1
|
Stemple B, Gulliver D, Sarkar P, Tinker K, Bibby K. Metagenome-assembled genomes provide insight into the metabolic potential during early production of Hydraulic Fracturing Test Site 2 in the Delaware Basin. Front Microbiol 2024; 15:1376536. [PMID: 38933028 PMCID: PMC11199900 DOI: 10.3389/fmicb.2024.1376536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Demand for natural gas continues to climb in the United States, having reached a record monthly high of 104.9 billion cubic feet per day (Bcf/d) in November 2023. Hydraulic fracturing, a technique used to extract natural gas and oil from deep underground reservoirs, involves injecting large volumes of fluid, proppant, and chemical additives into shale units. This is followed by a "shut-in" period, during which the fracture fluid remains pressurized in the well for several weeks. The microbial processes that occur within the reservoir during this shut-in period are not well understood; yet, these reactions may significantly impact the structural integrity and overall recovery of oil and gas from the well. To shed light on this critical phase, we conducted an analysis of both pre-shut-in material alongside production fluid collected throughout the initial production phase at the Hydraulic Fracturing Test Site 2 (HFTS 2) located in the prolific Wolfcamp formation within the Permian Delaware Basin of west Texas, USA. Specifically, we aimed to assess the microbial ecology and functional potential of the microbial community during this crucial time frame. Prior analysis of 16S rRNA sequencing data through the first 35 days of production revealed a strong selection for a Clostridia species corresponding to a significant decrease in microbial diversity. Here, we performed a metagenomic analysis of produced water sampled on Day 33 of production. This analysis yielded three high-quality metagenome-assembled genomes (MAGs), one of which was a Clostridia draft genome closely related to the recently classified Petromonas tenebris. This draft genome likely represents the dominant Clostridia species observed in our 16S rRNA profile. Annotation of the MAGs revealed the presence of genes involved in critical metabolic processes, including thiosulfate reduction, mixed acid fermentation, and biofilm formation. These findings suggest that this microbial community has the potential to contribute to well souring, biocorrosion, and biofouling within the reservoir. Our research provides unique insights into the early stages of production in one of the most prolific unconventional plays in the United States, with important implications for well management and energy recovery.
Collapse
Affiliation(s)
- Brooke Stemple
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Preom Sarkar
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
- Leidos Research Support Team, Pittsburgh, PA, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
2
|
Mbow FT, Akbari A, Dopffel N, Schneider K, Mukherjee S, Meckenstock RU. Insights into the effects of anthropogenic activities on oil reservoir microbiome and metabolic potential. N Biotechnol 2024; 79:30-38. [PMID: 38040289 DOI: 10.1016/j.nbt.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome. Here we investigated an onshore oilfield in Germany (Field A) that undergoes secondary oil production along with biocide treatment to prevent souring and microbially induced corrosion (MIC). With the integrated approach of 16 S rRNA gene amplicon and shotgun metagenomic sequencing of water-oil samples from 4 production wells and 1 injection well, we found differences in microbial community structure and metabolic functions. In the injection water samples, amplicon sequence variants (ASVs) belonging to families such as Halanaerobiaceae, Ectothiorhodospiraceae, Hydrogenophilaceae, Halobacteroidaceae, Desulfohalobiaceae, and Methanosarcinaceae were dominant, while in the production water samples, ASVs of families such as Thermotogaceae, Nitrospiraceae, Petrotogaceae, Syntrophaceae, Methanobacteriaceae, and Thermoprotei were also dominant. The metagenomic analysis of the injection water sample revealed the presence of C1-metabolism, namely, genes involved in formaldehyde oxidation. Our analysis revealed that the microbial community structure of the production water samples diverged slightly from that of injection water samples. Additionally, a metabolic potential for oxidizing the applied biocide clearly occurred in the injection water samples indicating an adaptation and buildup of degradation capacity or resistance against the added biocide.
Collapse
Affiliation(s)
- Fatou T Mbow
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany
| | - Ali Akbari
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany
| | - Nicole Dopffel
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | | | | | - Rainer U Meckenstock
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
3
|
Jitsuno K, Hoshino T, Nishikawa Y, Kogawa M, Mineta K, Strasser M, Ikehara K, Everest J, Maeda L, Inagaki F, Takeyama H. Comparative single-cell genomics of Atribacterota JS1 in the Japan Trench hadal sedimentary biosphere. mSphere 2024; 9:e0033723. [PMID: 38170974 PMCID: PMC10826368 DOI: 10.1128/msphere.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth's carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445-8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere.IMPORTANCEThe Japan Trench represents tectonically active hadal environments associated with Pacific plate subduction beneath the northeastern Japan arc. This study, for the first time, documented a large-scale single-cell and metagenomic survey along an approximately 500 km transect of the Japan Trench, obtaining high-quality genomic information on hadal sedimentary microbial communities. Single-cell genomics revealed the predominance of diverse JS1 lineages not recoverable through conventional metagenomic binning. Their metabolic potential includes genes related to the degradation of organic matter, which contributes to methanogenesis in the deeper layers. Our findings enhance understanding of sedimentary microbial communities at water depths exceeding 7,000 m and provide new insights into the ecological role of biogeochemical carbon cycling in the hadal sedimentary biosphere.
Collapse
Affiliation(s)
- Kana Jitsuno
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Yohei Nishikawa
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Masato Kogawa
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiko Mineta
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Michael Strasser
- Department of Geology, University of Innsbruck, Innsbruck, Austria
| | - Ken Ikehara
- Research Institute of Geology and Geoinformation, AIST Geological Survey of Japan, Tsukuba, Japan
| | | | - Lena Maeda
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
| | - Fumio Inagaki
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Haruko Takeyama
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - IODP Expedition 386 ScientistsBellanovaPieroBrunetMorganeCaiZhirongCattaneoAntonioHochmuthKatharinaHsiungKanhsiIshizawaTakashiItakiTakuyaJitsunoKanaJohnsonJoelKanamatsuToshiyaKeepMyraKiokaArataMaerzChristianMcHughCeciliaMicallefAaronMinLuoPandeyDhananjaiProustJean NoelRasburyTroyRiedingerNataschaBaoRuiSatoguchiYasufumiSawyerDerekSeibertChloeSilverMaxwellStraubSusanneVirtasaloJoonasWangYonghongWuTing-WeiZellersSarahKöllingMartinHuangJyh-Jaan StevenNagahashiYoshitaka
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
- Department of Geology, University of Innsbruck, Innsbruck, Austria
- Research Institute of Geology and Geoinformation, AIST Geological Survey of Japan, Tsukuba, Japan
- British Geological Survey, Edinburgh, United Kingdom
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Ugwuodo CJ, Colosimo F, Adhikari J, Bloodsworth K, Wright SA, Eder J, Mouser PJ. Changes in environmental and engineered conditions alter the plasma membrane lipidome of fractured shale bacteria. Microbiol Spectr 2024; 12:e0233423. [PMID: 38059585 PMCID: PMC10782966 DOI: 10.1128/spectrum.02334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Microorganisms inadvertently introduced into the shale reservoir during fracturing face multiple stressors including brine-level salinities and starvation. However, some anaerobic halotolerant bacteria adapt and persist for long periods of time. They produce hydrogen sulfide, which sours the reservoir and corrodes engineering infrastructure. In addition, they form biofilms on rock matrices, which decrease shale permeability and clog fracture networks. These reduce well productivity and increase extraction costs. Under stress, microbes remodel their plasma membrane to optimize its roles in protection and mediating cellular processes such as signaling, transport, and energy metabolism. Hence, by observing changes in the membrane lipidome of model shale bacteria, Halanaerobium congolense WG10, and mixed consortia enriched from produced fluids under varying subsurface conditions and growth modes, we provide insight that advances our knowledge of the fractured shale biosystem. We also offer data-driven recommendations for improving biocontrol efficacy and the efficiency of energy recovery from unconventional formations.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, New Hampshire, USA
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | | | | | - Kent Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Stephanie A. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Josie Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
5
|
Ugwuodo CJ, Colosimo F, Adhikari J, Purvine SO, Eder EK, Hoyt DW, Wright SA, Lipton MS, Mouser PJ. Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs. ISME COMMUNICATIONS 2024; 4:ycae149. [PMID: 39670059 PMCID: PMC11637423 DOI: 10.1093/ismeco/ycae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium Halanaerobium congolense WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that H. congolense WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH 03824, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | | | | | - Samuel O Purvine
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Elizabeth K Eder
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - David W Hoyt
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Stephanie A Wright
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Mary S Lipton
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
6
|
Malard LA, Guisan A. Into the microbial niche. Trends Ecol Evol 2023; 38:936-945. [PMID: 37236880 DOI: 10.1016/j.tree.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
The environmental niche concept describes the distribution of a taxon in the environment and can be used to understand community dynamics, biological invasions, and the impact of environmental changes. The uses and applications are still restricted in microbial ecology, largely due to the complexity of microbial systems and associated methodological limitations. The development of shotgun metagenomics and metatranscriptomics opens new ways to investigate the microbial niche by focusing on the metabolic niche within the environmental space. Here, we propose the metabolic niche framework, which, by defining the fundamental and realised metabolic niche of microorganisms, has the potential to not only provide novel insights into habitat preferences and the metabolism associated, but also to inform on metabolic plasticity, niche shifts, and microbial invasions.
Collapse
Affiliation(s)
- Lucie A Malard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Amundson KK, Roux S, Shelton JL, Wilkins MJ. Long-term CRISPR locus dynamics and stable host-virus co-existence in subsurface fractured shales. Curr Biol 2023; 33:3125-3135.e4. [PMID: 37402375 DOI: 10.1016/j.cub.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Viruses are the most ubiquitous biological entities on Earth. Even so, elucidating the impact of viruses on microbial communities and associated ecosystem processes often requires identification of unambiguous host-virus linkages-an undeniable challenge in many ecosystems. Subsurface fractured shales present a unique opportunity to first make these strong linkages via spacers in CRISPR-Cas arrays and subsequently reveal complex long-term host-virus dynamics. Here, we sampled two replicated sets of fractured shale wells for nearly 800 days, resulting in 78 metagenomes from temporal sampling of six wells in the Denver-Julesburg Basin (Colorado, USA). At the community level, there was strong evidence for CRISPR-Cas defense systems being used through time and likely in response to viral interactions. Within our host genomes, represented by 202 unique MAGs, we also saw that CRISPR-Cas systems were widely encoded. Together, spacers from host CRISPR loci facilitated 2,110 CRISPR-based viral linkages across 90 host MAGs spanning 25 phyla. We observed less redundancy in host-viral linkages and fewer spacers associated with hosts from the older, more established wells, possibly reflecting enrichment of more beneficial spacers through time. Leveraging temporal patterns of host-virus linkages across differing well ages, we report how host-virus co-existence dynamics develop and converge through time, possibly reflecting selection for viruses that can evade host CRISPR-Cas systems. Together, our findings shed light on the complexities of host-virus interactions as well as long-term dynamics of CRISPR-Cas defense among diverse microbial populations.
Collapse
Affiliation(s)
- Kaela K Amundson
- Colorado State University, Department of Soil & Crop Sciences, 301 University Ave., Fort Collins, CO 80523, USA.
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jenna L Shelton
- United States Geological Survey, 12201 Sunrise Valley Dr., Reston, VA 20192, USA
| | - Michael J Wilkins
- Colorado State University, Department of Soil & Crop Sciences, 301 University Ave., Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Hernandez-Becerra N, Cliffe L, Xiu W, Boothman C, Lloyd JR, Nixon SL. New microbiological insights from the Bowland shale highlight heterogeneity of the hydraulically fractured shale microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:14. [PMID: 36855215 PMCID: PMC9972762 DOI: 10.1186/s40793-023-00465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hydraulically fractured shales offer a window into the deep biosphere, where hydraulic fracturing creates new microbial ecosystems kilometers beneath the surface of the Earth. Studying the microbial communities from flowback fluids that are assumed to inhabit these environments provides insights into their ecophysiology, and in particular their ability to survive in these extreme environments as well as their influence on site operation e.g. via problematic biofouling processes and/or biocorrosion. Over the past decade, research on fractured shale microbiology has focused on wells in North America, with a few additional reported studies conducted in China. To extend the knowledge in this area, we characterized the geochemistry and microbial ecology of two exploratory shale gas wells in the Bowland Shale, UK. We then employed a meta-analysis approach to compare geochemical and 16S rRNA gene sequencing data from our study site with previously published research from geographically distinct formations spanning China, Canada and the USA. RESULTS Our findings revealed that fluids recovered from exploratory wells in the Bowland are characterized by moderate salinity and high microbial diversity. The microbial community was dominated by lineages known to degrade hydrocarbons, including members of Shewanellaceae, Marinobacteraceae, Halomonadaceae and Pseudomonadaceae. Moreover, UK fractured shale communities lacked the usually dominant Halanaerobium lineages. From our meta-analysis, we infer that chloride concentrations play a dominant role in controlling microbial community composition. Spatio-temporal trends were also apparent, with different shale formations giving rise to communities of distinct diversity and composition. CONCLUSIONS These findings highlight an unexpected level of compositional heterogeneity across fractured shale formations, which is not only relevant to inform management practices but also provides insight into the ability of diverse microbial consortia to tolerate the extreme conditions characteristic of the engineered deep subsurface.
Collapse
Affiliation(s)
- Natali Hernandez-Becerra
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Lisa Cliffe
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Wei Xiu
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Christopher Boothman
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Sophie L Nixon
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Soares A, Edwards A, An D, Bagnoud A, Bradley J, Barnhart E, Bomberg M, Budwill K, Caffrey SM, Fields M, Gralnick J, Kadnikov V, Momper L, Osburn M, Mu A, Moreau JW, Moser D, Purkamo L, Rassner SM, Sheik CS, Sherwood Lollar B, Toner BM, Voordouw G, Wouters K, Mitchell AC. A global perspective on bacterial diversity in the terrestrial deep subsurface. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001172. [PMID: 36748549 PMCID: PMC9993121 DOI: 10.1099/mic.0.001172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
While recent efforts to catalogue Earth's microbial diversity have focused upon surface and marine habitats, 12-20 % of Earth's biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8 % in the deep subseafloor. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities. However, a wider perspective of microbial diversity and its relationship to environmental conditions within the terrestrial deep subsurface is still required. Our meta-analysis reveals that terrestrial deep subsurface microbiota are dominated by Betaproteobacteria, Gammaproteobacteria and Firmicutes, probably as a function of the diverse metabolic strategies of these taxa. Evidence was also found for a common small consortium of prevalent Betaproteobacteria and Gammaproteobacteria operational taxonomic units across the localities. This implies a core terrestrial deep subsurface community, irrespective of aquifer lithology, depth and other variables, that may play an important role in colonizing and sustaining microbial habitats in the deep terrestrial subsurface. An in silico contamination-aware approach to analysing this dataset underscores the importance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.
Collapse
Affiliation(s)
- A. Soares
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Institute of Biology, Environmental and Rural Sciences (IBERS), AU, Aberystwyth, UK
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
- Present address: Group for Aquatic Microbial Ecology (GAME), University of Duisburg-Essen, Campus Essen - Environmental Microbiology and Biotechnology, Universitätsstr. 5, 45141 Essen, Germany
| | - A. Edwards
- Institute of Biology, Environmental and Rural Sciences (IBERS), AU, Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| | - D. An
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - A. Bagnoud
- Institut de Génie Thermique (IGT), Haute École d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland
| | - J. Bradley
- School of Geography, Queen Mary University of London, London, UK
| | - E. Barnhart
- U.S. Geological Survey (USGS), USA, Reston, VA, USA
- Center for Biofilm Engineering (CBE), Montana State University, Bozeman, MT, USA
| | - M. Bomberg
- VTT Technical Research Centre of Finland, Finland
| | | | | | - M. Fields
- Center for Biofilm Engineering (CBE), Montana State University, Bozeman, MT, USA
- Department of Microbiology & Immunology, MSU, Bozeman, MT, USA
| | - J. Gralnick
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
| | - V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Russia
| | - L. Momper
- Department of Earth, Atmospheric and Planetary Sciences (DEAPS), The Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - M. Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| | - A. Mu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - J. W. Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, Australia
| | - D. Moser
- Division of Hydrologic Sciences, Desert Research Institute (DRI), Las Vegas, NV, USA
| | - L. Purkamo
- VTT Technical Research Centre of Finland, Finland
- School of Earth and Environmental Sciences (SEES), University of St. Andrews, St. Andrews, UK
- Geological Survey of Finland (GTK), Finland
| | - S. M. Rassner
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| | - C. S. Sheik
- Large Lakes Observatory, University of Minnesota, Duluth, MN, USA
| | | | - B. M. Toner
- Department of Soil, Water & Climate, University of Minnesota, Minneapolis/Saint Paul, MN, USA
| | - G. Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - K. Wouters
- Institute for Environment, Health and Safety (EHS), Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - A. C. Mitchell
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| |
Collapse
|
10
|
Tinker K, Lipus D, Gardiner J, Stuckman M, Gulliver D. The Microbial Community and Functional Potential in the Midland Basin Reveal a Community Dominated by Both Thiosulfate and Sulfate-Reducing Microorganisms. Microbiol Spectr 2022; 10:e0004922. [PMID: 35695567 PMCID: PMC9430316 DOI: 10.1128/spectrum.00049-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
The Permian Basin is the highest producing oil and gas reservoir in the United States. Hydrocarbon resources in this region are often accessed by unconventional extraction methods, including horizontal drilling and hydraulic fracturing. Despite the importance of the Permian Basin, there is no publicly available microbiological data from this region. We completed an analysis of Permian produced water samples to understand the dynamics present in hydraulically fractured wells in this region. We analyzed produced water samples taken from 10 wells in the Permian region of the Midland Basin using geochemical measurements, 16S rRNA gene sequencing, and metagenomic sequencing. Compared to other regions, we found that Permian Basin produced water was characterized by higher sulfate and lower total dissolved solids (TDS) concentrations, with a median of 1,110 mg/L and 107,000 mg/L. Additionally, geochemical measurements revealed the presence of frac hits, or interwell communication events where an established well is affected by the pumping of fracturing fluid into a new well. The occurrence of frac hits was supported by correlations between the microbiome and the geochemical parameters. Our 16S rRNA gene sequencing identified a produced water microbiome characterized by anaerobic, halophilic, and sulfur reducing taxa. Interestingly, sulfate and thiosulfate reducing taxa including Halanaerobium, Orenia, Marinobacter, and Desulfohalobium were the most prevalent microbiota in most wells. We further investigated the metabolic potential of microorganisms in the Permian Basin with metagenomic sequencing. We recovered 15 metagenome assembled genomes (MAGs) from seven different samples representing 6 unique well sites. These MAGs corroborated the high presence of sulfate and thiosulfate reducing genes across all wells, especially from key taxa including Halanaerobium and Orenia. The observed microbiome composition and metabolic capabilities in conjunction with the high sulfate concentrations demonstrate a high potential for hydrogen sulfide production in the Permian Basin. Additionally, evidence of frac hits suggests the possibility for the exchange of microbial cells and/or genetic information between wells. This exchange would increase the likelihood of hydrogen sulfide production and has implications for the oil and gas industry. IMPORTANCE The Permian Basin is the largest producing oil and gas region in the United States and plays a critical role supplying national energy needs. Previous work in other basins has demonstrated that the geochemistry and microbiology of hydrocarbon regions can have a major impact on well infrastructure and production. Despite that, little work has been done to understand the complex dynamics present in the Permian Basin. This study characterizes and analyzes 10 unique wells and one groundwater sample in the Permian Basin using geochemical and microbial techniques. Across all wells we found a high number of classic and thiosulfate reducers, suggesting that hydrogen sulfide production may be especially prevalent in the Permian Basin. Additionally, our analysis revealed a biogeochemical signal impacted by the presence of frac hits, or interwell communication events where an established well is affected by the pumping of fracturing fluid into a new well. This information can be utilized by the oil and gas industry to improve oil recovery efforts and minimize commercial and environmental costs.
Collapse
Affiliation(s)
- Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Daniel Lipus
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- Oakridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - James Gardiner
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Mengling Stuckman
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. Int J Mol Sci 2022; 23:ijms23105566. [PMID: 35628373 PMCID: PMC9143384 DOI: 10.3390/ijms23105566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial cells secrete extracellular polymeric substances (EPS) to adhere to material surfaces, if they get in contact with solid materials such as metals. After phase equilibrium, microorganisms can adhere firmly to the metal surfaces causing metal dissolution and corrosion. Attachment and adhesion of microorganisms via EPS increase the possibility and the rate of metal corrosion. Many components of EPS are electrochemical and redox active, making them closely related to metal corrosion. Functional groups in EPS have specific adsorption ability, causing them to play a key role in biocorrosion. This review emphasizes EPS properties related to metal corrosion and protection and the underlying microbially influenced corrosion (MIC) mechanisms. Future perspectives regarding a comprehensive study of MIC mechanisms and green methodologies for corrosion protection are provided.
Collapse
|
12
|
Ceron-Chafla P, García-Timermans C, de Vrieze J, Ganigué R, Boon N, Rabaey K, van Lier JB, Lindeboom REF. Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnol Bioeng 2022; 119:1792-1807. [PMID: 35312065 PMCID: PMC9325544 DOI: 10.1002/bit.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Cristina García-Timermans
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Jo de Vrieze
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Ramon Ganigué
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
13
|
Amundson KK, Borton MA, Daly RA, Hoyt DW, Wong A, Eder E, Moore J, Wunch K, Wrighton KC, Wilkins MJ. Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation. MICROBIOME 2022; 10:5. [PMID: 35034639 PMCID: PMC8762873 DOI: 10.1186/s40168-021-01194-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. RESULTS We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK (Sooner Trend Anadarko Basin, Canadian and Kingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. CONCLUSIONS These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells. Video Abstract.
Collapse
Affiliation(s)
- Kaela K. Amundson
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Mikayla A. Borton
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Rebecca A. Daly
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | - Allison Wong
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | | | | | - Kelly C. Wrighton
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Michael J. Wilkins
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
14
|
Ji Y, Zhang Z, Zhuang Y, Liao R, Zhou Z, Chen S. Molecular-level variation of dissolved organic matter and microbial structure of produced water during its early storage in Fuling shale gas field, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38361-38373. [PMID: 33733405 DOI: 10.1007/s11356-021-13228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Shale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.e., from the gas-liquid separator to the storage tank) were investigated. As the PW was transported from the gas-liquid separator to the portable storage tank, the dissolved organic matter (DOM) showed greater saturation, less oxidation, and lower polarity. DOMs with high O/C and low H/C ratios (numbers of oxygen and hydrogen divided by numbers of carbon) were eliminated, which may be due to precipitation or adsorption by the solids suspended in the PW. The values of double-bond equivalent (DBE), DBE/C (DBE divided by the number of carbon), and aromatic index (AI) decreased, likely because of the microbial degradation of aromatic compounds. The PW in the gas-liquid separator presented a lower biodiversity than that in the storage tank. The microbial community in the storage tank showed the coexistence of anaerobes and aerobes. Genera related to biocorrosion and souring were detected in the two facilities, thus indicating the necessity of more efficient anticorrosion strategies. This study helps to enhance the understanding of the environmental behavior of PW during shale gas collection and provides a scientific reference for the design and formulation of efficient transportation and storage strategies to prevent and control the environmental risk of shale gas-derived PW.
Collapse
Affiliation(s)
- Yufei Ji
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Zhuang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rugang Liao
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Zejun Zhou
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
15
|
Metabolic Interactions between Brachypodium and Pseudomonas fluorescens under Controlled Iron-Limited Conditions. mSystems 2021; 6:6/1/e00580-20. [PMID: 33402348 PMCID: PMC7786132 DOI: 10.1128/msystems.00580-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rhizosphere bacteria influence the growth of their host plant by consuming and producing metabolites, nutrients, and antibiotic compounds within the root system that affect plant metabolism. Under Fe-limited growth conditions, different plant and microbial species have distinct Fe acquisition strategies, often involving the secretion of strong Fe-binding chelators that scavenge Fe and facilitate uptake. Iron (Fe) availability has well-known effects on plant and microbial metabolism, but its effects on interspecies interactions are poorly understood. The purpose of this study was to investigate metabolite exchange between the grass Brachypodium distachyon strain Bd21 and the soil bacterium Pseudomonas fluorescens SBW25::gfp/lux (SBW25) during Fe limitation under axenic conditions. We compared the transcriptional profiles and root exudate metabolites of B. distachyon plants grown semihydroponically with and without SBW25 inoculation and Fe amendment. Liquid chromatography-mass spectrometry analysis of the hydroponic solution revealed an increase in the abundance of the phytosiderophores mugineic acid and deoxymugineic acid under Fe-limited conditions compared to Fe-replete conditions, indicating greater secretion by roots presumably to facilitate Fe uptake. In SBW25-inoculated roots, expression of genes encoding phytosiderophore biosynthesis and uptake proteins increased compared to that in sterile roots, but external phytosiderophore abundances decreased. P. fluorescens siderophores were not detected in treatments without Fe. Rather, expression of SBW25 genes encoding a porin, a transporter, and a monooxygenase was significantly upregulated in response to Fe deprivation. Collectively, these results suggest that SBW25 consumed root-exuded phytosiderophores in response to Fe deficiency, and we propose target genes that may be involved. SBW25 also altered the expression of root genes encoding defense-related enzymes and regulators, including thionin and cyanogenic glycoside production, chitinase, and peroxidase activity, and transcription factors. Our findings provide insights into the molecular bases for the stress response and metabolite exchange of interacting plants and bacteria under Fe-deficient conditions. IMPORTANCE Rhizosphere bacteria influence the growth of their host plant by consuming and producing metabolites, nutrients, and antibiotic compounds within the root system that affect plant metabolism. Under Fe-limited growth conditions, different plant and microbial species have distinct Fe acquisition strategies, often involving the secretion of strong Fe-binding chelators that scavenge Fe and facilitate uptake. Here, we studied interactions between P. fluorescens SBW25, a plant-colonizing bacterium that produces siderophores with antifungal properties, and B. distachyon, a genetic model for cereal grain and biofuel grasses. Under controlled growth conditions, bacterial siderophore production was inhibited in the root system of Fe-deficient plants, bacterial inoculation altered transcription of genes involved in defense and stress response in the roots of B. distachyon, and SBW25 degraded phytosiderophores secreted by the host plant. These findings provide mechanistic insight into interactions that may play a role in rhizosphere dynamics and plant health in soils with low Fe solubility.
Collapse
|
16
|
Cliffe L, Nixon SL, Daly RA, Eden B, Taylor KG, Boothman C, Wilkins MJ, Wrighton KC, Lloyd JR. Identification of Persistent Sulfidogenic Bacteria in Shale Gas Produced Waters. Front Microbiol 2020; 11:286. [PMID: 32153553 PMCID: PMC7046593 DOI: 10.3389/fmicb.2020.00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
Produced waters from hydraulically fractured shale formations give insight into the microbial ecology and biogeochemical conditions down-well. This study explores the potential for sulfide production by persistent microorganisms recovered from produced water samples collected from the Marcellus shale formation. Hydrogen sulfide is highly toxic and corrosive, and can lead to the formation of “sour gas” which is costly to refine. Furthermore, microbial colonization of hydraulically fractured shale could result in formation plugging and a reduction in well productivity. It is vital to assess the potential for sulfide production in persistent microbial taxa, especially when considering the trend of reusing produced waters as input fluids, potentially enriching for problematic microorganisms. Using most probable number (MPN) counts and 16S rRNA gene sequencing, multiple viable strains of bacteria were identified from stored produced waters, mostly belonging to the Genus Halanaerobium, that were capable of growth via fermentation, and produced sulfide when supplied with thiosulfate. No sulfate-reducing bacteria (SRB) were detected through culturing, despite the detection of relatively low numbers of sulfate-reducing lineages by high-throughput 16S rRNA gene sequencing. These results demonstrate that sulfidogenic produced water populations remain viable for years post production and, if left unchecked, have the potential to lead to natural gas souring during shale gas extraction.
Collapse
Affiliation(s)
- Lisa Cliffe
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Sophie L Nixon
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Bob Eden
- Rawwater Engineering Company Limited, Culcheth, United Kingdom
| | - Kevin G Taylor
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Christopher Boothman
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Procópio L. The era of 'omics' technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 2020; 42:341-356. [PMID: 31897850 DOI: 10.1007/s10529-019-02789-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
Abstract
Efforts to elucidate the relationships between microorganisms and metal corrosion were mainly directed to understanding the formation of biofilm structures grown on corroded surfaces. The emergence of high throughput DNA sequencing techniques has helped in the description of microbial species involved directly and indirectly in the corrosion processes of alloys. Coupled with sequencing from environmental samples, other methodologies such as metatranscriptome, metaproteomics and metabolomics have allowed a new horizon to be opened on the understanding of the role of corrosive microbial biofilm. Several groups of bacteria and archaea were identified, showing the dominance of Proteobacteria in several samples analyzed and members of groups that previously received less attention, such as Firmicutes and Bacteroidetes. Our research also shows that metagenomic studies describe the presence of various Archaea domain thermophilic and methanogenic groups associated with metal corrosion. Thus, opening the prospect of describing new microbial groups as possible participants in this current global concern.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias - Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Evans MV, Getzinger G, Luek JL, Hanson AJ, McLaughlin MC, Blotevogel J, Welch SA, Nicora CD, Purvine SO, Xu C, Cole DR, Darrah TH, Hoyt DW, Metz TO, Lee Ferguson P, Lipton MS, Wilkins MJ, Mouser PJ. In situ transformation of ethoxylate and glycol surfactants by shale-colonizing microorganisms during hydraulic fracturing. THE ISME JOURNAL 2019; 13:2690-2700. [PMID: 31243331 PMCID: PMC6794257 DOI: 10.1038/s41396-019-0466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 11/08/2022]
Abstract
In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.
Collapse
Affiliation(s)
- Morgan V Evans
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Gordon Getzinger
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Andrea J Hanson
- Department of Civil & Environmental Engineering, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Molly C McLaughlin
- Department of Civil & Environmental Engineering, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Jens Blotevogel
- Department of Civil & Environmental Engineering, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Susan A Welch
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Carrie D Nicora
- Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Samuel O Purvine
- Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chengdong Xu
- Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - David R Cole
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas H Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - David W Hoyt
- Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Thomas O Metz
- Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Mary S Lipton
- Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|