to first-line TB treatment holds promise. However, further studies to identify the optimal statin and dosing are required. In addition the ability of combination treatment with statins to accelerate the time required to achieve a stable cure remains to be explored.
Collapse
Affiliation(s)
- Ciaran Skerry
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael L Pinn
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie Bruiners
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Richard Pine
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Maria L Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Petros C Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Hanski L, Vuorela PM. Recent advances in technologies for developing drugs againstChlamydia pneumoniae. Expert Opin Drug Discov 2014; 9:791-802. [DOI: 10.1517/17460441.2014.915309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Kozarov E, Padro T, Badimon L. View of statins as antimicrobials in cardiovascular risk modification. Cardiovasc Res 2014; 102:362-74. [DOI: 10.1093/cvr/cvu058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Parihar SP, Guler R, Khutlang R, Lang DM, Hurdayal R, Mhlanga MM, Suzuki H, Marais AD, Brombacher F. Statin Therapy Reduces the Mycobacterium tuberculosis Burden in Human Macrophages and in Mice by Enhancing Autophagy and Phagosome Maturation. J Infect Dis 2013; 209:754-63. [DOI: 10.1093/infdis/jit550] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Parihar SP, Guler R, Lang DM, Suzuki H, Marais AD, Brombacher F. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape. PLoS One 2013; 8:e75490. [PMID: 24086542 PMCID: PMC3782446 DOI: 10.1371/journal.pone.0075490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022] Open
Abstract
Statins are well-known cholesterol lowering drugs targeting HMG-CoA-reductase, reducing the risk of coronary disorders and hypercholesterolemia. Statins are also involved in immunomodulation, which might influence the outcome of bacterial infection. Hence, a possible effect of statin treatment on Listeriosis was explored in mice. Statin treatment prior to subsequent L. monocytogenes infection strikingly reduced bacterial burden in liver and spleen (up to 100-fold) and reduced histopathological lesions. Statin-treatment in infected macrophages resulted in increased IL-12p40 and TNF-α and up to 4-fold reduced bacterial burden within 6 hours post infection, demonstrating a direct effect of statins on limiting bacterial growth in macrophages. Bacterial uptake was normal investigated in microbeads and GFP-expressing Listeria experiments by confocal microscopy. However, intracellular membrane-bound cholesterol level was decreased, as analyzed by cholesterol-dependent filipin staining and cellular lipid extraction. Mevalonate supplementation restored statin-inhibited cholesterol biosynthesis and reverted bacterial growth in Listeria monocytogenes but not in listeriolysin O (LLO)-deficient Listeria. Together, these results suggest that statin pretreatment increases protection against L. monocytogenes infection by reducing membrane cholesterol in macrophages and thereby preventing effectivity of the cholesterol-dependent LLO-mediated phagosomal escape of bacteria.
Collapse
Affiliation(s)
- Suraj P. Parihar
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk M. Lang
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - A. David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
26
|
The immunomodulatory effects of statins in community-acquired pneumonia: a systematic review. J Infect 2013; 67:93-101. [PMID: 23665030 DOI: 10.1016/j.jinf.2013.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/14/2013] [Accepted: 04/20/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the potential immunomodulatory effects of statins in community-acquired pneumonia. METHODS We performed a systematic review of available literature on experimental and clinical studies. We used a PubMed/MEDLINE and EMBASE search to identify potential articles. RESULTS We identified 34 original studies, 17 experimental and 17 clinical studies, published up to March 2013. CONCLUSIONS Statins attenuated pulmonary inflammation by modulating neutrophil function, by reducing cytokine expression and release, and by protecting against disruption of pulmonary integrity. However, additional experimental studies are needed to fully elucidate the exact mechanisms. Several clinical studies suggested a decreased risk of CAP or a reduction in mortality due to CAP for current statin users, but the mostly observational design of these studies hampers the interpretation of their results. Therefore, appropriately designed studies, such as randomised controlled trials, are required to demonstrate the usefulness of statins in the prevention and treatment of CAP.
Collapse
|
27
|
Chalmers JD, Short PM, Mandal P, Akram AR, Hill AT. Statins in community acquired pneumonia: Evidence from experimental and clinical studies. Respir Med 2010; 104:1081-91. [DOI: 10.1016/j.rmed.2010.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/21/2010] [Accepted: 04/07/2010] [Indexed: 12/15/2022]
|
28
|
Guluma KZ, Lapchak PA. Comparison of the post-embolization effects of tissue-plasminogen activator and simvastatin on neurological outcome in a clinically relevant rat model of acute ischemic stroke. Brain Res 2010; 1354:206-16. [PMID: 20673757 DOI: 10.1016/j.brainres.2010.07.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 01/20/2023]
Abstract
Data has emerged, largely from non-thromboembolic animal models of stroke, that suggests that statins, which have efficacy in preventing strokes when given pre-ischemically, may have a positive effect on stroke even when given post-ischemically, possibly through pleitropic cerebrovascular effects. The goal of this study was to characterize the effects of IV tPA in a clinically relevant model of stroke utilizing a vascular occlusion with a freshly formed clot, and evaluate the effects of post-ischemic administration of simvastatin on stroke outcome in this model. Neurological deficit, clot burden, and lesion volume were assessed after treatment with tPA in one experiment, and after treatment with simvastatin in another. In the tPA experiment, treatment with 10mg/kg of tPA IV (with 20% given as an initial bolus, and 80% given as an infusion over the remaining 30 min), starting within an hour after stroke, resulted in significant reductions, compared with control animals, in neurological deficit (mean+/-SD neuroscores of 21.5+/-21.1 and 30+/-29.3, respectively, p=0.005), clot burden (p=0.010) and lesion volume (p=0.049) at 24h. In the simvastatin experiment on the other hand, treatment with a 20mg/kg of simvastatin as a single intraperitoneal dose within an hour after stroke resulted in no salutary effects on neurological deficit, clot burden or lesion volume compared with controls at 24h. These results suggest that more research needs to be done to fully ascertain the therapeutic potential and optimal dosing paradigm of a post-ischemic treatment with a statin.
Collapse
Affiliation(s)
- Kama Z Guluma
- Department of Emergency Medicine, University of California San Diego Medical Center, San Diego, CA 92103-8676, USA.
| | | |
Collapse
|
29
|
Viasus D, Garcia-Vidal C, Gudiol F, Carratalà J. Statins for community-acquired pneumonia: current state of the science. Eur J Clin Microbiol Infect Dis 2009; 29:143-52. [DOI: 10.1007/s10096-009-0835-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/17/2009] [Indexed: 01/13/2023]
|
30
|
Palikhe A, Tiirola T, Puolakkainen M, Nieminen MS, Saikku P, Leinonen M, Sinisalo J. Chlamydia pneumoniae DNA is present in peripheral blood mononuclear cells during acute coronary syndrome and correlates with chlamydial lipopolysaccharide levels in serum. ACTA ACUST UNITED AC 2009; 41:201-5. [DOI: 10.1080/00365540902737968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Winkler F, Angele B, Pfister HW, Koedel U. Simvastatin attenuates leukocyte recruitment in experimental bacterial meningitis. Int Immunopharmacol 2009; 9:371-4. [DOI: 10.1016/j.intimp.2008.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 12/12/2022]
|
32
|
Mira E, León B, Barber DF, Jiménez-Baranda S, Goya I, Almonacid L, Márquez G, Zaballos A, Martínez-A C, Stein JV, Ardavín C, Mañes S. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:3524-34. [PMID: 18714025 DOI: 10.4049/jimmunol.181.5.3524] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The statins, a group of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are reported to influence a variety of immune system activities through 3-hydroxy-3-methylglutaryl coenzyme A reductase-dependent and -independent mechanisms. How statin treatment regulates immune system function in vivo nonetheless remains to be fully defined. We analyzed the immunomodulatory effects of lovastatin in a Candida albicans-induced delayed-type hypersensitivity reaction in mice. In this model, lovastatin administration reduced the acute inflammatory response elicited by C. albicans challenge. This anti-inflammatory activity of lovastatin was associated with a shift from a Th1 to a Th2 immune response, as well as an increase in the percentage of regulatory T cells at the inflammation site and in the regional draining lymph node. The lovastatin-induced increase in regulatory T cells in the inflamed skin was dependent on expression of CCL1, a chemokine that is locally up-regulated by statin administration. The anti-inflammatory effect of lovastatin was abrogated in CCL1-deficient mice. These results suggest that local regulation of chemokine expression may be an important process in statin-induced modulation of the immune system.
Collapse
Affiliation(s)
- Emilia Mira
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Siempos II, Vardakas KZ, Kopterides P, Falagas ME. Adjunctive therapies for community-acquired pneumonia: a systematic review. J Antimicrob Chemother 2008; 62:661-8. [DOI: 10.1093/jac/dkn283] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
34
|
Abstract
Sepsis is generally viewed as a disease aggravated by an inappropriate immune response encountered in the afflicted individual. As an important organ system frequently compromised by sepsis and always affected by septic shock, the cardiovascular system and its dysfunction during sepsis have been studied in clinical and basic research for more than 5 decades. Although a number of mediators and pathways have been shown to be associated with myocardial depression in sepsis, the precise cause remains unclear to date. There is currently no evidence supporting global ischemia as an underlying cause of myocardial dysfunction in sepsis; however, in septic patients with coexistent and possibly undiagnosed coronary artery disease, regional myocardial ischemia or infarction secondary to coronary artery disease may certainly occur. A circulating myocardial depressant factor in septic shock has long been proposed, and potential candidates for a myocardial depressant factor include cytokines, prostanoids, and nitric oxide, among others. Endothelial activation and induction of the coagulatory system also contribute to the pathophysiology in sepsis. Prompt and adequate antibiotic therapy accompanied by surgical removal of the infectious focus, if indicated and feasible, is the mainstay and also the only strictly causal line of therapy. In the presence of severe sepsis and septic shock, supportive treatment in addition to causal therapy is mandatory. The purpose of this review is to delineate some characteristics of septic myocardial dysfunction, to assess the most commonly cited and reported underlying mechanisms of cardiac dysfunction in sepsis, and to briefly outline current therapeutic strategies and possible future approaches.
Collapse
Affiliation(s)
- M W Merx
- Department of Medicine, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
35
|
Tiirola T, Jauhiainen M, Erkkilä L, Bloigu A, Leinonen M, Haasio K, Laitinen K, Saikku P. Effect of pravastatin treatment on Chlamydia pneumoniae infection, inflammation and serum lipids in NIH/S mice. Int J Antimicrob Agents 2007; 29:741-2. [PMID: 17369028 DOI: 10.1016/j.ijantimicag.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 01/13/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
|
36
|
Krüger S, Merx MW. Nonuse of statins--a new risk factor for infectious death in cardiovascular patients? Crit Care Med 2007; 35:631-2. [PMID: 17251704 DOI: 10.1097/01.ccm.0000254069.48562.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Abstract
PURPOSE OF REVIEW Statins are effective lipid-lowering agents used extensively in medical practice. This review summarizes the evidence for statin treatment of cardiovascular patients in the intensive care unit and briefly discusses the role of statins in prevention and treatment of sepsis as a potential future application of statins in critical care. RECENT FINDINGS Recent studies have extended the use of statin therapy to the acute manifestations of cardiovascular disease and have suggested cholesterol-independent therapeutic benefits, termed pleiotropic effects, which have added a wide scope of potential targets for statin therapy. SUMMARY Statin therapy should be continued in intensive-care patients in whom statin therapy is warranted due to underlying cardiovascular disease or significant risk thereof. In acute coronary syndromes, statin therapy should be initiated within 24-96 h regardless of pretreatment cholesterol levels. Patients undergoing vascular surgery should receive peri-operative statin therapy. Placebo-controlled clinical trials are required to consolidate the experimental and observational evidence for prevention and treatment of sepsis.
Collapse
Affiliation(s)
- Marc W Merx
- Department of Cardiology, RWTH Aachen University, Germany
| | | |
Collapse
|
38
|
Affiliation(s)
- Marc W Merx
- Medizinische Klinik I, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, 52057 Aachen, Germany.
| | | |
Collapse
|