1
|
Gastaldi M, Pankey MS, Svendsen G, Medina A, Firstater F, Narvarte M, Lozada M, Lesser M. Holobiont dysbiosis or acclimatation? Shift in the microbial taxonomic diversity and functional composition of a cosmopolitan sponge subjected to chronic pollution in a Patagonian bay. PeerJ 2024; 12:e17707. [PMID: 39184395 PMCID: PMC11344537 DOI: 10.7717/peerj.17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024] Open
Abstract
Dysbiosis and acclimatization are two starkly opposing outcomes of altered holobiont associations in response to environmental pollution. This study assesses whether shifts in microbial taxonomic composition and functional profiles of the cosmopolitan sponge Hymeniacidon perlevis indicate dysbiotic or acclimatized responses to water pollution. To do so, sponge and water samples were collected in a semi-enclosed environment (San Antonio Bay, Patagonia, Argentina) from variably polluted sites (i.e., eutrophication, heavy metal contamination). We found significant differences in the microbiome of H. perlevis with respect to the pollution history of the sites. Several indicators suggested that acclimatization, rather than dysbiosis, explained the microbiome response to higher pollution: 1) the distinction of the sponge microbiome from the water microbiome; 2) low similarity between the sponge and water microbiomes at the most polluted site; 3) the change in microbiome composition between sponges from the different sites; 4) a high similarity in the microbiome among sponge individuals within sites; 5) a similar ratio of common sponge microbes to opportunistic microbes between sponges at the most and least polluted sites; and 6) a distinctive functional profile of the sponge microbiome at the most polluted site. This profile indicated a more expansive metabolic repertoire, including the degradation of pollutants and the biosynthesis of secondary metabolites, suggesting a relevant role of these microbial communities in the adaptation of the holobiont to organic pollution. Our results shed light on the rearrangement of the H. perlevis microbiome that could allow it to successfully colonize sites with high anthropogenic impact while resisting dysbiosis.
Collapse
Affiliation(s)
- Marianela Gastaldi
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Biodiversidad y Servicios Ecosistémicos, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - M. Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New England, United States
| | - Guillermo Svendsen
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Modelado Ecológico y Pesquero, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - Alonso Medina
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
| | - Fausto Firstater
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Biodiversidad y Servicios Ecosistémicos, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - Maite Narvarte
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Biodiversidad y Servicios Ecosistémicos, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, IBIOMAR-CONICET, Puerto Madryn, Chubut, Argentina
| | - Michael Lesser
- Department of Molecular, Cellular and Biomedical Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New England, United States
| |
Collapse
|
2
|
Díez-Vives C, Riesgo A. High compositional and functional similarity in the microbiome of deep-sea sponges. THE ISME JOURNAL 2024; 18:wrad030. [PMID: 38365260 PMCID: PMC10837836 DOI: 10.1093/ismejo/wrad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species. This is most unfortunate, since HMA sponges can form massive sponge grounds in the deep sea, where they dominate the ecosystems, driving their biogeochemical cycles. Here, we assess the microbial transcriptional profile of three different deep-sea HMA sponges in four locations of the Cantabrian Sea and compared them to shallow water HMA and LMA (low microbial abundance) sponge species. Our results reveal that the sponge microbiome has converged in a fundamental metabolic role for deep-sea sponges, independent of taxonomic relationships or geographic location, which is shared in broad terms with shallow HMA species. We also observed a large number of redundant microbial members performing the same functions, likely providing stability to the sponge inner ecosystem. A comparison between the community composition of our deep-sea sponges and another 39 species of HMA sponges from deep-sea and shallow habitats, belonging to the same taxonomic orders, suggested strong homogeneity in microbial composition (i.e. weak species-specificity) in deep sea species, which contrasts with that observed in shallow water counterparts. This convergence in microbiome composition and functionality underscores the adaptation to an extremely restrictive environment with the aim of exploiting the available resources.
Collapse
Affiliation(s)
- Cristina Díez-Vives
- Department of Systems Biology, Centro Nacional de Biotecnología, c/ Darwin, 3, 28049 Madrid, Spain
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
3
|
Mueller AJ, Daebeler A, Herbold CW, Kirkegaard RH, Daims H. Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales. THE ISME JOURNAL 2023; 17:2123-2133. [PMID: 37749300 PMCID: PMC10579370 DOI: 10.1038/s41396-023-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). These findings mainly resulted from studies of terrestrial species, whereas less attention has been given to marine Nitrospirales. In this study, we cultured three new marine Nitrospirales enrichments and one isolate. Three of these four NOB represent new Nitrospira species while the fourth represents a novel genus. This fourth organism, tentatively named "Ca. Nitronereus thalassa", represents the first cultured member of a Nitrospirales lineage that encompasses both free-living and sponge-associated nitrite oxidizers, is highly abundant in the environment, and shows distinct habitat distribution patterns compared to the marine Nitrospira species. Partially explaining this, "Ca. Nitronereus thalassa" harbors a unique combination of genes involved in carbon fixation and respiration, suggesting differential adaptations to fluctuating oxygen concentrations. Furthermore, "Ca. Nitronereus thalassa" appears to have a more narrow substrate range compared to many other marine nitrite oxidizers, as it lacks the genomic potential to utilize formate, cyanate, and urea. Lastly, we show that the presumed marine Nitrospirales lineages are not restricted to oceanic and saline environments, as previously assumed.
Collapse
Affiliation(s)
- Anna J Mueller
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Anne Daebeler
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 7, 370 05, Budweis, Czech Republic
| | - Craig W Herbold
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Rasmus H Kirkegaard
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Holger Daims
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Zhang H, Zhang M, Hou X, Li Y, Zhang W, Wang L, Niu L. Responses of bacterial community and N-cycling functions stability to different wetting-drying alternation frequencies in a riparian zone. ENVIRONMENTAL RESEARCH 2023; 228:115778. [PMID: 36997041 DOI: 10.1016/j.envres.2023.115778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Wetting-drying alternation (WD) of the soil is one of the key characteristics of riparian zones shaped by dam construction, profoundly impacting the soil microenvironment that determines the bacterial community. Knowledge concerning the stability of bacterial community and N-cycling functions in response to different frequencies of WD remains unclear. In this study, samples were taken from a riparian zone in the Three Gorges Reservoir (TGR) and an incubation experiment was conducted including four treatments: constant flooding (W), varied wetting-drying alternation frequencies (WD1 and WD2), and constant drying (D) (simulating water level of 145 m, 155 m, 165 m, and 175 m in the riparian zone respectively). The results revealed that there was no significant difference in the diversity among the four treatments. Following the WD1 and WD2 treatments, the relative abundances of Proteobacteria increased, while those of Chloroflexi and Acidobacteriota decreased compared to the W treatment. However, the stability of bacterial community was not affected by WD. Relative to the W treatment, the stability of N-cycling functions estimated by resistance, which refers to the ability of functional genes to adapt to changes in the environment, decreased following the WD1 treatment, but showed no significant change following the WD2 treatment. Random forest analysis showed that the resistances of the nirS and hzo genes were core contributors to the stability of N-cycling functions. This study provides a new perspective for investigating the impacts of wetting-drying alternation on soil microbes.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Mengzhu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
5
|
Daebeler A, Güell‐Bujons Q, Mooshammer M, Zechmeister T, Herbold CW, Richter A, Wagner M, Daims H. Rapid nitrification involving comammox and canonical Nitrospira at extreme pH in saline-alkaline lakes. Environ Microbiol 2023; 25:1055-1067. [PMID: 36651641 PMCID: PMC10947350 DOI: 10.1111/1462-2920.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments. Here, we studied the seasonal distribution and diversity, and the effect of short-term pH changes on comammox and canonical Nitrospira in sediments of two saline, highly alkaline lakes. We identified diverse canonical and comammox Nitrospira clade A-like phylotypes as the only detectable NOB during more than a year, suggesting their major importance for nitrification in these habitats. Gross nitrification rates measured in microcosm incubations were highest at pH 10 and considerably faster than reported for other natural, aquatic environments. Nitrification could be attributed to canonical and comammox Nitrospira and to Nitrososphaerales ammonia-oxidizing archaea. Furthermore, our data suggested that comammox Nitrospira contributed to ammonia oxidation at an extremely alkaline pH of 11. These results identify saline, highly alkaline lake sediments as environments of uniquely strong nitrification with novel comammox Nitrospira as key microbial players.
Collapse
Affiliation(s)
- Anne Daebeler
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- Biology Centre CAS, BudweisInstitute of Soil Biology and BiogeochemistryCzechia
| | - Queralt Güell‐Bujons
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- Institut de Ciències del Mar (ICM‐CSIC), Passeig Marítim de la Barceloneta 37‐49BarcelonaCataloniaSpain
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaViennaAustria
| | | | - Craig W. Herbold
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaViennaAustria
| | - Michael Wagner
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- The Comammox Research PlatformUniversity of ViennaViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Holger Daims
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- The Comammox Research PlatformUniversity of ViennaViennaAustria
| |
Collapse
|
6
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Palladino G, Burgsdorf I, Sizikov S, Steindler L, Webster NS, Thomas T. Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges. Syst Appl Microbiol 2023; 46:126401. [PMID: 36774720 DOI: 10.1016/j.syapm.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Cawthron Institute, Nelson, New Zealand
| | - Giorgia Palladino
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Palomo A, Dechesne A, Pedersen AG, Smets BF. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. MICROBIOME 2022; 10:204. [PMID: 36451244 PMCID: PMC9714041 DOI: 10.1186/s40168-022-01411-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/03/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND The discovery of microorganisms capable of complete ammonia oxidation to nitrate (comammox) has prompted a paradigm shift in our understanding of nitrification, an essential process in N cycling, hitherto considered to require both ammonia oxidizing and nitrite oxidizing microorganisms. This intriguing metabolism is unique to the genus Nitrospira, a diverse taxon previously known to only contain canonical nitrite oxidizers. Comammox Nitrospira have been detected in diverse environments; however, a global view of the distribution, abundance, and diversity of Nitrospira species is still incomplete. RESULTS In this study, we retrieved 55 metagenome-assembled Nitrospira genomes (MAGs) from newly obtained and publicly available metagenomes. Combined with publicly available MAGs, this constitutes the largest Nitrospira genome database to date with 205 MAGs, representing 132 putative species, most without cultivated representatives. Mapping of metagenomic sequencing reads from various environments against this database enabled an analysis of the distribution and habitat preferences of Nitrospira species. Comammox Nitrospira's ecological success is evident as they outnumber and present higher species-level richness than canonical Nitrospira in all environments examined, except for marine and wastewaters samples. The type of environment governs Nitrospira species distribution, without large-scale biogeographical signal. We found that closely related Nitrospira species tend to occupy the same habitats, and that this phylogenetic signal in habitat preference is stronger for canonical Nitrospira species. Comammox Nitrospira eco-evolutionary history is more complex, with subclades achieving rapid niche divergence via horizontal transfer of genes, including the gene encoding hydroxylamine oxidoreductase, a key enzyme in nitrification. CONCLUSIONS Our study expands the genomic inventory of the Nitrospira genus, exposes the ecological success of complete ammonia oxidizers within a wide range of habitats, identifies the habitat preferences of (sub)lineages of canonical and comammox Nitrospira species, and proposes that horizontal transfer of genes involved in nitrification is linked to niche separation within a sublineage of comammox Nitrospira. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Palomo
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Anders G. Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Barth F. Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
8
|
Keuter S, Koch H, Sass K, Wegen S, Lee N, Lücker S, Spieck E. Some like it cold: The cellular organization and physiological limits of cold-tolerant nitrite-oxidizing Nitrotoga. Environ Microbiol 2022; 24:2059-2077. [PMID: 35229435 DOI: 10.1111/1462-2920.15958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system. Immunocytochemical analyses localized the nitrite-oxidizing enzyme machinery in the wide irregularly shaped periplasm, apparently without contact to the cytoplasmic membrane, confirming previous genomic data suggesting a soluble nature. Interestingly, in two strains we also observed multicellular complexes with a shared periplasmic space, which seem to form through incomplete cell division and might enhance fitness or survival. Physiological tests revealed differing tolerance limits towards dissolved inorganic nitrogen concentrations and confirmed the generally psychrotolerant nature of the genus was. Moreover, comparative analysis of 15 Nitrotoga genomes showed, e.g., a unique gene repertoire of the marine strain that could be advantageous in its natural habitat and confirmed the lack of genes for assimilatory nitrite reduction in a strain found to require ammonium for growth. Overall, these novel insights largely broaden our knowledge of Nitrotoga and elucidate the metabolic variability, physiological limits and thus potential ecological roles of this group of nitrite oxidizers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sabine Keuter
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Hanna Koch
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Katharina Sass
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Simone Wegen
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Science and Research Infrastructure Fluorescence in situ Hybridization (FISH), Chemical Biological Centre, Umeå University, Umeå, Sweden.,Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Ruocco N, Esposito R, Zagami G, Bertolino M, De Matteo S, Sonnessa M, Andreani F, Crispi S, Zupo V, Costantini M. Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep 2021; 11:21151. [PMID: 34707182 PMCID: PMC8551288 DOI: 10.1038/s41598-021-00713-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Although the Mediterranean Sea covers approximately a 0.7% of the world's ocean area, it represents a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different areas of the Mediterranean: Faro Lake in Sicily and "Porto Paone", "Secca delle fumose", "Punta San Pancrazio" in the Gulf of Naples. Eight sponge species were collected from these sites and identified by morphological analysis and amplification of several conserved molecular markers (18S and 28S RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). In order to analyze the bacterial diversity of symbiotic communities among these different sampling sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great variability of the host-specific microbial communities. Our data highlight the occurrence of dominant and locally enriched microbes in the Mediterranean, together with the biotechnological potential of these sponges and their associated bacteria as sources of bioactive natural compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Roberta Esposito
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giacomo Zagami
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | - Marco Bertolino
- grid.5606.50000 0001 2151 3065DISTAV, Università Degli Studi Di Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sergio De Matteo
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | | | | | - Stefania Crispi
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources Naples, National Research Council of Italy, Naples, Italy
| | - Valerio Zupo
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Costantini
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
10
|
Spieck E, Wegen S, Keuter S. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl Microbiol Biotechnol 2021; 105:7123-7139. [PMID: 34508283 PMCID: PMC8494671 DOI: 10.1007/s00253-021-11487-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023]
Abstract
Abstract Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biological oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are fastidious microorganisms that are highly sensitive against disturbances. One important finding with relevance for nitrogen removal systems was the discovery of the mainly cold-adapted Cand. Nitrotoga, whose activity seems to be essential for the recovery of nitrite oxidation in wastewater treatment plants at low temperatures, e.g., during cold seasons. Several new strains of this genus have been recently described and ecophysiologically characterized including genome analyses. With increasing diversity, also mesophilic Cand. Nitrotoga representatives have been detected in activated sludge. This review summarizes the natural distribution and driving forces defining niche separation in artificial nitrification systems. Further critical aspects for the competition with Nitrospira and Nitrobacter are discussed. Knowledge about the physiological capacities and limits of Cand. Nitrotoga can help to define physico-chemical parameters for example in reactor systems that need to be run at low temperatures. Key points • Characterization of the psychrotolerant nitrite oxidizer Cand. Nitrotoga • Comparison of the physiological features of Cand. Nitrotoga with those of other NOB • Identification of beneficial environmental/operational parameters for proliferation Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11487-5.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Simone Wegen
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and 13C-Tracer Analysis. mSystems 2021; 6:e0017321. [PMID: 34402644 PMCID: PMC8407350 DOI: 10.1128/msystems.00173-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [13C]bicarbonate and [13C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCENitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.
Collapse
|
12
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
13
|
Dos Reis Souza A, Batista AMM, Leal CD, Fia R, de Araújo JC, Siniscalchi LAB. Evaluation of nitrogen removal and the microbial community in a submerged aerated biological filter (SABF), secondary decanters (SD), and horizontal subsurface flow constructed wetlands (HSSF-CW) for the treatment of kennel effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43125-43137. [PMID: 32729043 DOI: 10.1007/s11356-020-10263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
To ensure microbial activity and a reaction equilibrium with efficiency and energy saving, it is important to know the factors that influence microbiological nitrogen removal in wastewater. Thus, it was investigated the microorganisms and their products involved in the treatment of kennel effluents operated with different aeration times, phase 1 (7 h of continuous daily aeration), phase 2 (5 h of continuous daily aeration), and phase 3 (intermittent aeration every 2 h), monitoring chemical and physical parameters weekly, monthly microbiological, and qualitative and quantitative microbiological analyzes at the end of each applied aeration phase. The results showed a higher mean growth of nitrifying bacteria (NB) (106) and denitrifying bacteria (DB) (1022) in phase with intermittent aeration, in which better total nitrogen (TN) removal performance, with 33%, was achieved, against 21% in phase 1 and 17% in phase 2, due to the longer aeration time and lower carbon/nitrogen ratio (15.7), compared with the other phases. The presence of ammonia-oxidizing bacteria (AOB), the genus Nitrobacter nitrite-oxidizing bacteria (NOB), and DB were detected by PCR with specific primers at all phases. The analysis performed by 16S-rRNA DGGE revealed the genres Thauera at all phases; Betaproteobacteria and Acidovorax in phase 3; Azoarcus in phases 2 and 3; Clostridium, Bacillus, Lactobacillus, Turicibacter, Rhodopseudomonas, and Saccharibacteria in phase 1, which are related to the nitrogen removal, most of them by denitrifying. It is concluded that, with the characterization of the microbial community and the analysis of nitrogen compounds, it was determined, consistently, that the studied treatment system has microbiological capacity to remove TN, with the phase 3 aeration strategy, by simultaneous nitrification and denitrification (SND). Due to the high density of DB, most of the nitrification occurred by heterotrophic nitrification-aerobic. And denitrification occurred by heterotrophic and autotrophic forms, since the higher rate of oxygen application did not harm the DB. Therefore, the aeration and carbon conditions in phase 3 favored the activity of the microorganisms involved in these different routes. It is considered that, in order to increase autotrophic nitrification-aerobic, it is necessary to exhaust the volume of sludge in the secondary settlers (SD), further reducing the carbon/nitrogen ratio, through more frequent cleaning, whose periodicity should be the object of further studies. Graphical abstract.
Collapse
Affiliation(s)
- Aline Dos Reis Souza
- Department of Water Resource and Sanitation, Federal University Lavras, Aquenta Sol, Lavras, Minas Gerais, 37200-000, Brazil
| | - Ana Maria Moreira Batista
- State University of Minas Gerais, João Monlevade Unit, Brasília Avenue, 1304 - Bau, João Monlevade, Minas Gerais, 35930-314, Brazil
| | - Cíntia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais, 31270-90, Brazil
| | - Ronaldo Fia
- Department of Water Resource and Sanitation, Federal University Lavras, Aquenta Sol, Lavras, Minas Gerais, 37200-000, Brazil
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais, 31270-90, Brazil
| | | |
Collapse
|
14
|
Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. THE ISME JOURNAL 2020; 14:2967-2979. [PMID: 32709974 PMCID: PMC7784846 DOI: 10.1038/s41396-020-0724-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
Collapse
Affiliation(s)
- Anne Daebeler
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Hanna Koch
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela Steinfeder
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jasmin Schwarz
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
15
|
Park SJ, Andrei AŞ, Bulzu PA, Kavagutti VS, Ghai R, Mosier AC. Expanded Diversity and Metabolic Versatility of Marine Nitrite-Oxidizing Bacteria Revealed by Cultivation- and Genomics-Based Approaches. Appl Environ Microbiol 2020; 86:e01667-20. [PMID: 32917751 PMCID: PMC7642081 DOI: 10.1128/aem.01667-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Nitrite-oxidizing bacteria (NOB) are ubiquitous and abundant microorganisms that play key roles in global nitrogen and carbon biogeochemical cycling. Despite recent advances in understanding NOB physiology and taxonomy, currently very few cultured NOB or representative NOB genome sequences from marine environments exist. In this study, we employed enrichment culturing and genomic approaches to shed light on the phylogeny and metabolic capacity of marine NOB. We successfully enriched two marine NOB (designated MSP and DJ) and obtained a high-quality metagenome-assembled genome (MAG) from each organism. The maximum nitrite oxidation rates of the MSP and DJ enrichment cultures were 13.8 and 30.0 μM nitrite per day, respectively, with these optimum rates occurring at 0.1 mM and 0.3 mM nitrite, respectively. Each enrichment culture exhibited a different tolerance to various nitrite and salt concentrations. Based on phylogenomic position and overall genome relatedness indices, both NOB MAGs were proposed as novel taxa within the Nitrospinota and Nitrospirota phyla. Functional predictions indicated that both NOB MAGs shared many highly conserved metabolic features with other NOB. Both NOB MAGs encoded proteins for hydrogen and organic compound metabolism and defense mechanisms for oxidative stress. Additionally, these organisms may have the genetic potential to produce cobalamin (an essential enzyme cofactor that is limiting in many environments) and, thus, may play an important role in recycling cobalamin in marine sediment. Overall, this study appreciably expands our understanding of the Nitrospinota and Nitrospirota phyla and suggests that these NOB play important biogeochemical roles in marine habitats.IMPORTANCE Nitrification is a key process in the biogeochemical and global nitrogen cycle. Nitrite-oxidizing bacteria (NOB) perform the second step of aerobic nitrification (converting nitrite to nitrate), which is critical for transferring nitrogen to other organisms for assimilation or energy. Despite their ecological importance, there are few cultured or genomic representatives from marine systems. Here, we obtained two NOB (designated MSP and DJ) enriched from marine sediments and estimated the physiological and genomic traits of these marine microbes. Both NOB enrichment cultures exhibit distinct responses to various nitrite and salt concentrations. Genomic analyses suggest that these NOB are metabolically flexible (similar to other previously described NOB) yet also have individual genomic differences that likely support distinct niche distribution. In conclusion, this study provides more insights into the ecological roles of NOB in marine environments.
Collapse
Affiliation(s)
- Soo-Je Park
- Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Annika C Mosier
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
16
|
Spieck E, Sass K, Keuter S, Hirschmann S, Spohn M, Indenbirken D, Kop LFM, Lücker S, Giaveno A. Defining Culture Conditions for the Hidden Nitrite-Oxidizing Bacterium Nitrolancea. Front Microbiol 2020; 11:1522. [PMID: 32849321 PMCID: PMC7365893 DOI: 10.3389/fmicb.2020.01522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Nitrification is a key process for N-removal in engineered and natural environments, but recent findings of novel nitrifying microorganisms with surprising features revealed that our knowledge of this functional guild is still incomplete. Especially nitrite oxidation - the second step of nitrification - is catalyzed by a phylogenetically diverse bacterial group, and only recently bacteria of the phylum Chloroflexi have been identified as thermophilic nitrite-oxidizing bacteria (NOB). Among these, Nitrolancea hollandica was isolated from a laboratory-scale nitrifying bioreactor operated at 35°C with a high load of ammonium bicarbonate. However, its distribution remains cryptic as very few closely related environmental 16S rRNA gene sequences have been retrieved so far. In this study, we demonstrate how such thermophilic NOB can be enriched using modified mineral media inoculated with samples from a wastewater side-stream reactor operated at 39.5°C. Distinct cultivation conditions resulted in quick and reproducible high enrichment of two different strains of Nitrolancea, closely related to Nl. hollandica. The same cultivation approach was applied to a complex nitrite-oxidizing pre-enrichment at 42°C inoculated with biomass from a geothermal spring in the Copahue volcano area in Neuquen, Argentina. Here, an additional distinct representative of the genus Nitrolancea was obtained. This novel species had 16S rRNA and nitrite oxidoreductase alpha subunit (nxrA) gene sequence identities to Nl. hollandica of 98.5% and 97.2%, respectively. A genomic average nucleotide identity between the Argentinian strain and Nl. hollandica of 91.9% indicates that it indeed represents a distinct species. All Nitrolancea cultures formed lancet-shaped cells identical to Nl. hollandica and revealed similar physiological features, including the capability to grow at high nitrite concentrations. Growth was optimal at temperatures of 35-37°C and was strongly enhanced by ammonium supplementation. Genomic comparisons revealed that the four Nitrolancea strains share 2399 out of 3387 orthologous gene clusters and encode similar key functions. Our results define general growth conditions that enable the selective enrichment of Nitrolancea from artificial and natural environments. In most natural habitats these NOB apparently are of low abundance and their proliferation depends on the balanced presence of nitrite and ammonium, with an optimal incubation temperature of 37°C.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Katharina Sass
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sophia Hirschmann
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Linnea F. M. Kop
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands
| | - Alejandra Giaveno
- PROBIEN (CONICET-UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| |
Collapse
|
17
|
Cleary DFR, Polónia ARM, Reijnen BT, Berumen ML, de Voogd NJ. Prokaryote Communities Inhabiting Endemic and Newly Discovered Sponges and Octocorals from the Red Sea. MICROBIAL ECOLOGY 2020; 80:103-119. [PMID: 31932882 DOI: 10.1007/s00248-019-01465-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we assessed prokaryotic communities of demosponges, a calcareous sponge, octocorals, sediment and seawater in coral reef habitat of the central Red Sea, including endemic species and species new to science. Goals of the study were to compare the prokaryotic communities of demosponges with the calcareous sponge and octocorals and to assign preliminary high microbial abundance (HMA) or low microbial abundance (LMA) status to the sponge species based on compositional trait data. Based on the compositional data, we were able to assign preliminary LMA or HMA status to all sponge species. Certain species, however, had traits of both LMA and HMA species. For example, the sponge Ectyoplasia coccinea, which appeared to be a LMA species, had traits, including a relatively high abundance of Chloroflexi members, that were more typical of HMA species. This included dominant OTUs assigned to two different classes within the Chloroflexi. The calcareous sponge clustered together with seawater, the known LMA sponge Stylissa carteri and other presumable LMA species. The two dominant OTUs of this species were assigned to the Deltaproteobacteria and had no close relatives in the GenBank database. The octocoral species in the present study had prokaryotic communities that were distinct from sediment, seawater and all sponge species. These were characterised by OTUs assigned to the orders Rhodospirillales, Cellvibrionales, Spirochaetales and the genus Endozoicomonas, which were rare or absent in samples from other biotopes.
Collapse
Affiliation(s)
- D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A R M Polónia
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - B T Reijnen
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - M L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - N J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences, Environmental Biology Department, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 2019; 21:3831-3854. [PMID: 31271506 PMCID: PMC6790972 DOI: 10.1111/1462-2920.14732] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Collapse
Affiliation(s)
- Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Daryl Domman
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Stephanie Markert
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Dmitrij Turaev
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Dörte Becher
- Institute of Microbiology, Microbial ProteomicsUniversity of GreifswaldGreifswaldGermany
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| |
Collapse
|
19
|
Lau E, Frame CH, Nolan EJ, Stewart FJ, Dillard ZW, Lukich DP, Mihalik NE, Yauch KE, Kinker MA, Waychoff SL. Diversity and relative abundance of ammonia- and nitrite-oxidizing microorganisms in the offshore Namibian hypoxic zone. PLoS One 2019; 14:e0217136. [PMID: 31112557 PMCID: PMC6529010 DOI: 10.1371/journal.pone.0217136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrification, the microbial oxidation of ammonia (NH3) to nitrite (NO2-) and NO2- to nitrate (NO3-), plays a vital role in ocean nitrogen cycling. Characterizing the distribution of nitrifying organisms over environmental gradients can help predict how nitrogen availability may change with shifting ocean conditions, for example, due to loss of dissolved oxygen (O2). We characterized the distribution of nitrifiers at 5 depths spanning the oxic to hypoxic zone of the offshore Benguela upwelling system above the continental slope off Namibia. Based on 16S rRNA gene amplicon sequencing, the proportional abundance of nitrifiers (ammonia and nitrite oxidizers) increased with depth, driven by an increase in ammonia-oxidizing archaea (AOA; Thaumarchaeota) to up to 33% of the community at hypoxic depths where O2 concentrations fell to ~25 μM. The AOA community transitioned from being dominated by a few members at oxic depths to a more even representation of taxa in the hypoxic zone. In comparison, the community of NO2--oxidizing bacteria (NOB), composed primarily of Nitrospinae, was far less abundant and exhibited higher evenness at all depths. The AOA:NOB ratio declined with depth from 41:1 in the oxic zone to 27:1 under hypoxia, suggesting potential variation in the balance between NO2- production and consumption via nitrification. Indeed, in contrast to prior observations from more O2-depleted sites closer to shore, NO2- did not accumulate at hypoxic depths near this offshore site, potentially due in part to a tightened coupling between AOA and NOB.
Collapse
Affiliation(s)
- Evan Lau
- Department of Biology, Menlo College, Atherton, California, United States of America
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
- * E-mail:
| | - Caitlin H. Frame
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - E. Joseph Nolan
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Frank J. Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Zachary W. Dillard
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Daniel P. Lukich
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Nicole E. Mihalik
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Katelyn E. Yauch
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Marcus A. Kinker
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Samantha L. Waychoff
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| |
Collapse
|
20
|
Low Temperature and Neutral pH Define " Candidatus Nitrotoga sp." as a Competitive Nitrite Oxidizer in Coculture with Nitrospira defluvii. Appl Environ Microbiol 2019; 85:AEM.02569-18. [PMID: 30824434 DOI: 10.1128/aem.02569-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Nitrification is an essential process for N removal in activated sludge to avoid toxicity of ammonium and nitrite. Besides Nitrospira, "Candidatus Nitrotoga" has been identified as a key nitrite-oxidizing bacterium (NOB) performing the second step of nitrification, nitrite oxidation to nitrate, in wastewater treatment plants (WWTPs). However, the driving forces for the dominance of Nitrotoga in certain plants have often remained unclear and could not be explained solely by temperature effects. In this study, we characterized the physiology of the ammonium-dependent Nitrotoga sp. BS with regard to temperature and pH variations and evaluated its competitiveness against Nitrospira defluvii Both NOB originated from the same WWTP and shared a comparable pH optimum of 7.3. Based on these results, coculturing experiments with these NOB were performed in batch reactors operated at either 17°C or 22°C to compare their abundances under optimal (pH 7.4) or suboptimal (pH 6.4) conditions using 1 mM nitrite. As revealed by quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), and 16S amplicon sequencing, Nitrotoga sp. BS was clearly favored by its optimal growth parameters and dominated over Ns. defluvii at pH 7.4 and 17°C, whereas a pH of 6.4 was more selective for Ns. defluvii Our synthetic communities revealed that niche differentiation of NOB is influenced by a complex interaction of environmental parameters and has to be evaluated for single species.IMPORTANCE "Ca. Nitrotoga" is a NOB of high environmental relevance, but physiological data exist for only a few representatives. Initially, it was detected in specialized niches of low temperature and low nitrite concentrations, but later on, its ubiquitous distribution revealed its critical role for N removal in engineered systems like WWTPs. In this study, we analyzed the competition between Nitrotoga and Nitrospira in bioreactors and identified conditions where the K strategist Ns. defluvii was almost replaced by Nitrotoga sp. BS. We show that the pH value is an important factor that regulates the composition of the nitrite-oxidizing enrichment with a dominance of Nitrotoga sp. BS versus Ns. defluvii at a neutral pH of 7.4 in combination with a temperature of 17°C. The physiological diversity of novel Nitrotoga cultures improves our knowledge about niche differentiation of NOB with regard to functional nitrification under suboptimal conditions.
Collapse
|
21
|
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. MARINE ENVIRONMENTAL RESEARCH 2018; 140:169-179. [PMID: 29935729 DOI: 10.1016/j.marenvres.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Sponges are sessile benthic filter-feeding animals, which harbor numerous microorganisms. The enormous diversity and abundance of sponge associated bacteria envisages sponges as hot spots of microbial diversity and dynamics. Many theories were proposed on the ecological implications and mechanism of sponge-microbial association, among these, the biosynthesis of sponge derived bioactive molecules by the symbiotic bacteria is now well-indicated. This phenomenon however, is not exhibited by all marine sponges. Based on the available reports, it has been well established that the sponge associated microbial assemblages keep on changing continuously in response to environmental pressure and/or acquisition of microbes from surrounding seawater or associated macroorganisms. In this review, we have discussed nutritional association of sponges with its symbionts, interaction of sponges with other eukaryotic organisms, dynamics of sponge microbiome and sponge-specific microbial symbionts, sponge-coral association etc.
Collapse
Affiliation(s)
- G Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Sivasankari Sekar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Pasiyappazham Ramasamy
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | | | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Anuj Nishanth Lipton
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - A S Ninawe
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
22
|
Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C, Schwarz J, Daebeler A, Mueller AJ, Lukumbuzya M, Romano S, Leisch N, Karst SM, Kirkegaard R, Albertsen M, Nielsen PH, Wagner M, Daims H. Characterization of the First " Candidatus Nitrotoga" Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. mBio 2018; 9:e01186-18. [PMID: 29991589 PMCID: PMC6050957 DOI: 10.1128/mbio.01186-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus "Candidatus Nitrotoga" are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure "Ca Nitrotoga" culture was available. Here we obtained the first "Ca Nitrotoga" isolate from activated sludge. This organism, "Candidatus Nitrotoga fabula," prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous "Ca Nitrotoga" enrichments, which were described as cold-adapted NOB. "Ca Nitrotoga fabula" also showed an unusually high tolerance to nitrite (activity at 30 mM NO2-) and nitrate (up to 25 mM NO3-). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 µM nitrite and a Vmax of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of "Ca Nitrotoga fabula" were reconstructed from the closed genome. "Ca Nitrotoga fabula" possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in "Ca Nitrotoga" and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, "Ca Nitrotoga fabula" uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable "Ca Nitrotoga fabula" to survive nitrite depletion and colonize new niches.IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus "Candidatus Nitrotoga" and performed a detailed physiological and genomic characterization of this organism ("Candidatus Nitrotoga fabula"). Differences between key phenotypic properties of "Ca Nitrotoga fabula" and those of previously enriched "Ca Nitrotoga" members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that "Ca Nitrotoga" are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in "Ca Nitrotoga fabula" expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.
Collapse
Affiliation(s)
- Katharina Kitzinger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Hanna Koch
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Christopher J Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Jasmin Schwarz
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Michael Lukumbuzya
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Stefano Romano
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Nikolaus Leisch
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Søren Michael Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Adlin N, Matsuura N, Ohta Y, Hirakata Y, Maki S, Hatamoto M, Yamaguchi T. A nitrogen removal system to limit water exchange for recirculating freshwater aquarium using DHS-USB reactor. ENVIRONMENTAL TECHNOLOGY 2018; 39:1577-1585. [PMID: 28593806 DOI: 10.1080/09593330.2017.1333530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
This study proposes a biological nitrogen removal system for freshwater aquaria consisting of a down-flow hanging sponge (DHS) and an up-flow sludge blanket (USB). DHS-USB systems can perform nitrification and denitrification simultaneously, reducing ammonia (NH3) and nitrate (NO3-) toxicity in the water. The performance of the system was evaluated using on-site fresh water aquaria at ambient temperature (23-34°C) over 192 days. NH3 and nitrite (NO2-) were maintained at a detection limit of 0.01 mg N L-1 and NO3- was maintained below 10 mg N L-1, despite limited water exchange. The 16S rRNA gene of microorganisms from the sludge retained in the bioreactors was sequenced to identify the microbial communities present. Microbial community analysis revealed that ammonia oxidizing archaea (AOA), Ca. Nitrososphaera and Nitrosopumilus, played an important role in nitrification in the DHS reactor, while denitrifying bacteria Thauera played an important role in denitrification in the USB reactor. The proposed DHS-USB system is a promising technological advancement in the development of lower maintenance aquaria.
Collapse
Affiliation(s)
- Nur Adlin
- a Department of Science of Technology Innovation , Nagaoka University of Technology , Nagaoka , Japan
| | - Norihisa Matsuura
- a Department of Science of Technology Innovation , Nagaoka University of Technology , Nagaoka , Japan
- b Faculty of Environmental Design, Institute of Science and Engineering , Kanazawa University , Kanazawa , Japan
| | - Yuki Ohta
- c Department of Civil and Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Yuga Hirakata
- a Department of Science of Technology Innovation , Nagaoka University of Technology , Nagaoka , Japan
| | - Shinya Maki
- a Department of Science of Technology Innovation , Nagaoka University of Technology , Nagaoka , Japan
| | - Masashi Hatamoto
- c Department of Civil and Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Takashi Yamaguchi
- a Department of Science of Technology Innovation , Nagaoka University of Technology , Nagaoka , Japan
| |
Collapse
|
24
|
Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME JOURNAL 2018. [PMID: 29515170 DOI: 10.1038/s41396-018-0083-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The description of comammox Nitrospira spp., performing complete ammonia-to-nitrate oxidation, and their co-occurrence with canonical β-proteobacterial ammonia oxidizing bacteria (β-AOB) in the environment, calls into question the metabolic potential of comammox Nitrospira and the evolutionary history of their ammonia oxidation pathway. We report four new comammox Nitrospira genomes, constituting two novel species, and the first comparative genomic analysis on comammox Nitrospira. Unlike canonical Nitrospira, comammox Nitrospira genomes lack genes for assimilatory nitrite reduction, suggesting that they have lost the potential to use external nitrite nitrogen sources. By contrast, compared to canonical Nitrospira, comammox Nitrospira harbor a higher diversity of urea transporters and copper homeostasis genes and lack cyanate hydratase genes. Additionally, the two comammox clades differ in their ammonium uptake systems. Contrary to β-AOB, comammox Nitrospira genomes have single copies of the two central ammonia oxidation pathway operons. Similar to ammonia oxidizing archaea and some oligotrophic AOB strains, they lack genes involved in nitric oxide reduction. Furthermore, comammox Nitrospira genomes encode genes that might allow efficient growth at low oxygen concentrations. Regarding the evolutionary history of comammox Nitrospira, our analyses indicate that several genes belonging to the ammonia oxidation pathway could have been laterally transferred from β-AOB to comammox Nitrospira. We postulate that the absence of comammox genes in other sublineage II Nitrospira genomes is the result of subsequent loss.
Collapse
|
25
|
Yao Q, Peng DC. Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 2017; 7:25. [PMID: 28116698 PMCID: PMC5256632 DOI: 10.1186/s13568-017-0328-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/10/2022] Open
Abstract
Nitrification activities and microbial populations of ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were investigated in 10 full-scale biological nutrient removal wastewater treatment plants in Xi’an, China. Aerobic batch tests were used to determine the nitrifying activities while fluorescence in situ hybridization was used to quantify the fractions of AOB and NOB in the activated sludge. The results showed that nitrifying bacteria accounted for 1–10% of the total population. Nitrosomonas and Nitrospira were the dominant bacteria for AOB and NOB respectively. Moreover, the average percentage of AOB was 1.27% and that of NOB was 4.02%. The numerical ratios of NOB/AOB varied between 1.72 and 5.87. The average ammonium uptake rate and nitrite uptake rate were 3.25 ± 0.52 mg (NH4+–N)/g(VSS) h and 4.49 ± 0.49 mg (NO2−–N)/g(VSS) h, respectively. Correspondingly, the activity of NOB was 1.08–2.00 times higher than that of AOB. Thus, NOB was the dominating bacteria in nitrifying communities. The year-round data of Dianzicun (W6) also expressed a similar trend. Since NOB had higher activities than that of AOB, a large nitrite oxidation pool could be formed, which guaranteed that no nitrite would be accumulated. Therefore, stable nitrification could be achieved. A conceptual model was proposed to describe the population variation of AOB and NOB in a nitrifying community.
Collapse
|
26
|
Leuko S, Koskinen K, Sanna L, D’Angeli IM, De Waele J, Marcia P, Moissl-Eichinger C, Rettberg P. The influence of human exploration on the microbial community structure and ammonia oxidizing potential of the Su Bentu limestone cave in Sardinia, Italy. PLoS One 2017; 12:e0180700. [PMID: 28704427 PMCID: PMC5507542 DOI: 10.1371/journal.pone.0180700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
The bacterial diversity in the Su Bentu Cave in Sardinia was investigated by means of 16S rRNA gene-based analysis. This 15 km long cave, carved in Jurassic limestone, hosts a variety of calcite speleothems, and a long succession of subterranean lakes with mixed granite and carbonate sands. The lower level is occasionally flooded by a rising groundwater level, but with only scarce input of organic remains (leaves and charcoal fragments). On the quiet cave pools there are visible calcite rafts, whereas walls are locally coated with manganese deposits. In the drier upper levels, where organic input is much more subdued, moonmilk—a hydrated calcium-magnesium carbonate speleothem—can be found. Relative humidity approaches 100% and the measured mean annual cave air temperature is 14.8°C. Samples were obtained in 2014 from calcite rafts, moonmilk, manganese oxide deposits and soil (limestone and granite grains). Microclimatic conditions in the cave near the sampling sites, sample properties, physico-chemical parameters of water, and sediment composition were determined. The microbial community of this system is predominately composed of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Nitrospirae, and Firmicutes. Sampling sites near the entrance of the cave and in close proximity of the underground campsite–located 500 meters deep into the cave—revealed the highest diversity as well as the highest number of human associated microorganisms. Two samples obtained in very close proximity of each other near the campsite, indicate that the human impact is localized and is not distributed freely within the system. Analysis of the abundance of bacterial and archaeal amoA genes revealed a far greater abundance of archaeal amoA genes compared to bacterial representatives. The results of this study highlight that human impact is confined to locations that are utilized as campsites and that exploration leaves little microbial trails. Furthermore, we uncovered a highly specialized microbiome, which is perfectly adapted to survive and thrive in an environment with low nutrient availability.
Collapse
Affiliation(s)
- Stefan Leuko
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Höhe, Cologne (Köln), Germany
- * E-mail:
| | - Kaisa Koskinen
- Medical University of Graz, Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, BioTechMed, Krenngasse, Graz, Austria
| | - Laura Sanna
- Institute for Biometeorology, National Research Council of Italy, Sassari, Italy
| | | | - Jo De Waele
- Italian Institute of Speleology, University of Bologna, Bologna, Italy
| | - Paolo Marcia
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy
| | - Christine Moissl-Eichinger
- Medical University of Graz, Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, BioTechMed, Krenngasse, Graz, Austria
| | - Petra Rettberg
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Höhe, Cologne (Köln), Germany
| |
Collapse
|
27
|
Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci Rep 2016; 6:24966. [PMID: 27113140 PMCID: PMC4844951 DOI: 10.1038/srep24966] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei.
Collapse
|
28
|
Tangkitjawisut W, Limpiyakorn T, Powtongsook S, Pornkulwat P, Suwannasilp BB. Differences in nitrite-oxidizing communities and kinetics in a brackish environment after enrichment at low and high nitrite concentrations. J Environ Sci (China) 2016; 42:41-49. [PMID: 27090693 DOI: 10.1016/j.jes.2015.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/17/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
Nitrite accumulation in shrimp ponds can pose serious adverse effects to shrimp production and the environment. This study aims to develop an effective process for the enrichment of ready-to-use nitrite-oxidizing bacteria (NOB) inocula that would be appropriate for nitrite removal in brackish shrimp ponds. To achieve this objective, the effects of nitrite concentrations on NOB communities and nitrite oxidation kinetics in a brackish environment were investigated. Moving-bed biofilm sequencing batch reactors and continuous moving-bed biofilm reactors were used for the enrichment of NOB at various nitrite concentrations, using sediment from brackish shrimp ponds as seed inoculum. The results from NOB population analysis with quantitative polymerase chain reaction (qPCR) show that only Nitrospira were detected in the sediment from the shrimp ponds. After the enrichment, both Nitrospira and Nitrobacter coexisted in the reactors controlling effluent nitrite at 0.1 and 0.5 mg-NO2(-)-N/L. On the other hand, in the reactors controlling effluent nitrite at 3, 20, and 100 mg-NO2(-)-N/L, Nitrobacter outcompeted Nitrospira in many orders of magnitude. The half saturation coefficients (Ks) for nitrite oxidation of the enrichments at low nitrite concentrations (0.1 and 0.5 mg-NO2(-)-N/L) were in the range of 0.71-0.98 mg-NO2(-)-N/L. In contrast, the K(s) values of NOB enriched at high nitrite concentrations (3, 20, and 100 mg-NO2(-)-N/L) were much higher (8.36-12.20 mg-NO2(-)-N/L). The results suggest that the selection of nitrite concentrations for the enrichment of NOB inocula can significantly influence NOB populations and kinetics, which could affect the effectiveness of their applications in brackish shrimp ponds.
Collapse
Affiliation(s)
- Wipasanee Tangkitjawisut
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
| | - Sorawit Powtongsook
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Preeyaporn Pornkulwat
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Tian RM, Sun J, Cai L, Zhang WP, Zhou GW, Qiu JW, Qian PY. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ Microbiol 2016; 18:2481-94. [PMID: 26637128 DOI: 10.1111/1462-2920.13161] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/27/2015] [Indexed: 11/30/2022]
Abstract
Glass sponge (Hexactinellida, Porifera) is a special lineage because of its unique tissue organization and skeleton material. Structure and physiology of glass sponge have been extensively studied. However, our knowledge of the glass sponge-associated microbial community and of the interaction with the host is rather limited. Here, we performed genomic studies on the microbial community in the glass sponge Lophophysema eversa in seamount. The microbial community was dominated by an ammonia-oxidizing archaeum (AOA), a nitrite-oxidizing bacterium (NOB) and a sulfur-oxidizing bacterium (SOB), all of which were autotrophs. Genomic analysis on the AOA, NOB and SOB in the sponge revealed specific functional features of sponge-associated microorganisms in comparison with the closely related free-living relatives, including chemotaxis, phage defence, vitamin biosynthesis and nutrient uptake among others, which are related to ecological functions. The three autotrophs play essential roles in the cycles of carbon, nitrogen and sulfur in the microenvironment inside the sponge body, and they are considered to play symbiotic roles in the host as scavengers of toxic ammonia, nitrite and sulfide. Our study extends knowledge regarding the metabolism and the evolution of chemolithotrophs inside the invertebrate body.
Collapse
Affiliation(s)
- Ren-Mao Tian
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jin Sun
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Lin Cai
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wei-Peng Zhang
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Guo-Wei Zhou
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Pei-Yuan Qian
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
30
|
Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci U S A 2015; 112:E1230-6. [PMID: 25713387 DOI: 10.1073/pnas.1421816112] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.
Collapse
|
31
|
Nowka B, Off S, Daims H, Spieck E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiol Ecol 2014; 91:fiu031. [DOI: 10.1093/femsec/fiu031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
32
|
Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME JOURNAL 2014; 9:1062-75. [PMID: 25303715 PMCID: PMC4409153 DOI: 10.1038/ismej.2014.194] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/02/2022]
Abstract
Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.
Collapse
|
33
|
Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME JOURNAL 2014; 9:643-55. [PMID: 25148481 DOI: 10.1038/ismej.2014.156] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/28/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Abstract
Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.
Collapse
|
34
|
Luter HM, Gibb K, Webster NS. Eutrophication has no short-term effect on the Cymbastela stipitata holobiont. Front Microbiol 2014; 5:216. [PMID: 24860563 PMCID: PMC4030147 DOI: 10.3389/fmicb.2014.00216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/25/2014] [Indexed: 11/13/2022] Open
Abstract
Levels of nitrogen in coastal areas have been rapidly increasing due to accumulative inputs of sewage and terrigenous sediments carrying fertilizers. Sponges have an immense filtering capacity and may be directly impacted (positively or negatively) by elevated concentrations of nitrogen. Sponges also host a wide diversity of microbes involved in nitrogen metabolism, yet little is known about the effects of nitrogen loading on these symbiotic partnerships. Manipulative experiments were undertaken to examine the potential effects of excess nitrogen (up to 240 μM) on microbial symbiosis in the abundant sponge species Cymbastela stipitata. Microbial composition and activity were examined using 454-pyrotag sequencing of DNA- and RNA-derived samples. Despite the high levels of nitrogen exposure (up to 124-fold above ambient), sponges appeared visibly unaffected at all treatment concentrations. At the phylum level, the microbial community was consistent between all sponge samples regardless of nitrogen treatment, with Cyanobacteria and Thaumarchaeota being the dominant taxa. Higher microbial diversity was observed at the operational taxonomic units (OTU) level (97% sequence similarity), with only 40% of OTUs shared between samples from all treatments. However, a single cyanobacterial OTU dominated the community of all individuals (average 73.5%) and this OTU did not vary with nitrogen treatment. The conserved microbial community in all sponges irrespective of nitrogen treatment highlights the stability of the sponge-microbe relationship and indicates that the holobiont is resistant to short pulses of nitrogen at levels mimicking sewage effluent.
Collapse
Affiliation(s)
- Heidi M Luter
- North Australia Marine Research Alliance and Research Institute for the Environment and Livelihoods, Charles Darwin University Darwin, NT, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University Darwin, NT, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science Townsville, QLD, Australia
| |
Collapse
|
35
|
Ma S, Zhang D, Zhang W, Wang Y. Ammonia stimulates growth and nitrite-oxidizing activity of Nitrobacter winogradskyi. BIOTECHNOL BIOTEC EQ 2014; 28:27-32. [PMID: 26019486 PMCID: PMC4433873 DOI: 10.1080/13102818.2014.901679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The aim of this study was to obtain a nitrite-oxidizing bacterium with high nitrite oxidation activity for controlling nitrite levels. A nitrite-oxidizing bacterium, ZS-1, was isolated from the water of a coastal Pseudosciaena crocea-rearing pond. The strain was identified as Nitrobacter winogradskyi based on the phylogenetic analyses of the 16S ribosomal ribonucleic acid gene and nxrA sequence of ZS-1. Under aerobic condition, the nitrite-oxidizing activity of ZS-1 did not change considerably in the range of pH 7-9, but was strongly inhibited by lower (pH = 6) and higher (pH = 10) pH values. The optimum temperature range is 25-32 °C. Lower temperature made the adaptive phase of ZS-1 longer but did not affect its maximum nitrite oxidization rate. The nitrite-oxidizing activity of ZS-1 started to be inhibited by ammonia and nitrate when the concentrations of ammonia and nitrate reached 25 mg L-1 and 100 mg L-1, respectively. The inhibition was stronger with higher concentration of ammonia or nitrate. The nitrite-oxidizing activity of ZS-1, however, was not inhibited by high concentration of nitrite (500 mg L-1). The nitrite-oxidizing activity of ZS-1 was increased by low ammonia concentration (1 mg L-1 to 10 mg L-1).
Collapse
Affiliation(s)
- Shouguang Ma
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University , Ningbo , P. R. China
| | - Demin Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University , Ningbo , P. R. China
| | - Wenjun Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University , Ningbo , P. R. China
| | - Yinong Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University , Ningbo , P. R. China
| |
Collapse
|
36
|
Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum "Nitrospinae". Syst Appl Microbiol 2014; 37:170-6. [PMID: 24581679 DOI: 10.1016/j.syapm.2013.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/06/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022]
Abstract
Nitrite oxidizing bacteria are an integral part of the nitrogen cycle in marine waters, but the knowledge about their diversity is limited. Recently, a high abundance of Nitrospina-like 16S rRNA gene sequences has been detected in oceanic habitats with low oxygen content by molecular methods. Here, we describe a new strain of Nitrospina, which was sampled in 100m depth from the Black Sea. It coexisted with a not-yet cultivated chemoorganotrophic gammaproteobacterium and could be purified by classical isolation methods including Percoll density gradient centrifugation. The new Nitrospina-like bacterium grew lithoautotrophically at 28°C in diluted seawater supplemented with inorganic salts and nitrite. Gram-negative rods were characterized morphologically, physiologically and partly biochemically. The 16S rRNA gene of the new strain of Nitrospina is 97.9% similar to the described species N. gracilis and DNA/DNA hybridization experiments revealed a relatedness of 30.0%. The data from both Nitrospina species and environmental clones were used for an extensive 16S rRNA based phylogenetic study applying high quality filtering. Treeing analyses confirm the newly defined phylum status for "Nitrospinae" [18]. The results of phylogenetic and genotypic analyses support the proposal of a novel species Nitrospina watsonii sp. nov. (type strain 347(T), LMG 27401(T), NCIMB 14887(T)).
Collapse
|
37
|
Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon. Appl Environ Microbiol 2013; 80:1684-91. [PMID: 24375137 DOI: 10.1128/aem.03633-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.
Collapse
|
38
|
Guan X, Wang J, Zhao H, Wang J, Luo X, Liu F, Zhao F. Soil bacterial communities shaped by geochemical factors and land use in a less-explored area, Tibetan Plateau. BMC Genomics 2013; 14:820. [PMID: 24267482 PMCID: PMC4046825 DOI: 10.1186/1471-2164-14-820] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the largest low-latitude permafrost region, the Tibetan Plateau (TP) is an important part of the earth's terrestrial ecosystem and one of the most vulnerable areas to climate change and human activities. However, to the best of our knowledge, the bacterial communities in TP soils and their roles in biogeochemical cycles remain limited. RESULTS In this study, we report the bacterial community structure and function as well as their correlation with environmental factors in TP major ecosystems (farmland, alpine meadow and oligosaline lake) by using metagenomic approaches. Compared with other soil samples in various environments, TP soils share a core set of microorganisms with a distinct abundance and composition. Among TP soil samples, the taxonomic and functional composition of bacterial communities among the upper (3-5 cm) and lower (18-20 cm) soils of farmland sites were highly similar, whereas the dissimilarities within alpine meadow samples were significantly greater than among farmland samples. A similar pattern was observed in elements cycles and pathways associated with adaption to environment and land use types. Canonical correlation analysis revealed that the bacterial communities in most of farmland and alpine meadow soil samples were also significantly correlated with geogenic variables. Specifically, the root-nodule bacteria are negatively correlated with the soil moisture and pH, while Thiobacillus associated with sulfur cycles show potential responses to low temperature and intense UV radiation. CONCLUSIONS These findings indicate that the bacterial community structure and functions in TP soils were influenced by both human activities and soil environmental properties, and that the bacterial communities appeared to be more homogenized in the farmland soils compared with pristine alpine meadows.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China.
| | | |
Collapse
|
39
|
Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, Nowka B, Richter A, Spieck E, Lebedeva E, Loy A, Wagner M, Daims H. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol 2013; 16:3055-71. [PMID: 24118804 DOI: 10.1111/1462-2920.12300] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 12/01/2022]
Abstract
Nitrospira are the most widespread and diverse known nitrite-oxidizing bacteria and key nitrifiers in natural and engineered ecosystems. Nevertheless, their ecophysiology and environmental distribution are understudied because of the recalcitrance of Nitrospira to cultivation and the lack of a molecular functional marker, which would allow the detection of Nitrospira in the environment. Here we introduce nxrB, the gene encoding subunit beta of nitrite oxidoreductase, as a functional and phylogenetic marker for Nitrospira. Phylogenetic trees based on nxrB of Nitrospira were largely congruent to 16S ribosomal RNA-based phylogenies. By using new nxrB-selective polymerase chain reaction primers, we obtained almost full-length nxrB sequences from Nitrospira cultures, two activated sludge samples, and several geographically and climatically distinct soils. Amplicon pyrosequencing of nxrB fragments from 16 soils revealed a previously unrecognized diversity of terrestrial Nitrospira with 1801 detected species-level operational taxonomic units (OTUs) (using an inferred species threshold of 95% nxrB identity). Richness estimates ranged from 10 to 946 coexisting Nitrospira species per soil. Comparison with an archaeal amoA dataset obtained from the same soils [Environ. Microbiol. 14: 525-539 (2012)] uncovered that ammonia-oxidizing archaea and Nitrospira communities were highly correlated across the soil samples, possibly indicating shared habitat preferences or specific biological interactions among members of these nitrifier groups.
Collapse
Affiliation(s)
- Michael Pester
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Ecology Centre, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kruse M, Zumbrägel S, Bakker E, Spieck E, Eggers T, Lipski A. The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing. Syst Appl Microbiol 2013; 36:517-24. [PMID: 23921154 DOI: 10.1016/j.syapm.2013.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples.
Collapse
Affiliation(s)
- Myriam Kruse
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Meckenheimer Allee 168, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Edwards TA, Calica NA, Huang DA, Manoharan N, Hou W, Huang L, Panosyan H, Dong H, Hedlund BP. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiol Ecol 2013; 85:283-92. [PMID: 23528039 DOI: 10.1111/1574-6941.12117] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022] Open
Abstract
Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments.
Collapse
Affiliation(s)
- Tara A Edwards
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mußmann M, Ribot M, von Schiller D, Merbt SN, Augspurger C, Karwautz C, Winkel M, Battin TJ, Martí E, Daims H. Colonization of freshwater biofilms by nitrifying bacteria from activated sludge. FEMS Microbiol Ecol 2013; 85:104-15. [DOI: 10.1111/1574-6941.12103] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/12/2013] [Accepted: 02/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Marc Mußmann
- Department of Microbial Ecology; Ecology Center; University of Vienna; Vienna; Austria
| | - Miquel Ribot
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Daniel von Schiller
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Stephanie N. Merbt
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Clemens Augspurger
- Department of Freshwater Ecology and Hydrobotany; Ecology Center; University of Vienna; Vienna; Austria
| | - Clemens Karwautz
- Institute of Groundwater Ecology; Helmholtz Center Munich; Neuherberg; Germany
| | - Matthias Winkel
- Max Planck Institute for Marine Microbiology; Bremen; Germany
| | | | - Eugènia Martí
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Holger Daims
- Department of Microbial Ecology; Ecology Center; University of Vienna; Vienna; Austria
| |
Collapse
|
43
|
Karlińska-Batres K, Wörheide G. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef. MICROBIAL ECOLOGY 2013; 65:740-752. [PMID: 23525793 DOI: 10.1007/s00248-013-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).
Collapse
Affiliation(s)
- Klementyna Karlińska-Batres
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
44
|
Haaijer SCM, Ji K, van Niftrik L, Hoischen A, Speth D, Jetten MSM, Damsté JSS, Op den Camp HJM. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water. Front Microbiol 2013; 4:60. [PMID: 23515432 PMCID: PMC3600790 DOI: 10.3389/fmicb.2013.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/01/2013] [Indexed: 11/13/2022] Open
Abstract
Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (ammonia-oxidizing bacteria) and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmol of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on fluorescence in situ hybridization and metagenomic data) converting a maximum of 3 mmol of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity). Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted polymerase chain reaction analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species.
Collapse
Affiliation(s)
- Suzanne C M Haaijer
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Simister R, Taylor MW, Tsai P, Webster N. Sponge-microbe associations survive high nutrients and temperatures. PLoS One 2012; 7:e52220. [PMID: 23284943 PMCID: PMC3527390 DOI: 10.1371/journal.pone.0052220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU) (97% sequence similarity) levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE) revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.
Collapse
Affiliation(s)
- Rachel Simister
- Centre for Microbial Innovation, The University of Auckland, Auckland, New Zealand
| | - Michael W. Taylor
- Centre for Microbial Innovation, The University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Bioinformatics Institute, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville Mail Centre, Qld 4810, Australia
- * E-mail:
| |
Collapse
|
46
|
Brown MN, Briones A, Diana J, Raskin L. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol Ecol 2012; 83:17-25. [DOI: 10.1111/j.1574-6941.2012.01448.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Monisha N. Brown
- Department of Civil and Environmental Engineering; University of Michigan; Ann Arbor; MI; USA
| | - Aurelio Briones
- Plant, Soil & Entomological Sciences Department; University of Idaho; Moscow; ID; USA
| | - James Diana
- School of Natural Resources and the Environment; University of Michigan; Ann Arbor; MI; USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering; University of Michigan; Ann Arbor; MI; USA
| |
Collapse
|
47
|
Luter HM, Whalan S, Webster NS. Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta. PLoS One 2012; 7:e39779. [PMID: 22745827 PMCID: PMC3382149 DOI: 10.1371/journal.pone.0039779] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/25/2012] [Indexed: 02/01/2023] Open
Abstract
Background Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. Methodology/Principal Findings Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea). Conclusions/Significance Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species.
Collapse
Affiliation(s)
- Heidi M Luter
- Australian Institute of Marine Science at James Cook University, James Cook University, Townsville, Queensland, Australia.
| | | | | |
Collapse
|
48
|
Zekker I, Kroon K, Rikmann E, Tenno T, Tomingas M, Vabamäe P, Vlaeminck SE, Tenno T. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor. Biodegradation 2012; 23:739-49. [DOI: 10.1007/s10532-012-9549-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/19/2012] [Indexed: 11/28/2022]
|
49
|
Abstract
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.
Collapse
|
50
|
Keuter S, Kruse M, Lipski A, Spieck E. Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environ Microbiol 2011; 13:2536-47. [DOI: 10.1111/j.1462-2920.2011.02525.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|