1
|
Zhou J, Zheng Y, Hou L, Qi L, Mao T, Yin G, Liu M. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission. WATER RESEARCH 2024; 261:122041. [PMID: 38972235 DOI: 10.1016/j.watres.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Acidification of coastal waters, synergistically driven by increasing atmospheric carbon dioxide (CO2) and intensive land-derived nutrient inputs, exerts significant stresses on the biogeochemical cycles of coastal ecosystem. However, the combined effects of anthropogenic nitrogen (N) inputs and aquatic acidification on nitrification, a critical process of N cycling, remains unclear in estuarine and coastal ecosystems. Here, we showed that increased loading of ammonium (NH4+) in estuarine and coastal waters alleviated the inhibitory effect of acidification on nitrification rates but intensified the production of the potent greenhouse gas nitrous oxide (N2O), thus accelerating global climate change. Metatranscriptomes and natural N2O isotopic signatures further suggested that the enhanced emission of N2O may mainly source from hydroxylamine (NH2OH) oxidation rather than from nitrite (NO2-) reduction pathway of nitrifying microbes. This study elucidates how anthropogenic N inputs regulate the effects of coastal acidification on nitrification and associated N2O emissions, thereby enhancing our ability to predict the feedbacks of estuarine and coastal ecosystems to climate change and human perturbations.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
2
|
Li Q, Xu Y, Chen S, Liang C, Guo W, Ngo HH, Peng L. Inorganic carbon limitation decreases ammonium removal and N 2O production in the algae-nitrifying bacteria symbiosis system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172440. [PMID: 38614328 DOI: 10.1016/j.scitotenv.2024.172440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Ammonium removal by a symbiosis system of algae (Chlorella vulgaris) and nitrifying bacteria was evaluated in a long-term photo-sequencing batch reactor under varying influent inorganic carbon (IC) concentrations (15, 10, 5 and 2.5 mmol L-1) and different nitrogen loading rate (NLR) conditions (270 and 540 mg-N L-1 d-1). The IC/N ratios provided were 2.33, 1.56, 0.78 and 0.39, respectively, for an influent NH4+-N concentration of 90 mg-N L-1 (6.43 mmol L-1). The results confirmed that both ammonium removal and N2O production were positively related with IC concentration. Satisfactory ammonium removal efficiencies (>98 %) and rates (29-34 mg-N gVSS-1 h-1) were achieved regardless of NLR levels under sufficient IC of 10 and 15 mmol L-1, while insufficient IC at 2.5 mmol L-1 led to the lowest ammonium removal rates of 0 mg-N gVSS-1 h-1. The ammonia oxidation process by ammonia oxidizing bacteria (AOB) played a predominant role over the algae assimilation process in ammonium removal. Long-time IC deficiency also resulted in the decrease in biomass and pigments of algae and nitrifying bacteria. IC limitation led to the decreasing N2O production, probably due to its negative effect on ammonia oxidation by AOB. The optimal IC concentration was determined to be 10 mmol L-1 (i.e., IC/N of 1.56, alkalinity of 500 mg CaCO3 L-1) in the algae-bacteria symbiosis reactor, corresponding to higher ammonia oxidation rate of ∼41 mg-N gVSS-1 h-1 and lower N2O emission factor of 0.13 %. This suggests regulating IC concentrations to achieve high ammonium removal and low carbon emission simultaneously in the algae-bacteria symbiosis wastewater treatment process.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Shi Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
3
|
Zheng X, Li S, Zheng S, Guo M, Wang Z. Reevaluating the accuracy and specificity of EDTA-based polyphosphate quantification method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169724. [PMID: 38160817 DOI: 10.1016/j.scitotenv.2023.169724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Feng et al. (2020) developed a simple, nondestructive, and cost-effective method to quantify polyphosphate (poly-P) in poly-P-accumulating organism (PAO)-enriched sludge samples through 30-h anaerobic exposure to 1 % (w/v) ethylenediaminetetraacetic acid (EDTA). This study optimized the N/P ratio (∼2) of the PAO culture medium in order to provide excess P for poly-P formation in PAO cells. Subsequently, the fluorescence microscopic observation of stained cells confirmed that Corynebacterium glutamicum was a PAO species capable of heterotrophic nitrification. Finally, this study reevaluated the accuracy and specificity of the EDTA-based quantification method, using two confirmed PAO biomass, three confirmed non-PAO biomass, and two sludge samples. The 1 % (w/v) EDTA treatment appears destructive to non-PAO cells, causes the release of other P forms, and is not effective for all PAO species. Under the conditions, the actual P release amount should be calculated by subtracting approximately 8 mg P g-1 total suspended solids from the determination. The amounts of P released from sludge samples was determined not only by the PAO fractions described by Feng et al. but also by PAO community structure and sludge P content.
Collapse
Affiliation(s)
- Xiangnan Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shida Li
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Mengya Guo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Zhixuan Wang
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Chen M, He T, Liang X, Wang C, Zheng C. Efficient transformation of hydroxylamine from wastewater after supplementation with sodium carbonate or calcium bicarbonate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115603. [PMID: 37856986 DOI: 10.1016/j.ecoenv.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Hydroxylamine is a highly reactive inorganic nitrogen compound that not only has a toxic effect on microorganisms, but also makes wastewater treatment more difficult, which in turn damages the environment and even endangers human health. This study reported a new method for converting of hydroxylamine by adding sodium carbonate or calcium bicarbonate to the hydroxylamine-polluted wastewater. The conversion efficiency of hydroxylamine was more than 99% in the presence of sodium carbonate or calcium bicarbonate under the reaction conditions of 25 °C, C/N ratio 15, and dissolved oxygen 7.4 mg/L. And its maximal conversion rate can reach 3.49 mg/L/h. This method overcomes various shortcomings of the reported hydroxylamine removal technologies that require a large material dosage and high cost. The technology in this report has many advantages: low cost, 'green' environmental protection, easy market promotion, and high economic benefits.
Collapse
Affiliation(s)
- Mengping Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xiwen Liang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
5
|
Tsujino S, Masuda R, Shimizu Y, Azuma Y, Kanada Y, Fujiwara T. Phylogenetic diversity, distribution, and gene structure of the pyruvic oxime dioxygenase involved in heterotrophic nitrification. Antonie Van Leeuwenhoek 2023; 116:1037-1055. [PMID: 37596503 DOI: 10.1007/s10482-023-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Some heterotrophic microorganisms carry out nitrification to produce nitrite and nitrate from pyruvic oxime. Pyruvic oxime dioxygenase (POD) is an enzyme that catalyzes the degradation of pyruvic oxime to pyruvate and nitrite from the heterotrophic nitrifying bacterium Alcaligenes faecalis. Sequence similarity searches revealed the presence of genes encoding proteins homologous to A. faecalis POD in bacteria of the phyla Proteobacteria and Actinobacteria and in fungi of the phylum Ascomycota, and their gene products were confirmed to have POD activity in recombinant experiments. Phylogenetic analysis further classified these POD homologs into three groups. Group 1 POD is mainly found in heterotrophic nitrifying Betaproteobacteria and fungi, and is assumed to be involved in heterotrophic nitrification. It is not clear whether group 2 POD, found mainly in species of the Gammaproteobacteria and Actinobacteria, and group 3 POD, found simultaneously with group 1 POD, are involved in heterotrophic nitrification. The genes of bacterial group 1 POD comprised a single transcription unit with the genes related to the metabolism of aromatic compounds, and many of the genes group 2 POD consisted of a single transcription unit with the gene encoding the protein homologous to 4-hydroxy-tetrahydrodipicolinate synthase (DapA). LysR- or Cro/CI-type regulatory genes were present adjacent to or in the vicinity of these POD gene clusters. POD may be involved not only in nitrification, but also in certain metabolic processes whose functions are currently unknown, in coordination with members of gene clusters.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ryota Masuda
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshiyuki Shimizu
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuichi Azuma
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yutaro Kanada
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
6
|
Young MN, Boltz J, Rittmann BE, Al-Omari A, Jimenez JA, Takacs I, Marcus AK. Thermodynamic Analysis of Intermediary Metabolic Steps and Nitrous Oxide Production by Ammonium-Oxidizing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12532-12541. [PMID: 35993695 DOI: 10.1021/acs.est.1c08498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is a greenhouse gas emitted from wastewater treatment, soils, and agriculture largely by ammonium-oxidizing bacteria (AOB). While AOB are characterized by being aerobes that oxidize ammonium (NH4+) to nitrite (NO2-), fundamental studies in microbiology are revealing the importance of metabolic intermediates and reactions that can lead to the production of N2O. These findings about the metabolic pathways for AOB were integrated with thermodynamic electron-equivalents modeling (TEEM) to estimate kinetic and stoichiometric parameters for each of the AOB's nitrogen (N)-oxidation and -reduction reactions. The TEEM analysis shows that hydroxylamine (NH2OH) oxidation to nitroxyl (HNO) is the most energetically efficient means for the AOB to provide electrons for ammonium monooxygenation, while oxidations of HNO to nitric oxide (NO) and NO to NO2- are energetically favorable for respiration and biomass synthesis. The respiratory electron acceptor can be O2 or NO, and both have similar energetics. The TEEM-predicted value for biomass yield, maximum-specific rate of NH4+ utilization, and maximum specific growth rate are consistent with empirical observations. NO reduction to N2O is thermodynamically favorable for respiration and biomass synthesis, but the need for O2 as a reactant in ammonium monooxygenation likely precludes NO reduction to N2O from becoming the major pathway for respiration.
Collapse
Affiliation(s)
- Michelle N Young
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Joshua Boltz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Ahmed Al-Omari
- Brown and Caldwell, 1725 Duke Street Suite 250, Alexandria, Virginia 22314, United States
| | - Jose A Jimenez
- Brown and Caldwell, 351 Lucien Way, Suite 250, Maitland, Florida 32751, United States
| | - Imre Takacs
- Dynamita, 2015 route d'Aiglun, 06910 Sigale, France
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
7
|
Casagli F, Bernard O. How Heat Transfer Indirectly Affects Performance of Algae-Bacteria Raceways. Microorganisms 2022; 10:microorganisms10081515. [PMID: 35893573 PMCID: PMC9394337 DOI: 10.3390/microorganisms10081515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Oxygenation in wastewater treatment leads to a high energy demand. High-rate algal-bacterial ponds (HRABP) have often been considered an interesting solution to reduce this energy cost, as the oxygen is provided by microalgae during photosynthesis. These complex dynamic processes are subject to solar fluxes and consequently permanent fluctuations in light and temperature. The process efficiency therefore highly depends on the location and the period of the year. In addition, the temperature response can be strongly affected by the process configuration (set-up, water depth). Raised pilot-scale raceways are typically used in experimental campaigns, while raceways lying on the ground are the standard reactor configuration for industrial-scale applications. It is therefore important to assess what the consequences are for the temperature patterns of the different reactor configurations and the water levels. The long-term validated algae-bacteria (ALBA) model was used to represent algae-bacteria dynamics in HRABPs. The model was previously validated over 600 days of outdoor measurements, at two different locations and for the four seasons. However, the first version of the model, like all the existing algae-bacteria models, was not fully predictive, since, to be run, it required the measurement of water temperature. The ALBA model was therefore updated, coupling it with a physical model that predicts the temperature evolution in the HRABP. A heat transfer model was developed, and it was able to accurately predict the temperature during the year (with a standard error of 1.5 ∘C). The full predictive model, using the temperature predictions, degraded the model's predictive performances by less than 3%. N2O predictions were affected by ±7%, highlighting the sensitivity of nitrification to temperature The temperature response for two different process configurations were then compared. The biological process can be subjected to different temperature dynamics, with more extreme temperature events when the raceway does not lie on the ground and for thinner depths. Such a situation is more likely to lead to culture crashes.
Collapse
Affiliation(s)
- Francesca Casagli
- Biocore, Inria Centre at Université Côte d’Azur, INRAE, 2004 Route des Lucioles, 06902 Sophia-Antipolis, France;
- LOV (Laboratoire d’Océanographie de Villefranche), Sorbonne Université, CNRS UMR 7093, 181 Chem. du Lazaret, 06230 Villefranche-sur-Mer, France
- Correspondence:
| | - Olivier Bernard
- Biocore, Inria Centre at Université Côte d’Azur, INRAE, 2004 Route des Lucioles, 06902 Sophia-Antipolis, France;
- LOV (Laboratoire d’Océanographie de Villefranche), Sorbonne Université, CNRS UMR 7093, 181 Chem. du Lazaret, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
8
|
Canto-Encalada G, Tec-Campos D, Tibocha-Bonilla JD, Zengler K, Zepeda A, Zuñiga C. Flux balance analysis of the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC19718 unravels specific metabolic activities while degrading toxic compounds. PLoS Comput Biol 2022; 18:e1009828. [PMID: 35108266 PMCID: PMC8853641 DOI: 10.1371/journal.pcbi.1009828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/17/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ammonia-oxidizing bacterium Nitrosomonas europaea has been widely recognized as an important player in the nitrogen cycle as well as one of the most abundant members in microbial communities for the treatment of industrial or sewage wastewater. Its natural metabolic versatility and extraordinary ability to degrade environmental pollutants (e.g., aromatic hydrocarbons such as benzene and toluene) enable it to thrive under various harsh environmental conditions. Constraint-based metabolic models constructed from genome sequences enable quantitative insight into the central and specialized metabolism within a target organism. These genome-scale models have been utilized to understand, optimize, and design new strategies for improved bioprocesses. Reduced modeling approaches have been used to elucidate Nitrosomonas europaea metabolism at a pathway level. However, genome-scale knowledge about the simultaneous oxidation of ammonia and pollutant metabolism of N. europaea remains limited. Here, we describe the reconstruction, manual curation, and validation of the genome-scale metabolic model for N. europaea, iGC535. This reconstruction is the most accurate metabolic model for a nitrifying organism to date, reaching an average prediction accuracy of over 90% under several growth conditions. The manually curated model can predict phenotypes under chemolithotrophic and chemolithoorganotrophic conditions while oxidating methane and wastewater pollutants. Calculated flux distributions under different trophic conditions show that several key pathways are affected by the type of carbon source available, including central carbon metabolism and energy production. Nitrosomonas europaea catalyzes the first step of the nitrification process (ammonia to nitrite). It has been recognized as one of the most important members of microbial communities of wastewater treatment processes. Genome-scale models are powerful tools in process optimization since they can predict the organism’s behavior under different growth conditions. The final genome-scale model of N. europaea ATCC19718, iGC535, can predict growth and oxygen uptake rates with 90.52% accuracy under chemolithotrophic and chemolitoorganotrophic conditions. Moreover, iGC535 can predict the simultaneous oxidation of ammonia and wastewater pollutants, such as benzene, toluene, phenol and, chlorobenzene. iGC535 represents the most comprehensive knowledge-base for a nitrifying organism available to date. The genome-scale model reconstructed in this work brings us closer to understanding N. europaea’s role in a community with other nitrifying bacteria.
Collapse
Affiliation(s)
| | - Diego Tec-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, México
- Department of Pediatrics, University of California, San Diego, California, United States of America
| | - Juan D. Tibocha-Bonilla
- Department of Pediatrics, University of California, San Diego, California, United States of America
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, California, United States of America
- Department of Bioengineering, University of California, San Diego, California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, California, United States of America
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, México
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bressani-Ribeiro T, Almeida PGS, Chernicharo CAL, Volcke EIP. Inorganic carbon limitation during nitrogen conversions in sponge-bed trickling filters for mainstream treatment of anaerobic effluent. WATER RESEARCH 2021; 201:117337. [PMID: 34167012 DOI: 10.1016/j.watres.2021.117337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic sewage treatment is a proven technology in warm climate regions, and sponge-bed trickling filters (SBTFs) are an important post-treatment technology to remove residual organic carbon and nitrogen. Even though SBTFs can achieve a reasonably good effluent quality, further process optimization is hampered by a lack of mechanistic understanding of the factors influencing nitrogen removal, notably when it comes to mainstream anaerobically treated sewage. In this study, the factors that control the performance of SBTFs following anaerobic (i.e., UASB) reactors for sewage treatment were investigated. A demo-scale SBTF fed with anaerobically pre-treated sewage was monitored for 300 days, showing a median nitrification efficiency of 79% and a median total nitrogen removal efficiency of 26%. Heterotrophic denitrification was limited by the low organic carbon content of the anaerobic effluent. It was demonstrated that nitrification was impaired by a lack of inorganic carbon rather than by alkalinity limitation. To properly describe inorganic carbon limitation in models, bicarbonate was added as a state variable and sigmoidal kinetics were applied. The resulting model was able to capture the overall long-term experimental behaviour. There was no nitrite accumulation, which indicated that nitrite oxidizing bacteria were little or less affected by the inorganic carbon limitation. Overall, this study indicated the vital role of influent characteristics and operating conditions concerning nitrogen conversions in SBTFs treating anaerobic effluent, thus facilitating further process optimization.
Collapse
Affiliation(s)
- T Bressani-Ribeiro
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure links 653, Gent 9000, Belgium; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte/MG 31270-901, Brazil
| | - P G S Almeida
- Department of Civil Engineering, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora - MG, 36036-900, Brazil
| | - C A L Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte/MG 31270-901, Brazil
| | - E I P Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure links 653, Gent 9000, Belgium.
| |
Collapse
|
10
|
Casagli F, Rossi S, Steyer JP, Bernard O, Ficara E. Balancing Microalgae and Nitrifiers for Wastewater Treatment: Can Inorganic Carbon Limitation Cause an Environmental Threat? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3940-3955. [PMID: 33657315 PMCID: PMC8028045 DOI: 10.1021/acs.est.0c05264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The first objective of this study is to assess the predictive capability of the ALBA (ALgae-BActeria) model for a pilot-scale (3.8 m2) high-rate algae-bacteria pond treating agricultural digestate. The model, previously calibrated and validated on a one-year data set from a demonstrative-scale raceway (56 m2), successfully predicted data from a six-month monitoring campaign with a different wastewater (urban wastewater) under different climatic conditions. Without changing any parameter value from the previous calibration, the model accurately predicted both online monitored variables (dissolved oxygen, pH, temperature) and off-line measurements (nitrogen compounds, algal biomass, total and volatile suspended solids, chemical oxygen demand). Supported by the universal character of the model, different scenarios under variable weather conditions were tested, to investigate the effect of key operating parameters (hydraulic retention time, pH regulation, kLa) on algae biomass productivity and nutrient removal efficiency. Surprisingly, despite pH regulation, a strong limitation for inorganic carbon was found to hinder the process efficiency and to generate conditions that are favorable for N2O emission. The standard operating parameters have a limited effect on this limitation, and alkalinity turns out to be the main driver of inorganic carbon availability. This investigation offers new insights in algae-bacteria processes and paves the way for the identification of optimal operational strategies.
Collapse
Affiliation(s)
- Francesca Casagli
- Dipartimento
di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, 32, Piazza L. da Vinci, 20133 Milan, Italy
- Institut
National de Recherche en Informatique et en Automatique (INRIA), Biocore,
Université Cote d’Azur, 2004, Route des Lucioles − BP 93, 06902 Sophia-Antipolis, France
| | - Simone Rossi
- Dipartimento
di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, 32, Piazza L. da Vinci, 20133 Milan, Italy
| | | | - Olivier Bernard
- Institut
National de Recherche en Informatique et en Automatique (INRIA), Biocore,
Université Cote d’Azur, 2004, Route des Lucioles − BP 93, 06902 Sophia-Antipolis, France
| | - Elena Ficara
- Dipartimento
di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, 32, Piazza L. da Vinci, 20133 Milan, Italy
| |
Collapse
|
11
|
Song MJ, Choi S, Bae WB, Lee J, Han H, Kim DD, Kwon M, Myung J, Kim YM, Yoon S. Identification of primary effecters of N 2O emissions from full-scale biological nitrogen removal systems using random forest approach. WATER RESEARCH 2020; 184:116144. [PMID: 32731040 DOI: 10.1016/j.watres.2020.116144] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) have long been recognized as point sources of N2O, a potent greenhouse gas and ozone-depleting agent. Multiple mechanisms, both biotic and abiotic, have been suggested to be responsible for N2O production from WWTPs, with basis on extrapolation from laboratory results and statistical analyses of metadata collected from operational full-scale plants. In this study, random forest (RF) analysis, a machine-learning approach for feature selection from highly multivariate datasets, was adopted to investigate N2O production mechanism in activated sludge tanks of WWTPs from a novel perspective. Standardized measurements of N2O effluxes coupled with exhaustive metadata collection were performed at activated sludge tanks of three biological nitrogen removal WWTPs at different times of the year. The multivariate datasets were used as inputs for RF analyses. Computation of the permutation variable importance measures returned biomass-normalized dissolved inorganic carbon concentration (DIC·VSS-1) and specific ammonia oxidation activity (sOURAOB) as the most influential parameters determining N2O emissions from the aerated zones (or phases) of activated sludge bioreactors. For the anoxic tanks, dissolved-organic-carbon-to-NO2-/NO3- ratio (DOC·(NO2--N + NO3--N)-1) was singled out as the most influential. These data analysis results clearly indicate disparate mechanisms for N2O generation in the oxic and anoxic activated sludge bioreactors, and provide evidences against significant contributions of N2O carryover across different zones or phases or niche-specific microbial reactions, with aerobic NH3/NH4+ oxidation to NO2- and anoxic denitrification predominantly responsible from aerated and anoxic zones or phases of activated sludge bioreactors, respectively.
Collapse
Affiliation(s)
- Min Joon Song
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Wo Bin Bae
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jaejin Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, United states
| | - Heejoo Han
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Daehyun D Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Miye Kwon
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. mSystems 2020; 5:5/1/e00562-19. [PMID: 31937676 PMCID: PMC6967387 DOI: 10.1128/msystems.00562-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions. Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium Nitrosomonas europaea is the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of N. europaea, e.g., by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on N. europaea have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole-genome transcriptomics to investigate the overall effect of oxygen limitation on N. europaea. Under oxygen-limited conditions, growth yield was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene (nirK) was significantly lower. In contrast, both heme-copper-containing cytochrome c oxidases encoded by N. europaea were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of N. europaea’s sNOR with regard to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in N. europaea and other ammonia-oxidizing bacteria. IMPORTANCE Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions.
Collapse
|
13
|
Christiaens ME, De Paepe J, Ilgrande C, De Vrieze J, Barys J, Teirlinck P, Meerbergen K, Lievens B, Boon N, Clauwaert P, Vlaeminck SE. Urine nitrification with a synthetic microbial community. Syst Appl Microbiol 2019; 42:126021. [DOI: 10.1016/j.syapm.2019.126021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023]
|
14
|
Ilgrande C, Leroy B, Wattiez R, Vlaeminck SE, Boon N, Clauwaert P. Metabolic and Proteomic Responses to Salinity in Synthetic Nitrifying Communities of Nitrosomonas spp. and Nitrobacter spp. Front Microbiol 2018; 9:2914. [PMID: 30555445 PMCID: PMC6284046 DOI: 10.3389/fmicb.2018.02914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Typically, nitrification is a two-stage microbial process and is key in wastewater treatment and nutrient recovery from waste streams. Changes in salinity represent a major stress factor that can trigger response mechanisms, impacting the activity and the physiology of bacteria. Despite its pivotal biotechnological role, little information is available on the specific response of nitrifying bacteria to varying levels of salinity. In this study, synthetic communities of ammonia-oxidizing bacteria (AOB Nitrosomonas europaea and/or Nitrosomonas ureae) and nitrite-oxidizing bacteria (NOB Nitrobacter winogradskyi and/or Nitrobacter vulgaris) were tested at 5, 10, and 30 mS cm-1 by adding sodium chloride to the mineral medium (0, 40, and 200 mM NaCl, respectively). Ammonia oxidation activity was less affected by salinity than nitrite oxidation. AOB, on their own or in combination with NOB, showed no significant difference in the ammonia oxidation rate among the three conditions. However, N. winogradskyi improved the absolute ammonia oxidation rate of both N. europaea and N. ureae. N. winogradskyi’s nitrite oxidation rate decreased to 42% residual activity upon exposure to 30 mS cm-1, also showing a similar behavior when tested with Nitrosomonas spp. The nitrite oxidation rate of N. vulgaris, as a single species, was not affected when adding sodium chloride up to 30 mS cm-1, however, its activity was completely inhibited when combined with Nitrosomonas spp. in the presence of ammonium/ammonia. The proteomic analysis of a co-culture of N. europaea and N. winogradskyi revealed the production of osmolytes, regulation of cell permeability and an oxidative stress response in N. europaea and an oxidative stress response in N. winogradskyi, as a result of increasing the salt concentration from 5 to 30 mS cm-1. A specific metabolic response observed in N. europaea suggests the role of carbon metabolism in the production of reducing power, possibly to meet the energy demands of the stress response mechanisms, induced by high salinity. For the first time, metabolic modifications and response mechanisms caused by the exposure to salinity were described, serving as a tool toward controllability and predictability of nitrifying systems exposed to salt fluctuations.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Siegfried Elias Vlaeminck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Otwell AE, López García de Lomana A, Gibbons SM, Orellana MV, Baliga NS. Systems biology approaches towards predictive microbial ecology. Environ Microbiol 2018; 20:4197-4209. [DOI: 10.1111/1462-2920.14378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Sean M. Gibbons
- Institute for Systems Biology Seattle WA USA
- eScience Institute, University of Washington Seattle WA USA
- Molecular and Cellular Biology Program University of Washington Seattle WA USA
| | - Mónica V. Orellana
- Institute for Systems Biology Seattle WA USA
- Polar Science Center Applied Physics Lab, University of Washington Seattle WA
| | - Nitin S. Baliga
- Institute for Systems Biology Seattle WA USA
- Molecular and Cellular Biology Program University of Washington Seattle WA USA
- Departments of Biology and Microbiology University of Washington Seattle WA USA
- Lawrence Berkeley National Lab Berkeley CA USA
| |
Collapse
|
16
|
Seuntjens D, Han M, Kerckhof FM, Boon N, Al-Omari A, Takacs I, Meerburg F, De Mulder C, Wett B, Bott C, Murthy S, Carvajal Arroyo JM, De Clippeleir H, Vlaeminck SE. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants. WATER RESEARCH 2018; 138:37-46. [PMID: 29571087 DOI: 10.1016/j.watres.2017.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.06-1.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.
Collapse
Affiliation(s)
- Dries Seuntjens
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Mofei Han
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium; DC WATER, District of Columbia, USA
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | | | - Francis Meerburg
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Chaïm De Mulder
- Biomath, Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | - Charles Bott
- Hampton Roads Sanitation District (HRSD), Virginia Beach, USA
| | | | - Jose Maria Carvajal Arroyo
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Faculty of Science, University of Antwerp, Belgium.
| |
Collapse
|
17
|
Zorz JK, Kozlowski JA, Stein LY, Strous M, Kleiner M. Comparative Proteomics of Three Species of Ammonia-Oxidizing Bacteria. Front Microbiol 2018; 9:938. [PMID: 29867847 PMCID: PMC5960693 DOI: 10.3389/fmicb.2018.00938] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Ammonia-oxidizing bacteria (AOB) are important members of terrestrial, marine, and industrial microbial communities and play a fundamental role in the Nitrogen cycle within these systems. They are responsible for the first step of nitrification, ammonia oxidation to nitrite. Although AOB are widespread and essential to environmental and industrial systems, where they regularly experience fluctuations in ammonia availability, no comparative studies of the physiological response of diverse AOB species at the protein level exist. In the present study, we used 1D-LC-MS/MS proteomics to compare the metabolism and physiology of three species of ammonia AOB, Nitrosomonas europaea, Nitrosospira multiformis, and Nitrosomonas ureae, under ammonia replete and ammonia starved conditions. Additionally, we compared the expression of orthologous genes to determine the major differences in the proteome composition of the three species. We found that approximately one-third of the predicted proteome was expressed in each species and that proteins for the key metabolic processes, ammonia oxidation and carbon fixation, were among the most abundant. The red copper protein, nitrosocyanin was highly abundant in all three species hinting toward its possible role as a central metabolic enzyme in AOB. The proteomic data also allowed us to identify pyrophosphate-dependent 6-phosphofructokinase as the potential enzyme replacing the Calvin-Benson-Bassham cycle enzyme Fructose-1,6-bisphosphatase missing in N. multiformis and N. ureae. Additionally, between species, there were statistically significant differences in the expression of many abundant proteins, including those related to nitrogen metabolism (nitrite reductase), motility (flagellin), cell growth and division (FtsH), and stress response (rubrerythrin). The three species did not exhibit a starvation response at the proteome level after 24 h of ammonia starvation, however, the levels of the RuBisCO enzyme were consistently reduced after the starvation period, suggesting a decrease in capacity for biomass accumulation. This study presents the first published proteomes of N. ureae and N. multiformis, and the first comparative proteomics study of ammonia-oxidizing bacteria, which gives new insights into consistent metabolic features and differences between members of this environmentally and industrially important group.
Collapse
Affiliation(s)
- Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jessica A Kozlowski
- Department of Ecogenomics and Systems Biology, Division Archaea Biology and Ecogenomics, University of Vienna, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi. mSystems 2018; 3:mSystems00170-17. [PMID: 29577088 PMCID: PMC5864417 DOI: 10.1128/msystems.00170-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.
Collapse
|
19
|
Acyl-Homoserine Lactone Production in Nitrifying Bacteria of the Genera Nitrosospira, Nitrobacter, and Nitrospira Identified via a Survey of Putative Quorum-Sensing Genes. Appl Environ Microbiol 2017; 83:AEM.01540-17. [PMID: 28887424 DOI: 10.1128/aem.01540-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps. First, we analyzed the evolutionary history of AHL synthase and AHL receptor homologs in sequenced genomes and metagenomes of nitrifying bacteria to identify AHL synthase homologs in ammonia-oxidizing bacteria (AOB) of the genus Nitrosospira and nitrite-oxidizing bacteria (NOB) of the genera Nitrococcus, Nitrobacter, and Nitrospira Next, we screened cultures of both AOB and NOB with uncharacterized AHL synthase genes and AHL synthase-negative nitrifiers by a bioassay. Our results suggest that an AHL synthase gene is required for, but does not guarantee, cell density-dependent AHL production under the conditions tested. Finally, we utilized mass spectrometry to identify the AHLs produced by the AOB Nitrosospira multiformis and Nitrosospira briensis and the NOB Nitrobacter vulgaris and Nitrospira moscoviensis as N-decanoyl-l-homoserine lactone (C10-HSL), N-3-hydroxy-tetradecanoyl-l-homoserine lactone (3-OH-C14-HSL), a monounsaturated AHL (C10:1-HSL), and N-octanoyl-l-homoserine lactone (C8-HSL), respectively. Our survey expands the list of AHL-producing nitrifiers to include a representative of Nitrospira lineage II and suggests that AHL production is widespread in nitrifying bacteria.IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite by nitrifying microorganisms, plays an important role in environmental nitrogen cycling from agricultural fertilization to wastewater treatment. The genomes of many nitrifying bacteria contain genes associated with bacterial cell-cell signaling or quorum sensing (QS). QS is a method of bacterial communication and gene regulation that is well studied in bacterial pathogens, but less is known about QS in environmental systems. Our previous work suggested that QS might be involved in the regulation of nitrogen oxide gas production during nitrite metabolism. This study characterized putative QS signals produced by different genera and species of nitrifiers. Our work lays the foundation for future experiments investigating communication between nitrifying bacteria, the purpose of QS in these microorganisms, and the manipulation of QS during nitrification.
Collapse
|
20
|
Zheng Y, Hou L, Liu M, Newell SE, Yin G, Yu C, Zhang H, Li X, Gao D, Gao J, Wang R, Liu C. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. SCIENCE ADVANCES 2017; 3:e1603229. [PMID: 28782034 PMCID: PMC5540255 DOI: 10.1126/sciadv.1603229] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/28/2017] [Indexed: 05/18/2023]
Abstract
Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N2O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N2O production to AgNPs exhibited low-dose stimulation (<534, 1476, and 2473 μg liter-1 for 10-, 30-, and 100-nm AgNPs, respectively) and high-dose inhibition (hormesis effect). Compared with controls, N2O production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N2O production pathway, and its contribution to N2O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N2O emission.
Collapse
Affiliation(s)
- Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
- Corresponding author. (L.H.); (M.L.)
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. (L.H.); (M.L.)
| | - Silvia E. Newell
- Department of Earth and the Environment, Boston University, Boston, MA 02215, USA
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Chendi Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Hongli Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiaofei Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Rong Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Cheng Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| |
Collapse
|
21
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
22
|
Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification. mBio 2016; 7:mBio.01753-16. [PMID: 27795404 PMCID: PMC5080386 DOI: 10.1128/mbio.01753-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi Production and consumption of NOx increased and production of N2O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable. IMPORTANCE Bacterial cell-cell signaling, or quorum sensing (QS), is a method of bacterial communication and gene regulation that is well studied in bacteria. However, little is known about the purpose of QS in many environmentally important bacteria. Here, we demonstrate quorum quenching coupled with mRNA-Seq to identify QS-controlled genes and phenotypes in Nitrobacter winogradskyi, a nitrite-oxidizing bacterium. Nitrite oxidizers play an important role in the nitrogen cycle though their participation in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite. Our quorum quenching approach revealed that QS influences production and consumption of environmentally important nitrogen oxide gases (NO, NO2, and N2O) in N. winogradskyi This study demonstrated a novel technique for studying QS in difficult-to-work-with microorganisms and showed that nitrite oxidizers might also contribute to nitrification-dependent production of nitrogen oxide gases that contribute to global warming.
Collapse
|