1
|
Guo S, Jiao Z, Yan Z, Yan X, Deng X, Xiong W, Tao C, Liu H, Li R, Shen Q, Kowalchuk GA, Geisen S. Predatory protists reduce bacteria wilt disease incidence in tomato plants. Nat Commun 2024; 15:829. [PMID: 38280866 PMCID: PMC10821857 DOI: 10.1038/s41467-024-45150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Soil organisms are affected by the presence of predatory protists. However, it remains poorly understood how predatory protists can affect plant disease incidence and how fertilization regimes can affect these interactions. Here, we characterise the rhizosphere bacteria, fungi and protists over eleven growing seasons of tomato planting under three fertilization regimes, i.e conventional, organic and bioorganic, and with different bacterial wilt disease incidence levels. We find that predatory protists are negatively associated with disease incidence, especially two ciliophoran Colpoda OTUs, and that bioorganic fertilization enhances the abundance of predatory protists. In glasshouse experiments we find that the predatory protist Colpoda influences disease incidence by directly consuming pathogens and indirectly increasing the presence of pathogen-suppressive microorganisms in the soil. Together, we demonstrate that predatory protists reduce bacterial wilt disease incidence in tomato plants via direct and indirect reductions of pathogens. Our study provides insights on the role that predatory protists play in plant disease, which could be used to design more sustainable agricultural practices.
Collapse
Affiliation(s)
- Sai Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Zixuan Jiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhiguang Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xinyue Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
- Netherlands Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Guo S, Geisen S, Mo Y, Yan X, Huang R, Liu H, Gao Z, Tao C, Deng X, Xiong W, Shen Q, Kowalchuk GA, Li R. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. THE ISME JOURNAL 2024; 18:wrae180. [PMID: 39312488 PMCID: PMC11459550 DOI: 10.1093/ismejo/wrae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.
Collapse
Affiliation(s)
- Sai Guo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Yani Mo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xinyue Yan
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Ruoling Huang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Zhilei Gao
- Department of Research and Innovation, EUROstyle BV, Ecomunitypark 1, Oosterwolde 8431 SM, the Netherlands
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| |
Collapse
|
3
|
Tang X, Li Y, Jin R, Yin G, Hou L, Liu M, Ju F, Han P. Community pattern of potential phenanthrene (PHE) degrading bacteria in PHE contaminated soil revealed by 13C-DNA stable isotope probing. CHEMOSPHERE 2023; 344:140377. [PMID: 37806323 DOI: 10.1016/j.chemosphere.2023.140377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Quantification of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and identification of potential PAH degraders are essential for comprehending their environmental fate and conducting bioremediation. However, the microbial population responsible for the breakdown of phenanthrene (PHE) in polluted soil environments is frequently disregarded. In this study, via DNA-stable-isotope probing (DNA-SIP), we found that soil microbiota likely plays a crucial part in the PHE degradation. The PHE removal rates were 98% and 99%, in 13C-PHE and 12C-PHE microcosmic incubations, respectively. 13CO2 was produced along with the degradation of 13C-PHE. According to the analysis of 16S rRNA gene, there was a relatively higher presence of unidentified bacteria in the 'heavy' DNA fractions treated with 13C-PHE. Genus of Enterobacteriales, Acidobacteria, Alphaproteobacteria, Paenibacillaceae, Flavobacteriia, Chloroflexi, Cyanobacteria, Caldilineae, Latescibacteria, Armatimonadetes and Blastocatellia were succseesfully labeled during the degradation of 13C-PHE, indicating their capacity of utilizing PHE. Co-occurrence network of 13C-heavy fractions exhibited greater complexity compared with that of 12C-heavy fractions, revealling an enhancement of bacterial interspecies interactions. Collectivley, this study eluidated the soil microbes involed in the PHE degradation and offered fresh perspectives on the community pattern of potential PHE degrading bacteria.
Collapse
Affiliation(s)
- Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
4
|
Wang P, Liu J, Han S, Wang Y, Duan Y, Liu T, Hou L, Zhang Z, Li L, Lin Y. Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130045. [PMID: 36162306 DOI: 10.1016/j.jhazmat.2022.130045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an ecological niche close to the polymer, microorganisms in the plastisphere possess the advantage of degrading plastics. This study aims to investigate the bacterial community succession and obtain degrading bacteria in the plastisphere, as well as identify the most efficient degradation combination by co-culture of multiple strains. The findings demonstrate the alpha-diversity indices of the plastisphere bacterial community are significantly lower, and the community structure is regularly and significantly altered. With the time of culture, the plastisphere community composition alters regularly, and the hydrocarbon-degrading genera become the core members. Functional prediction of community reveals the potential for Xenobiotics Biodegradation and Metabolism of plastisphere, and the apparent variations detections of polyethylene mulching film (PMF) indicating the PMF degrading ability of plastisphere. Besides, three PMF-degrading bacterial strains, Rhodopseudomonas sp. P1 (P), Rhodanobacter sp. Rs (R) and Microbacterium sp. M1 (M), are screened for co-culture with PMF degrading strain Bacillus aryabhattai 5-3 (B). By considering bacterial growth, biofilm adhesion, and apparent degradation of different samples, RB (R. sp. Rs + B. aryabhattai 5-3) is ultimately selected as the best PMF degradation combination. This study provides a new possibility for plastisphere-related research from the perspective of mitigating plastic pollution on agricultural land.
Collapse
Affiliation(s)
- Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yifan Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tingting Liu
- College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
5
|
Kanukollu S, Remus R, Rücker AM, Buchen-Tschiskale C, Hoffmann M, Kolb S. Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species. ENVIRONMENTAL MICROBIOME 2022; 17:35. [PMID: 35794633 PMCID: PMC9258066 DOI: 10.1186/s40793-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Managed grasslands are global sources of atmospheric methanol, which is one of the most abundant volatile organic compounds in the atmosphere and promotes oxidative capacity for tropospheric and stratospheric ozone depletion. The phyllosphere is a favoured habitat of plant-colonizing methanol-utilizing bacteria. These bacteria also occur in the rhizosphere, but their relevance for methanol consumption and ecosystem fluxes is unclear. Methanol utilizers of the plant-associated microbiota are key for the mitigation of methanol emission through consumption. However, information about grassland plant microbiota members, their biodiversity and metabolic traits, and thus key actors in the global methanol budget is largely lacking. RESULTS We investigated the methanol utilization and consumption potentials of two common plant species (Festuca arundinacea and Taraxacum officinale) in a temperate grassland. The selected grassland exhibited methanol formation. The detection of 13C derived from 13C-methanol in 16S rRNA of the plant microbiota by stable isotope probing (SIP) revealed distinct methanol utilizer communities in the phyllosphere, roots and rhizosphere but not between plant host species. The phyllosphere was colonized by members of Gamma- and Betaproteobacteria. In the rhizosphere, 13C-labelled Bacteria were affiliated with Deltaproteobacteria, Gemmatimonadates, and Verrucomicrobiae. Less-abundant 13C-labelled Bacteria were affiliated with well-known methylotrophs of Alpha-, Gamma-, and Betaproteobacteria. Additional metagenome analyses of both plants were consistent with the SIP results and revealed Bacteria with methanol dehydrogenases (e.g., MxaF1 and XoxF1-5) of known but also unusual genera (i.e., Methylomirabilis, Methylooceanibacter, Gemmatimonas, Verminephrobacter). 14C-methanol tracing of alive plant material revealed divergent potential methanol consumption rates in both plant species but similarly high rates in the rhizosphere and phyllosphere. CONCLUSIONS Our study revealed the rhizosphere as an overlooked hotspot for methanol consumption in temperate grasslands. We further identified unusual new but potentially relevant methanol utilizers besides well-known methylotrophs in the phyllosphere and rhizosphere. We did not observe a plant host-specific methanol utilizer community. Our results suggest that our approach using quantitative SIP and metagenomics may be useful in future field studies to link gross methanol consumption rates with the rhizosphere and phyllosphere microbiome.
Collapse
Affiliation(s)
- Saranya Kanukollu
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Rainer Remus
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Caroline Buchen-Tschiskale
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Present Address: Johann Heinrich von Thünen-Institut, Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Mathias Hoffmann
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
Wang P, Song T, Bu J, Zhang Y, Liu J, Zhao J, Zhang T, Xi J, Xu J, Li L, Lin Y. Does bacterial community succession within the polyethylene mulching film plastisphere drive biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153884. [PMID: 35182639 DOI: 10.1016/j.scitotenv.2022.153884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Agricultural fields are severely contaminated with polyethylene mulching film (PMF) and this plastic in the natural environment can be colonized by biofilm-forming microorganisms that differ from those in the surrounding environment. In this study, we investigated the succession of the soil microbial communities in the PMF plastisphere using an artificial micro-ecosystem as well as exploring the degradation of PMF by plastisphere communities. The results indicated a significant and gradual decrease in the alpha diversity of the bacterial communities in the plastisphere and surrounding liquid. The community compositions in the plastisphere and surrounding liquid differed significantly from that in agricultural soil. Phyla and genera with the capacity to degrade polyethylene and hydrocarbon were enriched in the plastisphere, and some of these microorganisms were core members of the plastisphere community. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis detected increases in metabolism pathways for PMF plastisphere Xenobiotics Biodegradation and Metabolism, thereby suggesting the possibility of polyethylene degradation in the plastisphere. Observations by scanning electron microscopy (SEM) and confocal laser scanning microscopy demonstrated the formation of biofilms on the incubated PMF. SEM, atomic force microscopy, Fourier transform infrared spectroscopy and water contact angle detected significant changes in the surface microstructure, chemical composition and hydrophobicity change of the films, thereby suggesting that the plastisphere community degraded PMF during incubation. In conclusion, this study provides insights into the changes in agricultural soil microorganisms in the PMF plastisphere and the degradation of PMF.
Collapse
Affiliation(s)
- Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingshu Bu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianbo Zhao
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingkai Zhang
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Yang H, Jung H, Oh K, Jeon JM, Cho KS. Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions. J Microbiol Biotechnol 2021; 31:803-814. [PMID: 33879637 PMCID: PMC9705922 DOI: 10.4014/jmb.2103.03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40°C at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50°C) and mesophilic conditions (30°C). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40°C and 50°C, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the nonsummer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.
Collapse
Affiliation(s)
- Hyoju Yang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyungcheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-32772393 E-mail:
| |
Collapse
|
8
|
Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 2021; 37:56. [PMID: 33619649 DOI: 10.1007/s11274-021-03018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
Methane utilizing bacteria (MUB) are known to inhabit the flooded paddy ecosystem where they play an important role in regulating net methane (CH4) emission. We hypothesize that efficient MUB having plant growth-promoting (PGP) attributes can be used for developing novel bio-inoculant for flooded paddy ecosystem which might not only reduce methane emission but also assist in improving the plant growth parameters. Hence, soil and plant samples were collected from the phyllosphere, rhizosphere, and non-rhizosphere of five rice-growing regions of India at the tillering stage and investigated for efficient methane-oxidizing and PGP bacteria. Based on the monooxygenase activity and percent methane utilization on NMS medium with methane as the sole C source, 123 isolates were identified and grouped phylogenetically into 13 bacteria and 2 yeast genera. Among different regions, a significantly higher number of isolates were obtained from lowland flooded paddy ecosystems of Aduthurai (33.33%) followed by Ernakulum (20.33%) and Brahmaputra valley (19.51%) as compared to upland irrigated regions of Gaya (17.07%) and Varanasi (8.94%). Among sub-samples, a significantly higher number of isolates were found inhabiting the phyllosphere (58.54%) followed by non-rhizosphere (25.20%) and rhizosphere (15.45%). Significantly higher utilization of methane and PGP attributes were observed in 30 isolates belonging to genera Hyphomicrobium, Burkholderia, Methylobacterium, Paenibacillus, Pseudomonas, Rahnella, and Meyerozyma. M. oryzae MNL7 showed significantly better growth with 74.33% of CH4 utilization at the rate of 302.9 ± 5.58 and exhibited half-maximal growth rate, Ks of 1.92 ± 0.092 mg CH4 L-1. Besides the ability to utilize CH4, P. polymyxa MaAL70 possessed PGP attributes such as solubilization of P, K, and Zn, fixation of atmospheric N and production of indole acetic acid (IAA). Both these promising isolates can be explored in the future for developing novel biofertilizers for flooded paddies.
Collapse
|
9
|
Cheng HH, Liu CB, Lei YY, Chiu YC, Mangalindan J, Wu CH, Wu YJ, Whang LM. Biological treatment of DMSO-containing wastewater from semiconductor industry under aerobic and methanogenic conditions. CHEMOSPHERE 2019; 236:124291. [PMID: 31319306 DOI: 10.1016/j.chemosphere.2019.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated biological treatment of dimethyl sulfoxide (DMSO)-containing wastewater from semiconductor industry under aerobic and anaerobic conditions. DMSO concentration as higher as 1.5 g/L did not inhibit DMSO degradation efficiency in aerobic membrane bioreactor (MBR), while specific DMSO degradation rate at different initial DMSO-to-biomass (S0/X0) ratios from batch tests seemed to follow the Haldane-type kinetics. According to the microbial community analysis, Proteobacteria decreased from 88.2% to 26% as influent DMSO concentration increased, while Bacteroidetes, Parcubacteria, Saccharibacteria increased. Within the Bacteroidetes class, Flavobacterium and Laribacter genus significantly increased from less than 0.05%-26.8% and 13.4%, respectively, which might both be related to the DMS degradation. Hyphomicrobium and Thiobacillus, known as aerobic DMSO and DMS degraders, instead, decreased at higher DMSO conditions. Under methanogenic conditions, batch results implied DMSO concentrations higher than 3 g/L could be inhibitory, while DMSO and COD removal achieved 100% and 93%, respectively, using a pilot-scale anaerobic fluidized bed membrane bioreactor (AFMBR) with influent DMSO below 1.5 g/L. Results of terminal restriction fragment length polymorphism (TRFLP) analysis targeting on mcrA functional gene revealed that Methanomethylovorans sp. was dominant in AFMBR after 54 days of operation, indicating its importance on degrading DMS and mathanethiol (MT).
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Cheng-Bing Liu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yuan-Yuan Lei
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yi-Chu Chiu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Jasan Mangalindan
- Department of Chemical Engineering and Chemistry, Mapúa Institute of Technology, 658 Muralla St., Intramuros, Manila, 1002, Philippines
| | - Chin-Hwa Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan; Sustainable Environment Research Center (SERC), National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan; Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Tu X, Xu M, Li J, Li E, Feng R, Zhao G, Huang S, Guo J. Enhancement of using combined packing materials on the removal of mixed sulfur compounds in a biotrickling filter and analysis of microbial communities. BMC Biotechnol 2019; 19:52. [PMID: 31345193 PMCID: PMC6659214 DOI: 10.1186/s12896-019-0540-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background Packing materials is a critical design consideration when employing biological reactor to treat malodorous gases. The acidification of packing bed usually results in a significant drop in the removal efficiency. In the present study, a biotrickling filter (BTF2) packed with plastic balls in the upper layer and with lava rocks in the bottom layer, was proposed to mitigate the acidification. Results Results showed that using combined packing materials efficiently enhanced the removal performance of BTF2 when compared with BTF1, which was packed with sole lava rocks. Removal efficiencies of more than 92.5% on four sulfur compounds were achieved in BTF2. Average pH value in its bottom packing bed was about 4.86, significantly higher than that in BTF1 (2.85). Sulfate and elemental sulfur were observed to accumulate more in BTF1 than in BTF2. Analysis of principal coordinate analysis proved that structure of microbial communities in BTF2 changed less after the shutdown but more when the initial pH value was set at 5.5. Network analysis of significant co-occurrence patterns based on the correlations between microbial taxa revealed that BTF2 harbored more diverse microorganisms involving in the bio-oxidation of sulfur compounds and had more complex interactions between microbial species. Conclusions Results confirmed that using combined packing materials effectively improved conditions for the growth of microorganisms. The robustness of reactor against acidification, adverse temperature and gas supply shutdown was greatly enhanced. These provided a theoretical basis for using mixed packing materials to improve removal performance.
Collapse
Affiliation(s)
- Xiang Tu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Jianjun Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China. .,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China. .,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China.
| | - Enze Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Rongfang Feng
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Gang Zhao
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jun Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| |
Collapse
|
11
|
Cao HY, Wang P, Peng M, Shao X, Chen XL, Li CY. Crystal structure of the dimethylsulfide monooxygenase DmoA from Hyphomicrobium sulfonivorans. Acta Crystallogr F Struct Biol Commun 2018; 74:781-786. [PMID: 30511672 PMCID: PMC6277965 DOI: 10.1107/s2053230x18015844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
DmoA is a monooxygenase which uses dioxygen (O2) and reduced flavin mononucleotide (FMNH2) to catalyze the oxidation of dimethylsulfide (DMS). Although it has been characterized, the structure of DmoA remains unknown. Here, the crystal structure of DmoA was determined to a resolution of 2.28 Å and was compared with those of its homologues LadA and BdsA. The results showed that their overall structures are similar: they all share a conserved TIM-barrel fold which is composed of eight α-helices and eight β-strands. In addition, they all have five additional insertions. Detailed comparison showed that the structures have notable differences despite their high sequence similarity. The substrate-binding pocket of DmoA is smaller compared with those of LadA and BdsA.
Collapse
Affiliation(s)
- Hai-Yan Cao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Ming Peng
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xuan Shao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Chun-Yang Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
- Suzhou Institute of Shandong University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
12
|
Koch T, Dahl C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME JOURNAL 2018; 12:2479-2491. [PMID: 29930335 DOI: 10.1038/s41396-018-0209-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
Abstract
Dimethylsulfide (DMS) plays a globally significant role in carbon and sulfur cycling and impacts Earth's climate because its oxidation products serve as nuclei for cloud formation. While the initial steps of aerobic DMS degradation and the fate of its carbon atoms are reasonably well documented, oxidation of the contained sulfur is largely unexplored. Here, we identified a novel pathway of sulfur compound oxidation in the ubiquitously occurring DMS-degrader Hyphomicrobium denitrificans XT that links the oxidation of the volatile organosulfur compound with that of the inorganic sulfur compound thiosulfate. DMS is first transformed to methanethiol from which sulfide is released and fully oxidized to sulfate. Comparative proteomics indicated thiosulfate as an intermediate of this pathway and pointed at a heterodisulfide reductase (Hdr)-like system acting as a sulfur-oxidizing entity. Indeed, marker exchange mutagenesis of hdr-like genes disrupted the ability of H. denitrificans to metabolize DMS and also prevented formation of sulfate from thiosulfate provided as an additional electron source during chemoorganoheterotrophic growth. Complementation with the hdr-like genes under a constitutive promoter rescued the phenotype on thiosulfate as well as on DMS. The production of sulfate from an organosulfur precursor via the Hdr-like system is previously undocumented and provides a new shunt in the biogeochemical sulfur cycle. Furthermore, our findings fill a long-standing knowledge gap in microbial dissimilatory sulfur metabolism because the Hdr-like pathway is abundant not only in chemoheterotrophs, but also in a wide range of chemo- and photolithoautotrophic sulfur oxidizers acting as key players in global sulfur cycling.
Collapse
Affiliation(s)
- Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
13
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Li J, Luo C, Zhang D, Song M, Cai X, Jiang L, Zhang G. Autochthonous Bioaugmentation-Modified Bacterial Diversity of Phenanthrene Degraders in PAH-Contaminated Wastewater as Revealed by DNA-Stable Isotope Probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2934-2944. [PMID: 29378393 DOI: 10.1021/acs.est.7b05646] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To reveal the mechanisms of autochthonous bioaugmentation (ABA) in wastewater contaminated with polycyclic aromatic hydrocarbons (PAHs), DNA-stable-isotope-probing (SIP) was used in the present study with the addition of an autochthonous microorganism Acinetobacter tandoii LJ-5. We found LJ-5 inoculum produced a significant increase in phenanthrene (PHE) mineralization, but LJ-5 surprisingly did not participate in indigenous PHE degradation from the SIP results. The improvement of PHE biodegradation was not explained by the engagement of LJ-5 but attributed to the remarkably altered diversity of PHE degraders. Of the major PHE degraders present in ambient wastewater ( Rhodoplanes sp., Mycobacterium sp., Xanthomonadaceae sp. and Enterobacteriaceae sp.), only Mycobacterium sp. and Enterobacteriaceae sp. remained functional in the presence of strain LJ-5, but five new taxa Bacillus, Paenibacillus, Ammoniphilus, Sporosarcina, and Hyphomicrobium were favored. Rhodoplanes, Ammoniphilus, Sporosarcina, and Hyphomicrobium were directly linked to, for the first time, indigenous PHE biodegradation. Sequences of functional PAH-RHDα genes from heavy fractions further proved the change in PHE degraders by identifying distinct PAH-ring hydroxylating dioxygenases between ambient degradation and ABA. Our findings indicate a new mechanism of ABA, provide new insights into the diversity of PHE-degrading communities, and suggest ABA as a promising in situ bioremediation strategy for PAH-contaminated wastewater.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Mengke Song
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Xixi Cai
- College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou , 350002 , China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
15
|
Sun Y, Qiu J, Chen D, Ye J, Chen J. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:543-552. [PMID: 26623933 DOI: 10.1016/j.jhazmat.2015.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.
Collapse
Affiliation(s)
- Yiming Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiguo Qiu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dongzhi Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiexu Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianmeng Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
16
|
Chen X, Liang Z, An T, Li G. Comparative elimination of dimethyl disulfide by maifanite and ceramic-packed biotrickling filters and their response to microbial community. BIORESOURCE TECHNOLOGY 2016; 202:76-83. [PMID: 26702514 DOI: 10.1016/j.biortech.2015.11.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Unpleasant odor emissions have traditionally occupied an important role in environmental concern. In this paper, twin biotrickling filters (BTFs) packed with different packing materials, seeded with Bacillus cereus GIGAN2, were successfully constructed to purify gaseous dimethyl disulfide (DMDS). The maifanite-packed BTF showed superior biodegradation capability to the ceramic-packed counterpart in terms of removal efficiency and elimination capacity under similar conditions. At an empty bed residence time of 123 s, 100% of DMDS could be removed by maifanite-packed BTF when DMDS inlet concentration was below 0.41 g m(-3). To achieve same effect, the inlet concentration must be lower than 0.25 g m(-3) for ceramic-packed BTF. The bacterial communities analyses found higher relative abundance of GIGAN2 in the maifanite-packed BTF, suggesting that maifanite is more suitable for GIGAN2 immobilization and for subsequent DMDS removal. This work indicates maifanite is a promising packing material for real odorous gases purification.
Collapse
Affiliation(s)
- Xuequan Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhishu Liang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
17
|
Chen DZ, Sun YM, Han LM, Chen J, Ye JX, Chen JM. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:232-240. [PMID: 26476310 DOI: 10.1016/j.jhazmat.2015.09.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria-Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10-0.19 h(-1); this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S(0), SO4(2-), and CO2. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200-400 mg/m(3) PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m(3) isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.
Collapse
Affiliation(s)
- Dong-Zhi Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yi-Ming Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li-Mei Han
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jie-Xu Ye
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jian-Meng Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
18
|
Giri BS, Goswami M, Pandey R, Kim K. Kinetics and biofiltration of dimethyl sulfide emitted from P&P industry. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Giri BS, Kim KH, Pandey R, Cho J, Song H, Kim YS. Review of biotreatment techniques for volatile sulfur compounds with an emphasis on dimethyl sulfide. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Fukushima T, Whang LM, Lee YC, Putri DW, Chen PC, Wu YJ. Transcriptional responses of bacterial amoA gene to dimethyl sulfide inhibition in complex microbial communities. BIORESOURCE TECHNOLOGY 2014; 165:137-144. [PMID: 24666625 DOI: 10.1016/j.biortech.2014.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
This study presented an approach by combining the real-time reverse transcription polymerase chain reaction with the terminal restriction fragment length polymorphism (T-RFLP) to investigate transcriptional responses of ammonia-oxidizing bacteria (AOB) to dimethyl sulfide (DMS) inhibition. Batch experiments with added ammonium and DMS were conducted using three activated sludges and Nitrosomonas europaea, and the transcriptional responses of the amo subunit A (amoA) mRNA were evaluated. It was found that DMS inhibited ammonium oxidation and amoA mRNA expression in all batch experiments but the inhibition degree observed was different for different sludges examined. It is likely that the different inhibitory effects of DMS on ammonium oxidation and amoA mRNA expression stemmed from different dominant AOB populations in the sludges. The T-RFLP results for amoA mRNA suggested that inhibition of ammonium oxidation by DMS to Nm. europaea-like AOB with T-RF 219/270 is relatively minor compared to other AOB populations in the examined sludges, such as Nm. europaea-like AOB with T-RF 491/491.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| | - Ya-Ching Lee
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Dyah Wulandari Putri
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Po-Chun Chen
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| |
Collapse
|
21
|
Fukushima T, Whang LM, Chen PC, Putri DW, Chang MY, Wu YJ, Lee YC. Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp. BIORESOURCE TECHNOLOGY 2013; 141:131-137. [PMID: 23628318 DOI: 10.1016/j.biortech.2013.03.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
This study investigated the linkage between performance of two full-scale membrane bioreactor (MBR) systems treating thin-film transistor liquid crystal display (TFT-LCD) wastewater and the population dynamics of dimethylsulfoxide (DMSO)/dimethylsulfide (DMS) degrading bacteria. High DMSO degradation efficiencies were achieved in both MBRs, while the levels of nitrification inhibition due to DMS production from DMSO degradation were different in the two MBRs. The results of real-time PCR targeting on DMSO/DMS degrading populations, including Hyphomicrobium and Thiobacillus spp., indicated that a higher DMSO oxidation efficiency occurred at a higher Hyphomicrobium spp. abundance in the systems, suggesting that Hyphomicrobium spp. may be more important for complete DMSO oxidation to sulfate compared with Thiobacillus spp. Furthermore, Thiobacillus spp. was more abundant during poor nitrification, while Hyphomicrobium spp. was more abundant during good nitrification. It is suggested that microbial population of DMSO/DMS degrading bacteria is closely linking to both DMSO/DMS degradation efficiency and nitrification performance.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8542-8573. [PMID: 22746978 DOI: 10.1021/es203906c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Collapse
|