1
|
Abstract
Strains of the freshwater cyanobacterium Synechococcus elongatus were first isolated approximately 60 years ago, and PCC 7942 is well established as a model for photosynthesis, circadian biology, and biotechnology research. The recent isolation of UTEX 3055 and subsequent discoveries in biofilm and phototaxis phenotypes suggest that lab strains of S. elongatus are highly domesticated. We performed a comprehensive genome comparison among the available genomes of S. elongatus and sequenced two additional laboratory strains to trace the loss of native phenotypes from the standard lab strains and determine the genetic basis of useful phenotypes. The genome comparison analysis provides a pangenome description of S. elongatus, as well as correction of extensive errors in the published sequence for the type strain PCC 6301. The comparison of gene sets and single nucleotide polymorphisms (SNPs) among strains clarifies strain isolation histories and, together with large-scale genome differences, supports a hypothesis of laboratory domestication. Prophage genes in laboratory strains, but not UTEX 3055, affect pigmentation, while unique genes in UTEX 3055 are necessary for phototaxis. The genomic differences identified in this study include previously reported SNPs that are, in reality, sequencing errors, as well as SNPs and genome differences that have phenotypic consequences. One SNP in the circadian response regulator rpaA that has caused confusion is clarified here as belonging to an aberrant clone of PCC 7942, used for the published genome sequence, that has confounded the interpretation of circadian fitness research.
Collapse
|
2
|
Williams KM, Wang H, Paulsen MJ, Thakore AD, Rieck M, Lucian HJ, Grady F, Hironaka CE, Chien AJ, Farry JM, Shin HS, Jaatinen KJ, Eskandari A, Stapleton LM, Steele AN, Cohen JE, Woo YJ. Safety of photosynthetic Synechococcus elongatus for in vivo cyanobacteria-mammalian symbiotic therapeutics. Microb Biotechnol 2020; 13:1780-1792. [PMID: 32476224 PMCID: PMC7533327 DOI: 10.1111/1751-7915.13596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus (SE) has been shown to rescue ischaemic heart muscle after myocardial infarction by photosynthetic oxygen production. Here, we investigated SE toxicity and hypothesized that systemic SE exposure does not elicit a significant immune response in rats. Wistar rats intravenously received SE (n = 12), sterile saline (n = 12) or E. coli lipopolysaccharide (LPS, n = 4), and a subset (8 SE, 8 saline) received a repeat injection 4 weeks later. At baseline, 4 h, 24 h, 48 h, 8 days and 4 weeks after injection, clinical assessments, blood cultures, blood counts, lymphocyte phenotypes, liver function tests, proinflammatory cytokines and immunoglobulins were assessed. Across all metrics, SE rats responded comparably to saline controls, displaying no clinically significant immune response. As expected, LPS rats exhibited severe immunological responses. Systemic SE administration does not induce sepsis or toxicity in rats, thereby supporting the safety of cyanobacteria-mammalian symbiotic therapeutics using this organism.
Collapse
Affiliation(s)
- Kiah M. Williams
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Hanjay Wang
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Michael J. Paulsen
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Akshara D. Thakore
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Mary Rieck
- Beckman Center for Molecular and Genetic MedicineStanford UniversityStanfordCAUSA
| | - Haley J. Lucian
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Frederick Grady
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Camille E. Hironaka
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Athena J. Chien
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Justin M. Farry
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Hye Sook Shin
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Kevin J. Jaatinen
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Anahita Eskandari
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Lyndsay M. Stapleton
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Amanda N. Steele
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Jeffrey E. Cohen
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
| | - Y. Joseph Woo
- Department of Cardiothoracic SurgeryStanford University300 Pasteur Drive, Falk Cardiovascular Research BuildingStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCAUSA
| |
Collapse
|
3
|
Oyanedel D, Labreuche Y, Bruto M, Amraoui H, Robino E, Haffner P, Rubio T, Charrière GM, Le Roux F, Destoumieux-Garzón D. Vibrio splendidus O-antigen structure: a trade-off between virulence to oysters and resistance to grazers. Environ Microbiol 2020; 22:4264-4278. [PMID: 32219965 DOI: 10.1111/1462-2920.14996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 01/19/2023]
Abstract
A major debate in evolutionary biology is whether virulence is maintained as an adaptive trait and/or evolves to non-virulence. In the environment, virulence traits of non-obligatory parasites are subjected to diverse selective pressures and trade-offs. Here, we focus on a population of Vibrio splendidus that displays moderate virulence for oysters. A MARTX (Multifunctional-autoprocessing repeats-in-toxin) and a type-six secretion system (T6SS) were found to be necessary for virulence toward oysters, while a region (wbe) involved in O-antigen synthesis is necessary for resistance to predation against amoebae. Gene inactivation within the wbe region had major consequences on the O-antigen structure, conferring lower immunogenicity, competitive advantage and increased virulence in oyster experimental infections. Therefore, O-antigen structures that favour resistance to environmental predators result in an increased activation of the oyster immune system and a reduced virulence in that host. These trade-offs likely contribute to maintaining O-antigen diversity in the marine environment by favouring genomic plasticity of the wbe region. The results of this study indicate an evolution of V. splendidus towards moderate virulence as a compromise between fitness in the oyster as a host, and resistance to its predators in the environment.
Collapse
Affiliation(s)
- Daniel Oyanedel
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Hajar Amraoui
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Etienne Robino
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Philippe Haffner
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Tristan Rubio
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France.,Molecular Microbiology and Structural Biochemistry (UMR 5086). CNRS, University of Lyon, 69367, Lyon, France
| | - Guillaume M Charrière
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | | |
Collapse
|
4
|
Rahnamoun A, Kim K, Pedersen JA, Hernandez R. Ionic Environment Affects Bacterial Lipopolysaccharide Packing and Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3149-3158. [PMID: 32069057 DOI: 10.1021/acs.langmuir.9b03162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of lipopolysaccharides (LPS) with metal cations strongly affects the stability and function of the Gram-negative bacterial outer membrane. The sensitivity of deep rough (Re) LPS packing and function to the ionic environment, as affected by cation valency and ionic radius, has been determined using molecular dynamics simulations and Langmuir balance experiments. The degree of LPS aggregation within the LPS models in the presence of different cations is assessed by measuring the effective mean molecular area (Âm) of each LPS molecule projected onto the interfacial plane at the end of the equilibration. These results are compared to the LPS mean molecular area from experimental measurements in which the LPS monolayers are assembled at the air-water interface using a Langmuir film balance. We found that packing of the LPS arrays is sensitive to the ionic radius and ion valency of the cations present in solution during LPS array packing. Using enhanced sampling of the free energy for the intercalation of oligo(allylamine HCl) (OAH) into deep rough Salmonella enterica LPS bilayers, we obtained the affinity of the core section of LPS to OAH as a function of the nature of the metal cations present in solution. We found that packing of the solvated LPS bilayer models is sensitive to ionic radius and ion valency of the neutralizing cations. This further suggests that ion bridging and steric barriers rather than charge shielding are important factors in mitigating ligand intercalation under conditions with low ionic concentrations.
Collapse
Affiliation(s)
- Ali Rahnamoun
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kyoungtea Kim
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel A Pedersen
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Departments of Soil Science, Chemistry, Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 2018; 36:430-442. [DOI: 10.1016/j.biotechadv.2018.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
|
6
|
Zhu Z, Luan G, Tan X, Zhang H, Lu X. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:93. [PMID: 28416967 PMCID: PMC5391583 DOI: 10.1186/s13068-017-0765-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. RESULTS The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus, which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. CONCLUSIONS In this work, a novel product-consuming biocontamination pattern in cyanobacteria cultivations, causing devastated ethanol photosynthetic production, was identified and characterized. Physiological analysis of the essential ethanol-consuming contaminant directed the design and application of a pH-rising strategy, which effectively and selectively controlled the contamination and rescued ethanol photosynthetic production. Our work demonstrated the importance of reliable contamination control systems and strategies for large scale outdoor cultivations of cyanobacteria, and provided an inspiring paradigm for targeting effective solutions.
Collapse
Affiliation(s)
- Zhi Zhu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Xiaoming Tan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Haocui Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| |
Collapse
|
7
|
Parnasa R, Nagar E, Sendersky E, Reich Z, Simkovsky R, Golden S, Schwarz R. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci Rep 2016; 6:32209. [PMID: 27558743 PMCID: PMC4997328 DOI: 10.1038/srep32209] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022] Open
Abstract
Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms.
Collapse
Affiliation(s)
- Rami Parnasa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Elad Nagar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|