1
|
Zaidan N, Wang C, Chen Z, Lieske JC, Milliner D, Seide B, Ho M, Li H, Ruggles KV, Modersitzki F, Goldfarb DS, Blaser M, Nazzal L. Multiomics Assessment of the Gut Microbiome in Rare Hyperoxaluric Conditions. Kidney Int Rep 2024; 9:1836-1848. [PMID: 38899198 PMCID: PMC11184406 DOI: 10.1016/j.ekir.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Hyperoxaluria is a risk factor for kidney stone formation and chronic kidney disease progression. The microbiome is an important protective factor against oxalate accumulation through the activity of its oxalate-degrading enzymes (ODEs). In this cross-sectional study, we leverage multiomics to characterize the microbial community of participants with primary and enteric hyperoxaluria, as well as idiopathic calcium oxalate kidney stone (CKS) formers, focusing on the relationship between oxalate degrading functions of the microbiome. Methods Patients diagnosed with type 1 primary hyperoxaluria (PH), enteric hyperoxaluria (EH), and CKS were screened for inclusion in the study. Participants completed a food frequency questionnaire recording their dietary oxalate content while fecal oxalate levels were ascertained. DNA and RNA were extracted from stool samples and sequenced. Metagenomic (MTG) and metatranscriptomic (MTT) data were processed through our bioinformatics pipelines, and microbiome diversity, differential abundance, and networks were subject to statistical analysis in relationship with oxalate levels. Results A total of 38 subjects were recruited, including 13 healthy participants, 12 patients with recurrent CKS, 8 with PH, and 5 with EH. Urinary and fecal oxalate were significantly higher in the PH and the EH population compared to healthy controls. At the community level, alpha-diversity and beta-diversity indices were similar across all populations. The respective contributions of single bacterial species to the total oxalate degradative potential were similar in healthy and PH subjects. MTT-based network analysis identified the most interactive bacterial network in patients with PH. Patients with EH had a decreased abundance of multiple major oxalate degraders. Conclusion The composition and inferred activity of oxalate-degrading microbiota were differentially associated with host clinical conditions. Identifying these changes improves our understanding of the relationships between dietary constituents, microbiota, and oxalate homeostasis, and suggests new therapeutic approaches protecting against hyperoxaluria.
Collapse
Affiliation(s)
- Nadim Zaidan
- Department of Medicine, Division of Nephrology, NYU Langone Medical Center, New York, New York, USA
| | - Chan Wang
- Department of Population Health, New York University School of Medicine, NYU Langone Health, New York, New York, USA
| | - Ze Chen
- Department of Population Health, New York University School of Medicine, NYU Langone Health, New York, New York, USA
| | - John C. Lieske
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dawn Milliner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Barbara Seide
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Melody Ho
- Department of Medicine, Division of Nephrology, NYU Langone Medical Center, New York, New York, USA
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, NYU Langone Health, New York, New York, USA
| | - Kelly V. Ruggles
- Department of Medicine, Division of Precision Medicine, New York University School of Medicine, NYU Langone Health, New York, New York, USA
| | - Frank Modersitzki
- Department of Medicine, Division of Nephrology, NYU Langone Medical Center, New York, New York, USA
| | - David S. Goldfarb
- Department of Medicine, Division of Nephrology, NYU Langone Medical Center, New York, New York, USA
| | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Lama Nazzal
- Department of Medicine, Division of Nephrology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Eto M, Yahara T, Kuroiwa A, Shioya K, Flores GE, Hamamura N. Dynamics of rumen microbiome in sika deer (Cervus nippon yakushimae) from unique subtropical ecosystem in Yakushima Island, Japan. Sci Rep 2022; 12:21623. [PMID: 36517661 PMCID: PMC9751099 DOI: 10.1038/s41598-022-26050-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Yaku sika deer (Cervus nippon yakushimae) are endemic to Yakushima Island, whose landscape covered with primary evergreen forest is recognized as a World Heritage Site. In this study, the rumen bacterial microbiota (RBM) of wild Yaku sika was characterized using high throughput sequencing of bacterial 16S rRNA genes combined with targeted cultivation and functional analyses. Comparative analyses of RBM datasets from other ruminant animals revealed distinct community structure among domesticated and wild ruminants. Wild Yaku sika RBM exhibited higher species richness than other sika deer (i.e. wild Ezo sika and domesticated sika deer), likely reflecting their dietary variations associated with unique ecosystem in the island. The Yaku sika RBM of high deer population density samples exhibited higher diversity and contained higher proportion of Firmicutes than those of lower density samples. Moreover, the highest abundance of tannase gene were observed in individuals from the highest population density area, consistent with the previous observation that Yaku sika in the high density areas expanded their feed to include tannin-rich unpalatable plants. This study indicated that RBM of unique wild Yaku sika contribute to the flexibility of dietary shift and thus maintaining nutritional status of Yaku sika under high density conditions.
Collapse
Affiliation(s)
- Misaki Eto
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| | - Tetsukazu Yahara
- grid.177174.30000 0001 2242 4849Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| | - Arika Kuroiwa
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| | - Katsunori Shioya
- Kyushu Natural Environmental Research Co. Ltd, 1159-5 Haramizu Kikuyoumachi, Kikuchi-Gun, Kumamoto, 869-1102 Japan
| | - Gilberto E. Flores
- grid.253563.40000 0001 0657 9381Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330 USA
| | - Natsuko Hamamura
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan ,grid.177174.30000 0001 2242 4849Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| |
Collapse
|
3
|
Dearing MD, Kaltenpoth M, Gershenzon J. Demonstrating the role of symbionts in mediating detoxification in herbivores. Symbiosis 2022; 87:59-66. [PMID: 36164313 PMCID: PMC9499882 DOI: 10.1007/s13199-022-00863-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
AbstractPlant toxins constitute an effective defense against herbivorous animals. However, many herbivores have evolved adaptations to cope with dietary toxins through detoxification, excretion, sequestration, target site insensitivity and/or via behavioral avoidance. While these adaptations are often directly encoded in herbivore genomes, evidence is accumulating that microbial symbionts can reduce the dose of plant toxins by metabolizing or sequestering them prior to absorption by the herbivore. Here, we describe a few well-studied examples to assess such symbiont-mediated detoxification and showcase different approaches that have been used for their analyses. These include: (i) a host phenotypic route in which the symbiotic association is manipulated to reveal host fitness costs upon toxin exposure in the presence/absence of detoxifying symbionts, including function restoration after symbiont re-infection, (ii) a molecular microbiological approach that focuses on the identification and characterization of microbial genes involved in plant toxin metabolism, and (iii) an analytical chemical route that aims to characterize the conversion of the toxin to less harmful metabolites in vivo and link conversion to the activities of a detoxifying symbiont. The advantages and challenges of each approach are discussed, and it is argued that a multi-pronged strategy combining phenotypic, molecular, and chemical evidence is needed to unambiguously demonstrate microbial contributions to plant toxin reduction and the importance of these processes for host fitness. Given the interdisciplinary nature of the topic, we aim to provide a guideline to researchers interested in symbiont-mediated detoxification and hope to encourage future studies that contribute to a more comprehensive and mechanistic understanding of detoxification in herbivores and their symbionts.
Collapse
Affiliation(s)
- M. Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
4
|
Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats. Probiotics Antimicrob Proteins 2022; 14:854-872. [PMID: 35699895 DOI: 10.1007/s12602-022-09958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.
Collapse
|
5
|
Weinstein SB, Martínez-Mota R, Stapleton TE, Klure DM, Greenhalgh R, Orr TJ, Dale C, Kohl KD, Dearing MD. Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats ( Neotoma spp.). Proc Natl Acad Sci U S A 2021; 118:e2108787118. [PMID: 34799446 PMCID: PMC8617456 DOI: 10.1073/pnas.2108787118] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma, we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
Collapse
Affiliation(s)
- Sara B Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112;
| | - Rodolfo Martínez-Mota
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Veracruz, 91000, Mexico
| | - Tess E Stapleton
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Dylan M Klure
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM 88003
| | - Colin Dale
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15217
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
6
|
Penniston KL. Is It Time to Retire the Low-Oxalate Diet? Yes. J Endourol 2021; 35:1431-1434. [PMID: 34520254 DOI: 10.1089/end.2021.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,UW Health University Hospital and Clinics, Clinical Nutrition Services, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. The microbiome extends host evolutionary potential. Nat Commun 2021; 12:5141. [PMID: 34446709 PMCID: PMC8390463 DOI: 10.1038/s41467-021-25315-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The microbiome shapes many host traits, yet the biology of microbiomes challenges traditional evolutionary models. Here, we illustrate how integrating the microbiome into quantitative genetics can help untangle complexities of host-microbiome evolution. We describe two general ways in which the microbiome may affect host evolutionary potential: by shifting the mean host phenotype and by changing the variance in host phenotype in the population. We synthesize the literature across diverse taxa and discuss how these scenarios could shape the host response to selection. We conclude by outlining key avenues of research to improve our understanding of the complex interplay between hosts and microbiomes.
Collapse
Affiliation(s)
- Lucas P. Henry
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Marjolein Bruijning
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Simon K. G. Forsberg
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.8993.b0000 0004 1936 9457Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julien F. Ayroles
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| |
Collapse
|
8
|
Garland V, Herlitz L, Regunathan-Shenk R. Diet-induced oxalate nephropathy from excessive nut and seed consumption. BMJ Case Rep 2020; 13:13/11/e237212. [PMID: 33257378 PMCID: PMC7705561 DOI: 10.1136/bcr-2020-237212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oxalate is a metabolite consumed in nuts, beans and leaves, and excreted in urine. Oxalosis can cause nephropathy. We describe a rare case of a high-oxalate diet intended for irritable bowel syndrome (IBS) treatment causing oxalate nephropathy. A 59-year-old woman with a history of controlled hypertension presented with creatinine 1.8 mg/dL, increased from baseline 1.3 mg/dL. She denied recent illness, urinary stones, medication adjustments, herbal supplements and non-steroidal anti-inflammatory drugs use. Diet included six tablespoons of chia seeds and five handfuls of almonds daily to manage IBS symptoms. Her electrolytes, urinalysis and renal ultrasound were unremarkable. Her 24-hour urine output revealed increased oxalate and low citrate. Renal biopsy showed glomerulosclerosis, fibrosis and calcium oxalate deposition. She switched to a low-oxalate diet, with improvement in laboratory markers. An earlier dietary history could have raised concern for oxalosis prior to renal biopsy. Providers should be trained to identify at-risk patients and provide appropriate dietary counselling.
Collapse
Affiliation(s)
- Victoria Garland
- Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Leal Herlitz
- Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Renu Regunathan-Shenk
- Division of Kidney Disease and Hypertension, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
9
|
Wang C, Li Y, MaiTiSaiYiDi T, Yang H, Yang K. Effect of dietary gossypol supplement on fermentation characteristics and bacterial diversity in the rumen of sheep. PLoS One 2020; 15:e0234378. [PMID: 32520963 PMCID: PMC7286523 DOI: 10.1371/journal.pone.0234378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
The tolerance of ruminants to gossypol, a natural phenolic compound derived from the cotton plant, is greater than that of monogastric animals, partially because of the gossypol-degrading bacteria in the rumen of the ruminants. In this study, we aimed to examine the effect of gossypol supplementation on fermentation characteristics, bacterial α-diversity and community structure in the rumen fluid of sheep to analyse the change of bacterial in response to gossypol. 8 sheep with permanent fistula were randomly divided into 2 groups, a control and gossypol acetate supplementation groups. Sheep in the latter group were supplemented with gossypol acetate at the levels of 600 mg and 1,200 mg/animal per day during the first (S1, days 1 to 27) and subsequent (S2, days 28 to 47) stages. Gossypol supplementation significantly increased the molar proportion of acetate, and decreased the molar proportion of isobutyric acid, butyric acid, and isovaleric acid in the rumen fluid. Gossypol supplementation have no significant effect on bacterial diversity in the rumen fluid. At the phylum level, gossypol had no effect on bacterial community. At the genus level, gossypol supplementation significantly increased the relative abundance of Treponema_2. However, there were no significant differences in the relative abundance of dominant bacterial genera. In conclusion, gossypol supplementation had an effect on molar proportion of acetate, isobutyric acid, butyric acid, and isovaleric acid, but had no significant effect on the bacterial diversity and relative abundance of dominant bacteria in rumen fluid of sheep.
Collapse
Affiliation(s)
- CaiDie Wang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, The People’s Republic of China
| | - YuQi Li
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, The People’s Republic of China
| | - TunNiSa MaiTiSaiYiDi
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, The People’s Republic of China
| | - HongJian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, The People’s Republic of China
| | - KaiLun Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, The People’s Republic of China
- * E-mail:
| |
Collapse
|
10
|
Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020; 12:nu12020548. [PMID: 32093202 PMCID: PMC7071363 DOI: 10.3390/nu12020548] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that patients with kidney stone disease, and particularly calcium oxalate nephrolithiasis, exhibit dysbiosis in their fecal and urinary microbiota compared with controls. The alterations of microbiota go far beyond the simple presence and representation of Oxalobacter formigenes, a well-known symbiont exhibiting a marked capacity of degrading dietary oxalate and stimulating oxalate secretion by the gut mucosa. Thus, alterations of the intestinal microbiota may be involved in the pathophysiology of calcium kidney stones. However, the role of nutrition in this gut-kidney axis is still unknown, even if nutritional imbalances, such as poor hydration, high salt, and animal protein intake and reduced fruit and vegetable intake, are well-known risk factors for kidney stones. In this narrative review, we provide an overview of the gut-kidney axis in nephrolithiasis from a nutritional perspective, summarizing the evidence supporting the role of nutrition in the modulation of microbiota composition, and their relevance for the modulation of lithogenic risk.
Collapse
|
11
|
Martínez-Mota R, Kohl KD, Orr TJ, Denise Dearing M. Natural diets promote retention of the native gut microbiota in captive rodents. THE ISME JOURNAL 2020; 14:67-78. [PMID: 31495829 PMCID: PMC6908644 DOI: 10.1038/s41396-019-0497-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 01/18/2023]
Abstract
Wild animals entering captivity experience radical lifestyle changes resulting in microbiome alterations. However, little is known about the factors that drive microbial community shifts in captivity, and what actions could mitigate microbial changes. Using white-throated woodrats (Neotoma albigula), we tested whether offering natural diets in captivity facilitates retention of native microbial communities of captive animals. Wild-caught woodrats were brought to laboratory conditions. Woodrats received either a natural diet of Opuntia cactus or an artificial diet of commercial chow over three weeks. Microbial inventories from woodrat feces at the time of capture and in captivity were generated using Illumina 16S rRNA sequencing. We found that providing woodrats with wild-natural diets significantly mitigated alterations in their microbiota, promoting a 90% retention of native microbial communities across the experiment. In contrast, the artificial diet significantly impacted microbial structure to the extent that 38% of the natural microflora was lost. Core bacteria including Bifidobacterium and Allobaculum were lost, and abundances of microbes related to oxalate degradation decreased in individuals fed artificial but not natural diets. These results highlight the importance of supplementing captive diets with natural foods to maintain native microbiomes of animals kept in artificial conditions for scientific or conservation purposes.
Collapse
Affiliation(s)
- Rodolfo Martínez-Mota
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Teri J Orr
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Kohl KD, Oakeson KF, Orr TJ, Miller AW, Forbey JS, Phillips CD, Dale C, Weiss RB, Dearing MD. Metagenomic sequencing provides insights into microbial detoxification in the guts of small mammalian herbivores (Neotoma spp.). FEMS Microbiol Ecol 2019; 94:5092587. [PMID: 30202961 DOI: 10.1093/femsec/fiy184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial detoxification of plant toxins influences the use of plants as food sources by herbivores. Stephen's woodrats (Neotoma stephensi) specialize on juniper, which is defended by oxalate, phenolics and monoterpenes, while closely related N. albigula specialize on cactus, which only contains oxalate. Woodrats maintain two gut chambers harboring dense microbial communities: a foregut chamber proximal to the major site of toxin absorption, and a cecal chamber in their hindgut. We performed several experiments to investigate the location and nature of microbial detoxification in the woodrat gut. First, we measured toxin concentrations across gut chambers of N. stephensi. Compared to food material, oxalate concentrations were immediately lower in the foregut, while concentrations of terpenes remained high in the foregut, and were lowest in the cecal chamber. We conducted metagenomic sequencing of the foregut chambers of both woodrat species and cecal chambers of N. stephensi to compare microbial functions. We found that most genes associated with detoxification were more abundant in the cecal chambers of N. stephensi. However, some genes associated with degradation of oxalate and phenolic compounds were more abundant in the foregut chambers. Thus, microbial detoxification may take place in various chambers depending on the class of chemical compound.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA, 15260, USA.,Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Teri J Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Aaron W Miller
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.,Departments of Urology and Immunology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jennifer Sorensen Forbey
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725 USA
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
13
|
Sun G, Zhang H, Wei Q, Zhao C, Yang X, Wu X, Xia T, Liu G, Zhang L, Gao Y, Sha W, Li Y. Comparative Analyses of Fecal Microbiota in European Mouflon ( Ovis orientalis musimon) and Blue Sheep ( Pseudois nayaur) Living at Low or High Altitudes. Front Microbiol 2019; 10:1735. [PMID: 31417526 PMCID: PMC6682669 DOI: 10.3389/fmicb.2019.01735] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota is a complex and essential system organ that plays an integrative role in balancing key vital functions in the host. Knowledge of the impact of altitude on the gut microbiota of European mouflon (Ovis orientalis musimon) and blue sheep (Pseudois nayaur) is currently limited. In this study, we compared the characteristics of gut microbiota in 5 mouflon at low altitude (K group), 4 mouflon at high altitude (L group), 4 blue sheep at low altitude (M group), and 4 blue sheep at high altitude (N group). The V3–V4 region of the 16S rRNA gene was analyzed using high-throughput sequencing. Analyses based on the operational taxonomic units showed significant changes in the gut microbial communities between groups at different altitudes. At the phylum level, groups at the high altitudes had a higher relative abundance of Firmicutes and a lower relative abundance of Bacteroidetes than those at the low altitudes. A higher Firmicutes:Bacteroidetes ratio is beneficial to animals in terms of the gut microbiota-mediated energy harvest. The relative abundance of Proteobacteria was significantly higher in the gut microbiota of mouflon sheep at high altitudes. At the genus level, the Bacteroides:Prevotella ratio was significantly higher in the low-altitude group (than the high-altitude group) of mouflon sheep and the ratio was significantly higher in the high-altitude group (than the low-altitude group) in blue sheep. In addition, the Ruminococcaceae_UCG-005 related to cellulose and starch digestion was the predominant genus in blue sheep and the relative abundance of the genus was significant higher in the high-altitude group than the low-altitude group of blue sheep (P < 0.01). In conclusion, our results suggested that the gut microbiota of high-altitude groups of sheep had stronger abilities related to energy metabolism and the decomposition of substances, e.g., fiber and cellulose, and that such abilities are associated with high-altitude adaptation.
Collapse
Affiliation(s)
- Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Science, Qufu Normal University, Qufu, China
| | - Chao Zhao
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Tian Xia
- College of Life Science, Qufu Normal University, Qufu, China
| | - Guangshuai Liu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Lei Zhang
- College of Life Science, Qufu Normal University, Qufu, China
| | | | - Weilai Sha
- College of Life Science, Qufu Normal University, Qufu, China
| | - Ying Li
- Wild World Jinan, Jinan, China
| |
Collapse
|
14
|
Zampini A, Nguyen AH, Rose E, Monga M, Miller AW. Defining Dysbiosis in Patients with Urolithiasis. Sci Rep 2019; 9:5425. [PMID: 30932002 PMCID: PMC6443657 DOI: 10.1038/s41598-019-41977-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of urinary stone disease (USD) is rapidly rising. However, the factors driving this increase are unknown. Recent microbiome studies suggest that dysbiosis may in part contribute to the increasing prevalence. The objective of the current study was to determine the nature and location of dysbiosis associated with USD. We conducted microbiome analysis from the gastrointestinal and urinary tracts, along with a metabolomic analysis of the urinary metabolome, from subjects with an active episode of USD or no history of the disease. Higher rates of antibiotic use among USD patients along with integrated microbiome and metabolomic results support the hypothesis that USD is associated with an antibiotic-driven shift in the microbiome from one that protects against USD to one that promotes the disease. Specifically, our study implicates urinary tract Lactobacillus and Enterobacteriaceae in protective and pathogenic roles for USD, respectively, which conventional, culture-based methods of bacterial analysis from urine and kidney stones would not necessarily detect. Results suggest that antibiotics produce a long-term shift in the microbiome that may increase the risk for USD, with the urinary tract microbiome holding more relevance for USD than the gut microbiome.
Collapse
Affiliation(s)
- Anna Zampini
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew H Nguyen
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emily Rose
- Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Manoj Monga
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron W Miller
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
15
|
Miller AW, Choy D, Penniston KL, Lange D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 2019; 96:180-188. [PMID: 31130222 DOI: 10.1016/j.kint.2019.02.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 02/04/2023]
Abstract
The incidence of urinary stone disease is rapidly increasing, with oxalate being a primary constituent of approximately 80% of all kidney stones. Despite the high dietary exposure to oxalate by many individuals and its potential nephrotoxicity, mammals do not produce enzymes to metabolize this compound, instead relying in part on bacteria within the gut to reduce oxalate absorption and urinary excretion. While considerable research has focused on isolated species of oxalate-degrading bacteria, particularly those with an absolute requirement for oxalate, recent studies have pointed to broader roles for microbiota both in oxalate metabolism and inhibition of urinary stone disease. Here we examined gut microbiota from patients with and live-in individuals without urinary stone disease to determine if healthy individuals harbored a more extensive microbial network associated with oxalate metabolism. We found a gender-specific association between the gut microbiota composition and urinary stone disease. Bacteria enriched in healthy individuals largely overlapped with those that exhibited a significant, positive correlation with Oxalobacter formigenes, a species presumed to be at the center of an oxalate-metabolizing microbial network. Furthermore, differential abundance analyses identified multiple taxa known to also be stimulated by oxalate in rodent models. Interestingly, the presence of these taxa distinguished patients from healthy individuals better than either the relative abundance or colonization of O. formigenes. Thus, our work shows that bacteria stimulated by the presence of oxalate in rodents may, in addition to obligate oxalate users, play a role in the inhibition of urinary stone disease in man.
Collapse
Affiliation(s)
- Aaron W Miller
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA.
| | - David Choy
- The Stone Centre at VGH, Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dirk Lange
- The Stone Centre at VGH, Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Miller AW, Orr T, Dearing D, Monga M. Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME JOURNAL 2019; 13:1379-1390. [PMID: 30700790 DOI: 10.1038/s41396-019-0357-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 02/08/2023]
Abstract
The incidence of urinary stone disease (USD) has increased four-fold in 50 years. Oxalate, which is degraded exclusively by gut bacteria, is an important constituent in 80% of urinary stones. We quantified the effects of antibiotics and a high fat/high sugar (HFHS) diet on the microbial metabolism of oxalate in the gut. High and low oxalate-degrading mouse models were developed by administering fecal transplants from either the wild mammalian rodent Neotoma albigula or Swiss-Webster mice to Swiss-Webster mice, which produces a microbiota with or without the bacteria necessary for persistent oxalate metabolism, respectively. Antibiotics led to an acute loss of both transplant bacteria and associated oxalate metabolism. Transplant bacteria exhibited some recovery over time but oxalate metabolism did not. In contrast, a HFHS diet led to an acute loss of function coupled with a gradual loss of transplant bacteria, indicative of a shift in overall microbial metabolism. Thus, the effects of oral antibiotics on the microbiome form and function were greater than the effects of diet. Results indicate that both antibiotics and diet strongly influence microbial oxalate metabolism.
Collapse
Affiliation(s)
- Aaron W Miller
- Department of Urology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA. .,Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| |
Collapse
|
17
|
Mitchell T, Kumar P, Reddy T, Wood KD, Knight J, Assimos DG, Holmes RP. Dietary oxalate and kidney stone formation. Am J Physiol Renal Physiol 2018; 316:F409-F413. [PMID: 30566003 PMCID: PMC6459305 DOI: 10.1152/ajprenal.00373.2018] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dietary oxalate is plant-derived and may be a component of vegetables, nuts, fruits, and grains. In normal individuals, approximately half of urinary oxalate is derived from the diet and half from endogenous synthesis. The amount of oxalate excreted in urine plays an important role in calcium oxalate stone formation. Large epidemiological cohort studies have demonstrated that urinary oxalate excretion is a continuous variable when indexed to stone risk. Thus, individuals with oxalate excretions >25 mg/day may benefit from a reduction of urinary oxalate output. The 24-h urine assessment may miss periods of transient surges in urinary oxalate excretion, which may promote stone growth and is a limitation of this analysis. In this review we describe the impact of dietary oxalate and its contribution to stone growth. To limit calcium oxalate stone growth, we advocate that patients maintain appropriate hydration, avoid oxalate-rich foods, and consume an adequate amount of calcium.
Collapse
Affiliation(s)
- Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Parveen Kumar
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Thanmaya Reddy
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kyle D Wood
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| | - John Knight
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Dean G Assimos
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
18
|
Batagello CA, Monga M, Miller AW. Response to Lange re: Calcium Oxalate Urolithiasis: A Case of Missing Microbes? J Endourol 2018; 32:1007. [PMID: 30407879 DOI: 10.1089/end.2018.29049.cab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Manoj Monga
- 1 Department of Urology, Cleveland Clinic , Cleveland, Ohio
| | - Aaron W Miller
- 1 Department of Urology, Cleveland Clinic , Cleveland, Ohio.,2 Department of Immunology, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
19
|
Batagello CA, Monga M, Miller AW. Calcium Oxalate Urolithiasis: A Case of Missing Microbes? J Endourol 2018; 32:995-1005. [PMID: 29808727 DOI: 10.1089/end.2018.0294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Urinary stone disease (USD) has known associations with the gut microbiota. Approximately 80% of kidney stones contain oxalate as a primary constituent and diverse oxalate-degrading bacteria exist within the human gut, which may protect against USD. Although bacteriotherapy represents a promising strategy to eliminate oxalate and reduce the risk of USD, oxalate-degrading probiotics have had limited success. To identify limitations of oxalate-degrading probiotics and refine development of bacteriotherapies to prevent USD, we review the literature associated with the gut microbiota and USD. MATERIALS AND METHODS A literature search was performed to identify publications that examine the role of oxalate-degrading bacteria or the whole gut microbiota in oxalate metabolism and the pathophysiology of USD. We conducted a meta-analysis of studies that examined the association of the whole gut microbiota with USD. In addition, we evaluated the gut microbiota of healthy individuals and those with comorbidities related to USD using publically available data from the American Gut Project (AGP). RESULTS Studies on Oxalobacter formigenes reveal that colonization by this species is not a good predictor of USD risk or urinary oxalate excretion. The species of oxalate-degrading bacteria used in probiotics and duration of administration do not impact efficacy or persistence. Studies focused on the whole gut microbiota reveal broad shifts in the gut microbiota associated with USD and a diverse microbial network is associated with oxalate metabolism. AGP data analysis demonstrated a strong overlap in microbial genera depleted in diseased individuals among USD and comorbidities. CONCLUSIONS The associations between the gut microbiota and USD extend beyond individual functional microbial species. Common shifts in the gut microbiota may facilitate the onset of USD and/or comorbidities. The successful development of bacteriotherapies to inhibit USD will need to incorporate strategies that target a broad diversity of bacteria rather than focus on a few specialist species.
Collapse
Affiliation(s)
| | - Manoj Monga
- 2 Department of Immunology, Cleveland Clinic , Cleveland, Ohio
| | - Aaron W Miller
- 1 Department of Urology, Cleveland Clinic , Cleveland, Ohio.,2 Department of Immunology, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
20
|
Dearing MD, Kohl KD. Beyond Fermentation: Other Important Services Provided to Endothermic Herbivores by their Gut Microbiota. Integr Comp Biol 2018; 57:723-731. [PMID: 28662572 DOI: 10.1093/icb/icx020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For decades, comparative biologists have recognized the importance of microbial partners in facilitating herbivory as a successful feeding strategy. Most of this success is attributed to the ability of gut microbes to digest recalcitrant dietary fiber and provides usable nutrients to their hosts. Gut microbes can also provide numerous other functions, such as vitamin synthesis, nitrogen recycling, and the detoxification of plant secondary compounds. Here, we review these microbial functions in herbivorous mammals and birds, highlighting studies that utilize recently developed metagenomic techniques. Several of these studies emphasize that microbial services are the product of interactions and exchanges within a complex microbial community, rather than the product of an individual member. Additionally, a number of these microbial functions are interdependent. For example, levels of dietary nitrogen or plant toxins can influence fiber digestibility. Further studies into the variety of microbial services provided to herbivorous hosts, and how these services might interact will broaden our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
21
|
Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore Neotoma albigula. mSphere 2017; 2:mSphere00428-17. [PMID: 29062900 PMCID: PMC5646245 DOI: 10.1128/msphere.00428-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
The bacteria associated with mammalian hosts exhibit extensive interactions with overall host physiology and contribute significantly to the health of the host. Bacteria are vital to the mitigation of the toxic effects of oxalate specifically as mammals do not possess the enzymes to degrade this compound, which is present in the majority of kidney stones. Contrary to the body of literature on a few oxalate-degrading specialists, our work illustrates that oxalate stimulates a broad but cohesive microbial network in a dose-dependent manner. The unique characteristics of the N. albigula microbiota make it an excellent source for the development of bacteriotherapies to inhibit kidney stone formation. Furthermore, this work successfully demonstrates methods to identify microbial networks responsive to specific toxins, their limits, and important elements such as microbial network cohesivity and architecture. These are necessary steps in the development of targeted bacteriotherapies. Oxalate, broadly found in both dietary and endogenous sources, is a primary constituent in 80% of kidney stones, an affliction that has tripled in prevalence over the last 40 years. Oxalate-degrading bacteria within the gut microbiota can mitigate the effects of oxalate and are negatively correlated with kidney stone formation, but bacteriotherapies involving oxalate-degrading bacteria have met with mixed results. To inform the development of more effective and consistent bacteriotherapies, we sought to quantify the interactions and limits between oxalate and an oxalate-adapted microbiota from the wild mammalian herbivore Neotoma albigula (woodrat), which consumes a high-oxalate diet in the wild. We tracked the microbiota over a variable-oxalate diet ranging from 0.2% to 12%, with the upper limit approximating 10× the level of human consumption. The N. albigula microbiota was capable of degrading ~100% of dietary oxalate regardless of the amount consumed. However, the microbiota exhibited significant changes in diversity dynamically at the operational taxonomic unit (OTU), family, and community levels in accordance with oxalate input. Furthermore, a cohesive microbial network was stimulated by the consumption of oxalate and exhibited some resistance to the effects of prolonged exposure. This study demonstrates that the oxalate-adapted microbiota of N. albigula exhibits a very high level of degradation and tolerance for oxalate. IMPORTANCE The bacteria associated with mammalian hosts exhibit extensive interactions with overall host physiology and contribute significantly to the health of the host. Bacteria are vital to the mitigation of the toxic effects of oxalate specifically as mammals do not possess the enzymes to degrade this compound, which is present in the majority of kidney stones. Contrary to the body of literature on a few oxalate-degrading specialists, our work illustrates that oxalate stimulates a broad but cohesive microbial network in a dose-dependent manner. The unique characteristics of the N. albigula microbiota make it an excellent source for the development of bacteriotherapies to inhibit kidney stone formation. Furthermore, this work successfully demonstrates methods to identify microbial networks responsive to specific toxins, their limits, and important elements such as microbial network cohesivity and architecture. These are necessary steps in the development of targeted bacteriotherapies.
Collapse
|
22
|
Miller AW, Dale C, Dearing MD. The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species. mSystems 2017; 2:e00088-17. [PMID: 28951890 PMCID: PMC5613171 DOI: 10.1128/msystems.00088-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
For mammals, oxalate enters the body through the diet or is endogenously produced by the liver; it is removed by microbial oxalate metabolism in the gut and/or excretion in feces or urine. Deficiencies in any one of the these pathways can lead to complications, such as calcium oxalate urinary stones. While considerable research has been conducted on individual oxalate-degrading bacterial isolates, interactions between oxalate and the gut microbiota as a whole are unknown. We examined the reduction in oxalate excretion in a rat model following oral administration of fecal microbes from a mammalian herbivore adapted to a high oxalate diet or to fecal transplants consisting of two different formulations of mixed oxalate-degrading isolates. While all transplants elicited a significant reduction in oxalate excretion initially, the greatest effect was seen with fecal microbial transplants, which persisted even in the absence of dietary oxalate. The reduction in oxalate excretion in animals given fecal transplants corresponded with the establishment of diverse bacteria, including known oxalate-degrading bacteria and a cohesive network of bacteria centered on oxalate-degrading specialists from the Oxalobacteraceae family. Results suggested that the administration of a complete community of bacteria facilitates a cohesive balance in terms of microbial interactions. Our work offers important insights into the development of targeted bacteriotherapies intended to reduce urinary oxalate excretion in patients at risk for recurrent calcium oxalate stones as well as bacteriotherapies targeting other toxins for elimination. IMPORTANCE Oxalate is a central component in 80% of kidney stones. While mammals do not possess the enzymes to degrade oxalate, many gastrointestinal bacteria are efficient oxalate degraders. We examined the role of cohesive microbial networks for oxalate metabolism, using Sprague-Dawley rats as a model host. While the transplantation of oxalate-degrading bacteria alone to the Sprague-Dawley hosts did increase oxalate metabolism, fecal transplants from a wild mammalian herbivore, Neotoma albigula, had a significantly greater effect. Furthermore, the boost for oxalate metabolism persisted only in animals that received fecal transplants. Animals receiving fecal transplants had a more diverse and cohesive network of bacteria associated with the Oxalobacteraceae, a family known to consist of specialist oxalate-degrading bacteria, than did animals that received oxalate-degrading bacteria alone. Our results indicate that fecal transplants are more effective at transferring specific functions than are microbial specialists alone, which has broad implications for the development of bacteriotherapies.
Collapse
Affiliation(s)
- Aaron W. Miller
- Departments of Urology and Immunology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - M. Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Modeling time-series data from microbial communities. ISME JOURNAL 2017; 11:2526-2537. [PMID: 28786973 DOI: 10.1038/ismej.2017.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023]
Abstract
As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.
Collapse
|
24
|
Abstract
Nephrolithiasis is a condition marked by the presence or formation of stones in kidneys. Several factors contribute to kidney stones development such as environmental conditions, type of dietary intake, gender and gastrointestinal flora. Most of the kidney stones are composed of calcium phosphate and calcium oxalate, which enter in to the body through diet. Both sources of oxalates become dangerous when normal flora of gastrointestinal tract is disturbed. Oxalobacter and Lactobacillus species exist symbiotically in the human gut and prevent stone formation by altering some biochemical pathways through production of specific enzymes which help in the degradation of oxalate salts. Both Oxalobacter and Lactobacillus have potential probiotic characteristics for the prevention of kidney stone formation and this avenue should be further explored.
Collapse
Affiliation(s)
- Humaira Sadaf
- Department of Biosciences, University of Wah, Wah City, Pakistan
| | - Syed Irfan Raza
- Department of Biosciences, University of Wah, Wah City, Pakistan
| | | |
Collapse
|
25
|
Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M, Silverman M, Uzzau S. Metaproteogenomics Reveals Taxonomic and Functional Changes between Cecal and Fecal Microbiota in Mouse. Front Microbiol 2017; 8:391. [PMID: 28352255 PMCID: PMC5348496 DOI: 10.3389/fmicb.2017.00391] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/24/2017] [Indexed: 02/01/2023] Open
Abstract
Previous studies on mouse models report that cecal and fecal microbial communities may differ in the taxonomic structure, but little is known about their respective functional activities. Here, we employed a metaproteogenomic approach, including 16S rRNA gene sequencing, shotgun metagenomics and shotgun metaproteomics, to analyze the microbiota of paired mouse cecal contents (CCs) and feces, with the aim of identifying changes in taxon-specific functions. As a result, Gram-positive anaerobes were observed as considerably higher in CCs, while several key enzymes, involved in oxalate degradation, glutamate/glutamine metabolism, and redox homeostasis, and most actively expressed by Bacteroidetes, were clearly more represented in feces. On the whole, taxon and function abundance appeared to vary consistently with environmental changes expected to occur throughout the transit from the cecum to outside the intestine, especially when considering metaproteomic data. The results of this study indicate that functional and metabolic differences exist between CC and stool samples, paving the way to further metaproteogenomic investigations aimed at elucidating the functional dynamics of the intestinal microbiota.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Science and Technology Park of SardiniaAlghero, Italy; Department of Biomedical Sciences, University of SassariSassari, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Michael Silverman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical SchoolBoston, MA, USA; Division of Infectious Diseases, Department of Pediatrics, Boston Children's HospitalBoston, MA, USA
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of SardiniaAlghero, Italy; Department of Biomedical Sciences, University of SassariSassari, Italy
| |
Collapse
|
26
|
Miller AW, Oakeson KF, Dale C, Dearing MD. Microbial Community Transplant Results in Increased and Long-Term Oxalate Degradation. MICROBIAL ECOLOGY 2016; 72:470-8. [PMID: 27312892 PMCID: PMC5155304 DOI: 10.1007/s00248-016-0800-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Gut microbes are essential for the degradation of dietary oxalate, and this function may play a role in decreasing the incidence of kidney stones. However, many oxalate-degrading bacteria are susceptible to antibiotics and the use of oxalate-degrading probiotics has only led to an ephemeral reduction in urinary oxalate. The objective of the current study was to determine the efficacy of using whole-community microbial transplants from a wild mammalian herbivore, Neotoma albigula, to increase oxalate degradation over the long term in the laboratory rat, Rattus norvegicus. We quantified the change in total oxalate degradation in lab rats immediately after microbial transplants and at 2- and 9-month intervals following microbial transplants. Additionally, we tracked the fecal microbiota of the lab rats, with and without microbial transplants, using high-throughput Illumina sequencing of a hyper-variable region of the 16S rRNA gene. Microbial transplants resulted in a significant increase in oxalate degradation, an effect that persisted 9 months after the initial transplants. Functional persistence was corroborated by the transfer, and persistence of a group of bacteria previously correlated with oxalate consumption in N. albigula, including an anaerobic bacterium from the genus Oxalobacter known for its ability to use oxalate as a sole carbon source. The results of this study indicate that whole-community microbial transplants are an effective means for the persistent colonization of oxalate-degrading bacteria in the mammalian gut.
Collapse
Affiliation(s)
- Aaron W Miller
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA.
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Kohl KD, Dearing MD. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins. Front Microbiol 2016; 7:1165. [PMID: 27516760 PMCID: PMC4963388 DOI: 10.3389/fmicb.2016.01165] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma) that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, non-gastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host's ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that could be useful in the treatment of diseases in humans and domestic animals.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, Vanderbilt University, NashvilleTN, USA
| | | |
Collapse
|