1
|
Kubik BC, Holden JF. Non-thermodynamic factors affect competition between thermophilic chemolithoautotrophs from deep-sea hydrothermal vents. Appl Environ Microbiol 2024; 90:e0029224. [PMID: 39012100 PMCID: PMC11337833 DOI: 10.1128/aem.00292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.
Collapse
Affiliation(s)
- Briana C. Kubik
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Wray AC, Downey AR, Nodal AA, Park KK, Gorman-Lewis D. Bioenergetic characterization of hyperthermophilic archaean Methanocaldococcus sp. FS406-22. Extremophiles 2024; 28:32. [PMID: 39023751 DOI: 10.1007/s00792-024-01349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 ℃) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.
Collapse
Affiliation(s)
- Addien C Wray
- Earth and Space Sciences, University of Washington, Seattle, WA, USA.
| | - Autum R Downey
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Andrea A Nodal
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Katherine K Park
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Drew Gorman-Lewis
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Buessecker S, Chadwick GL, Quan ME, Hedlund BP, Dodsworth JA, Dekas AE. Mcr-dependent methanogenesis in Archaeoglobaceae enriched from a terrestrial hot spring. THE ISME JOURNAL 2023; 17:1649-1659. [PMID: 37452096 PMCID: PMC10504316 DOI: 10.1038/s41396-023-01472-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The preeminent source of biological methane on Earth is methyl coenzyme M reductase (Mcr)-dependent archaeal methanogenesis. A growing body of evidence suggests a diversity of archaea possess Mcr, although experimental validation of hypothesized methane metabolisms has been missing. Here, we provide evidence of a functional Mcr-based methanogenesis pathway in a novel member of the family Archaeoglobaceae, designated Methanoglobus nevadensis, which we enriched from a terrestrial hot spring on the polysaccharide xyloglucan. Our incubation assays demonstrate methane production that is highly sensitive to the Mcr inhibitor bromoethanesulfonate, stimulated by xyloglucan and xyloglucan-derived sugars, concomitant with the consumption of molecular hydrogen, and causing a deuterium fractionation in methane characteristic of hydrogenotrophic and methylotrophic methanogens. Combined with the recovery and analysis of a high-quality M. nevadensis metagenome-assembled genome encoding a divergent Mcr and diverse potential electron and carbon transfer pathways, our observations suggest methanogenesis in M. nevadensis occurs via Mcr and is fueled by the consumption of cross-fed byproducts of xyloglucan fermentation mediated by other community members. Phylogenetic analysis shows close affiliation of the M. nevadensis Mcr with those from Korarchaeota, Nezhaarchaeota, Verstraetearchaeota, and other Archaeoglobales that are divergent from well-characterized Mcr. We propose these archaea likely also use functional Mcr complexes to generate methane on the basis of our experimental validation in M. nevadensis. Thus, divergent Mcr-encoding archaea may be underestimated sources of biological methane in terrestrial and marine hydrothermal environments.
Collapse
Affiliation(s)
- Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| | - Grayson L Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Melanie E Quan
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Payne D, Spietz RL, Newell DL, Dijkstra P, Boyd ES. Influence of sulfide on diazotrophic growth of the methanogen Methanococcus maripaludis and its implications for the origin of nitrogenase. Commun Biol 2023; 6:799. [PMID: 37524775 PMCID: PMC10390477 DOI: 10.1038/s42003-023-05163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Methanogens inhabit euxinic (sulfide-rich) or ferruginous (iron-rich) environments that promote the precipitation of transition metals as metal sulfides, such as pyrite, reducing metal or sulfur availability. Such environments have been common throughout Earth's history raising the question as to how anaerobes obtain(ed) these elements for the synthesis of enzyme cofactors. Here, we show a methanogen can synthesize molybdenum nitrogenase metallocofactors from pyrite as the source of iron and sulfur, enabling nitrogen fixation. Pyrite-grown, nitrogen-fixing cells grow faster and require 25-fold less molybdenum than cells grown under euxinic conditions. Growth yields are 3 to 8 times higher in cultures grown under ferruginous relative to euxinic conditions. Physiological, transcriptomic, and geochemical data indicate these observations are due to sulfide-promoted metal limitation, in particular molybdenum. These findings suggest that molybdenum nitrogenase may have originated in a ferruginous environment that titrated sulfide to form pyrite, facilitating the availability of sufficient iron, sulfur, and molybdenum for cofactor biosynthesis.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Dennis L Newell
- Department of Geosciences, Utah State University, Logan, UT, 84322, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
5
|
Moon J, Schubert A, Waschinger LM, Müller V. Reprogramming the metabolism of an acetogenic bacterium to homoformatogenesis. THE ISME JOURNAL 2023:10.1038/s41396-023-01411-2. [PMID: 37061584 DOI: 10.1038/s41396-023-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Methyl groups are abundant in anoxic environments and their utilization as carbon and energy sources by microorganisms involves oxidation of the methyl groups to CO2, followed by transfer of the electrons to an acceptor. In acetogenic bacteria, the electron acceptor is CO2 that is reduced to enzyme bound carbon monoxide, the precursor of the carboxyl group in acetate. Here, we describe the generation of a mutant of the acetogen Acetobacterium woodii in which the last step in methyl group oxidation, formate oxidation to CO2 catalyzed by the HDCR enzyme, has been genetically deleted. The mutant grew on glycine betaine as methyl group donor, and in contrast to the wild type, formed formate alongside acetate, in a 1:2 ratio, demonstrating that methyl group oxidation stopped at the level of formate and reduced electron carriers were reoxidized by CO2 reduction to acetate. In the presence of the alternative electron acceptor caffeate, CO2 was no longer reduced to acetate, formate was the only product and all the carbon went to formate. Apparently, acetogenesis was not required to sustain formatogenic growth. This is the first demonstration of a genetic reprogramming of an acetogen into a formatogen that grows by homoformatogenesis from methyl groups. Formate production from methyl groups is not only of biotechnological interest but also for the mechanism of electron transfer in syntrophic interactions in anoxic environments.
Collapse
Affiliation(s)
- Jimyung Moon
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Anja Schubert
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Lara M Waschinger
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
6
|
Stevens KM, Warnecke T. Histone variants in archaea - An undiscovered country. Semin Cell Dev Biol 2023; 135:50-58. [PMID: 35221208 DOI: 10.1016/j.semcdb.2022.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 12/23/2022]
Abstract
Exchanging core histones in the nucleosome for paralogous variants can have important functional ramifications. Many of these variants, and their physiological roles, have been characterized in exquisite detail in model eukaryotes, including humans. In comparison, our knowledge of histone biology in archaea remains rudimentary. This is true in particular for our knowledge of histone variants. Many archaea encode several histone genes that differ in sequence, but do these paralogs make distinct, adaptive contributions to genome organization and regulation in a manner comparable to eukaryotes? Below, we review what we know about histone variants in archaea at the level of structure, regulation, and evolution. In all areas, our knowledge pales when compared to the wealth of insight that has been gathered for eukaryotes. Recent findings, however, provide tantalizing glimpses into a rich and largely undiscovered country that is at times familiar and eukaryote-like and at times strange and uniquely archaeal. We sketch a preliminary roadmap for further exploration of this country; an undertaking that may ultimately shed light not only on chromatin biology in archaea but also on the origin of histone-based chromatin in eukaryotes.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
8
|
Gropp J, Jin Q, Halevy I. Controls on the isotopic composition of microbial methane. SCIENCE ADVANCES 2022; 8:eabm5713. [PMID: 35385305 PMCID: PMC8985922 DOI: 10.1126/sciadv.abm5713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Microbial methane production (methanogenesis) is responsible for more than half of the annual emissions of this major greenhouse gas to the atmosphere. Although the stable isotopic composition of methane is often used to characterize its sources and sinks, strictly empirical descriptions of the isotopic signature of methanogenesis currently limit these attempts. We developed a metabolic-isotopic model of methanogenesis by carbon dioxide reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell's environment. We mechanistically explain multiple isotopic patterns in laboratory and natural settings and show that these patterns constrain the in situ energetics of methanogenesis. Combining our model with data from environments in which methanogenic activity is energy-limited, we provide predictions for the biomass-specific methanogenesis rates and the associated isotopic effects.
Collapse
Affiliation(s)
- Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Barnhart EP, Ruppert LF, Hiebert R, Smith HJ, Schweitzer HD, Clark AC, Weeks EP, Orem WH, Varonka MS, Platt G, Shelton JL, Davis KJ, Hyatt RJ, McIntosh JC, Ashley K, Ono S, Martini AM, Hackley KC, Gerlach R, Spangler L, Phillips AJ, Barry M, Cunningham AB, Fields MW. In Situ Enhancement and Isotopic Labeling of Biogenic Coalbed Methane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3225-3233. [PMID: 35142487 DOI: 10.1021/acs.est.1c05979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.
Collapse
Affiliation(s)
- Elliott P Barnhart
- U.S. Geological Survey, Helena, Montana 59601, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | | | - Randy Hiebert
- Biosqueeze Inc., Butte, Montana 59701, United States
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Arthur C Clark
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Edwin P Weeks
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - William H Orem
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | | | - George Platt
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Jenna L Shelton
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Katherine J Davis
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | | | - Jennifer C McIntosh
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Kilian Ashley
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna M Martini
- Geology Department, Amherst College, Amherst, Massachusetts 01002, United States
| | - Keith C Hackley
- Isotech/Stratum Reservoir, Champaign, Illinois 61821, United States
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
- Isotech/Stratum Reservoir, Champaign, Illinois 61821, United States
| | - Lee Spangler
- Energy Research Institute, Montana State University, Bozeman, Montana 59717, United States
| | - Adrienne J Phillips
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
- Isotech/Stratum Reservoir, Champaign, Illinois 61821, United States
| | - Mark Barry
- Pro-Oceanus Systems Inc., Bridgewater, Nova Scotia B4V 1N1, Canada
| | - Alfred B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
10
|
Garcia AK, Cavanaugh CM, Kacar B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. THE ISME JOURNAL 2021; 15:2183-2194. [PMID: 33846565 PMCID: PMC8319343 DOI: 10.1038/s41396-021-00971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth's atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Colleen M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- Lunar and Planetary Laboratory and Steward Observatory, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
12
|
Luxem KE, Leavitt WD, Zhang X. Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources. Appl Environ Microbiol 2020; 86:e00849-20. [PMID: 32709722 PMCID: PMC7499036 DOI: 10.1128/aem.00849-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO2) into the potent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen (2H/1H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (13αCO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (2αH2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2αH2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2H, and that 2αH2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles.IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.
Collapse
Affiliation(s)
- Katja E Luxem
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
13
|
Stewart LC, Algar CK, Fortunato CS, Larson BI, Vallino JJ, Huber JA, Butterfield DA, Holden JF. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. THE ISME JOURNAL 2019; 13:1711-1721. [PMID: 30842565 PMCID: PMC6776001 DOI: 10.1038/s41396-019-0382-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
The size and biogeochemical impact of the subseafloor biosphere in oceanic crust remain largely unknown due to sampling limitations. We used reactive transport modeling to estimate the size of the subseafloor methanogen population, volume of crust occupied, fluid residence time, and nature of the subsurface mixing zone for two low-temperature hydrothermal vents at Axial Seamount. Monod CH4 production kinetics based on chemostat H2 availability and batch-culture Arrhenius growth kinetics for the hyperthermophile Methanocaldococcus jannaschii and thermophile Methanothermococcus thermolithotrophicus were used to develop and parameterize a reactive transport model, which was constrained by field measurements of H2, CH4, and metagenome methanogen concentration estimates in 20-40 °C hydrothermal fluids. Model results showed that hyperthermophilic methanogens dominate in systems where a narrow flow path geometry is maintained, while thermophilic methanogens dominate in systems where the flow geometry expands. At Axial Seamount, the residence time of fluid below the surface was 29-33 h. Only 1011 methanogenic cells occupying 1.8-18 m3 of ocean crust per m2 of vent seafloor area were needed to produce the observed CH4 anomalies. We show that variations in local geology at diffuse vents can create fluid flow paths that are stable over space and time, harboring persistent and distinct microbial communities.
Collapse
Affiliation(s)
- Lucy C Stewart
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- GNS Science, Wellington, 5010, New Zealand
| | | | | | - Benjamin I Larson
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - Joseph J Vallino
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David A Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|