1
|
Sumang FA, Ward A, Errington J, Dashti Y. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:40. [PMID: 38955942 PMCID: PMC11219617 DOI: 10.1007/s13659-024-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant-microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant-microbe interactions.
Collapse
Affiliation(s)
- Felaine Anne Sumang
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2015, Australia
| | - Alan Ward
- School of Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2015, Australia
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, 2015, Australia
| | - Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2015, Australia.
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, 2015, Australia.
| |
Collapse
|
2
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591522. [PMID: 38712214 PMCID: PMC11071462 DOI: 10.1101/2024.04.28.591522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria, but are only synthesized by a small fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and show that C. amycolatum produces sufficient cobamides to support E. coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK and cobO and confirm that disruption of cobamide biosynthesis abolishes support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances.
Collapse
Affiliation(s)
- M H Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - N Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - T Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - J Handelsman
- Wisconsin Institute for Discovery, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - L R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, CAN
- David Braley Centre for Antibiotic Discovery, Hamilton, ON, CAN
| |
Collapse
|
3
|
LeCleir GR, Bassett J, Wilhelm SW. Effects of iron concentration and DFB (Desferrioxamine-B) on transcriptional profiles of an ecologically relevant marine bacterium. PLoS One 2023; 18:e0295257. [PMID: 38100448 PMCID: PMC10723695 DOI: 10.1371/journal.pone.0295257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Research into marine iron cycles and biogeochemistry has commonly relied on the use of chelators (including siderophores) to manipulate iron bioavailability. To test whether a commonly used chelator, desferrioxamine B (DFB) caused effects beyond changing the iron-status of cells, cultures of the environmentally relevant marine heterotrophic bacterium, Ruegeria pomeroyii, were grown in media with different concentrations of iron and/or DFB, resulting in a gradient of iron availability. To determine how cells responded, transcriptomes were generated for cells from the different treatments and analyzed to determine how cells reacted to these to perturbations. Analyses were also performed to look for cellular responses specific to the presence of DFB in the culture medium. As expected, cells experiencing different levels of iron availability had different transcriptomic profiles. While many genes related to iron acquisition were differentially expressed between treatments, there were many other genes that were also differentially expressed between different sample types, including those related to the uptake and metabolism of other metals as well as genes related to metabolism of other types of molecules like amino acids and carbohydrates. We conclude that while DFB certainly altered iron availability to cells, it also appears to have had a general effect on the homeostasis of other metals as well as influenced metabolic processes outside of metal acquisition.
Collapse
Affiliation(s)
- Gary R. LeCleir
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jenna Bassett
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
4
|
Zhao K, Tang H, Zhang B, Zou S, Liu Z, Zheng Y. Microbial production of vitamin B5: current status and prospects. Crit Rev Biotechnol 2023; 43:1172-1192. [PMID: 36210178 DOI: 10.1080/07388551.2022.2104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
Collapse
Affiliation(s)
- Kuo Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
5
|
Yang Z, Liu Z, Zhao F, Yu L, Yang W, Si M, Liao Q. Organic acid, phosphate, sulfate and ammonium co-metabolism releasing insoluble phosphate by Klebsiella aerogenes to simultaneously stabilize lead and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130378. [PMID: 36444069 DOI: 10.1016/j.jhazmat.2022.130378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Here, a novel phosphate-solubilizing bacterium (PSB), Klebsiella aerogenes Wn was applied to develop an environmental-friendly method to simultaneously stabilize Pb and Cd. The maximum dissolved phosphate was up to 701.36 mg/L by the strain Wn. The high performance liquid chromatography (HPLC) and Pearson correlation analyses showed that the acetic acid produced by the strain Wn was significantly positively associated with the released phosphate. Moreover, 100% of 500 mg/L of Pb and 100 mg/L of Cd were simultaneously stabilized in the classical NBRIP medium and the major products were Pb5(PO4)3Cl, Ca7.7Cd0.8(PO4)8(H2O)2.4 and CdS, respectively. In addition, the bacterial genome and transcriptome analyses showed that the pentose phosphate pathway (PPP), pyruvate metabolism pathway, thiamine metabolic pathway, sulfate reduction and ammonium bio-transformation were coupled to promote releasing insoluble phosphate and stabilizing Pb and Cd. In the metabolism networks, the critical genes of gcd, aceE, thiE, thiS and cysH, etc. were significantly up-regulated. Our results are beneficial to deeper understand the molecular mechanisms of releasing insoluble inorganic phosphate by PSBs and develop a technology prototype to simultaneously stabilize Pb and Cd using the PSBs.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Zixin Liu
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Feiping Zhao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Lin Yu
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Mengying Si
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China.
| |
Collapse
|
6
|
Choi WW, Jeong H, Kim Y, Lee HS. Gene nceA encodes a Ni/Co-sensing transcription factor to regulate metal efflux in Corynebacterium glutamicum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865361. [PMID: 36460048 DOI: 10.1093/mtomcs/mfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The function of Corynebacterium glutamicum open reading frame (ORF) NCgl2684 (named nceA in this study), which was annotated to encode a metalloregulator, was assessed using physiological, genetic, and biochemical approaches. Cells with deleted-nceA (ΔnceA) showed a resistant phenotype to NiSO4 and CoSO4 and showed faster growth in minimal medium containing 20 μM NiSO4 or 10 μM CoSO4 than both the wild-type and nceA-overexpressing (P180-nceA) cells. In the ΔnceA strain, the transcription of the downstream-located ORF NCgl2685 (nceB), annotated to encode efflux protein, was increased approximately 4-fold, whereas gene transcription decreased down to 30% level in the P180-nceA strain. The transcriptions of the nceA and nceB genes were stimulated, even when as little as 5 nM NiSO4 was added to the growth medium. Protein NceA was able to bind DNA comprising the promoter region (from -14 to + 18) of the nceA--nceB operon. The protein-DNA interaction was abolished in the presence of 20 μM NiSO4, 50 μM CoSO4, or 50 μM CdSO4. Although manganese induced the transcription of the nceA and nceB genes, it failed to interrupt protein-DNA interaction. Simultaneously, the P180-nceA cells showed increased sensitivity to oxidants such as menadione, hydrogen peroxide, and cumene hydroperoxide, but not diamide. Collectively, our data show that NceA is a nickel- and cobalt-sensing transcriptional regulator that controls the transcription of the probable efflux protein-encoding nceB. The genes are able to suppress intracellular levels of nickel to prevent reactions, which can cause oxidative damage to cellular components.
Collapse
Affiliation(s)
- Won-Woo Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Banerjee D, Eng T, Sasaki Y, Srinivasan A, Oka A, Herbert RA, Trinh J, Singan VR, Sun N, Putnam D, Scown CD, Simmons B, Mukhopadhyay A. Genomics Characterization of an Engineered Corynebacterium glutamicum in Bioreactor Cultivation Under Ionic Liquid Stress. Front Bioeng Biotechnol 2021; 9:766674. [PMID: 34869279 PMCID: PMC8637627 DOI: 10.3389/fbioe.2021.766674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
Corynebacterium glutamicum is an ideal microbial chassis for production of valuable bioproducts including amino acids and next generation biofuels. Here we resequence engineered isopentenol (IP) producing C. glutamicum BRC-JBEI 1.1.2 strain and assess differential transcriptional profiles using RNA sequencing under industrially relevant conditions including scale transition and compare the presence vs absence of an ionic liquid, cholinium lysinate ([Ch][Lys]). Analysis of the scale transition from shake flask to bioreactor with transcriptomics identified a distinct pattern of metabolic and regulatory responses needed for growth in this industrial format. These differential changes in gene expression corroborate altered accumulation of organic acids and bioproducts, including succinate, acetate, and acetoin that occur when cells are grown in the presence of 50 mM [Ch][Lys] in the stirred-tank reactor. This new genome assembly and differential expression analysis of cells grown in a stirred tank bioreactor clarify the cell response of an C. glutamicum strain engineered to produce IP.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aparajitha Srinivasan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Asun Oka
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jessica Trinh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Vasanth R Singan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ning Sun
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Dan Putnam
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Corinne D Scown
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Blake Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
8
|
Fu X, Jin X, Ye R, Lu W. Nano zero-valent iron: A pH buffer, electron donor and activator for chain elongation. BIORESOURCE TECHNOLOGY 2021; 329:124899. [PMID: 33677422 DOI: 10.1016/j.biortech.2021.124899] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Chain elongation produce medium chain carboxylates, which are important precursors to many pharmaceuticals, antimicrobials and biofuels. Results in the presented investigations show that the supply of nano zero-valent iron (NZVI) can enhance caproate production. The highest caproate concentration achieved amounted to 27.2 mmol/L when 5 g/L NZVI were added, which was about 100% higher than the control. The study also showed increase of ethanol oxidation and decrease of butyrate and butanol with NZVI addition. Mechanism study showed NZVI can stimulate caproate production by preventing pH to fall below 5.4 through displacement reaction. Electron balance analysis displayed that NZVI provides extra electron by promoting ethanol oxidation and its dissolution. H2 was the potential electron shuttle between NZVI and chain elongators; High throughput sequencing showed function of NZVI on reshaping of microbial communities, especially enriching Oscillibacter Marseille-P3260, a kind of chain elongator and Corynebacterium which possesses fatty acid biosynthesis and iron utilization.
Collapse
Affiliation(s)
- Xindi Fu
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xi Jin
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Rong Ye
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
9
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
10
|
Physiological Response of Corynebacterium glutamicum to Indole. Microorganisms 2020; 8:microorganisms8121945. [PMID: 33302489 PMCID: PMC7764795 DOI: 10.3390/microorganisms8121945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
The aromatic heterocyclic compound indole is widely spread in nature. Due to its floral odor indole finds application in dairy, flavor, and fragrance products. Indole is an inter- and intracellular signaling molecule influencing cell division, sporulation, or virulence in some bacteria that synthesize it from tryptophan by tryptophanase. Corynebacterium glutamicum that is used for the industrial production of amino acids including tryptophan lacks tryptophanase. To test if indole is metabolized by C. glutamicum or has a regulatory role, the physiological response to indole by this bacterium was studied. As shown by RNAseq analysis, indole, which inhibited growth at low concentrations, increased expression of genes involved in the metabolism of iron, copper, and aromatic compounds. In part, this may be due to iron reduction as indole was shown to reduce Fe3+ to Fe2+ in the culture medium. Mutants with improved tolerance to indole were selected by adaptive laboratory evolution. Among the mutations identified by genome sequencing, mutations in three transcriptional regulator genes were demonstrated to be causal for increased indole tolerance. These code for the regulator of iron homeostasis DtxR, the regulator of oxidative stress response RosR, and the hitherto uncharacterized Cg3388. Gel mobility shift analysis revealed that Cg3388 binds to the intergenic region between its own gene and the iolT2-rhcM2D2 operon encoding inositol uptake system IolT2, maleylacetate reductase, and catechol 1,2-dioxygenase. Increased RNA levels of rhcM2 in a cg3388 deletion strain indicated that Cg3388 acts as repressor. Indole, hydroquinone, and 1,2,4-trihydroxybenzene may function as inducers of the iolT2-rhcM2D2 operon in vivo as they interfered with DNA binding of Cg3388 at physiological concentrations in vitro. Cg3388 was named IhtR.
Collapse
|