1
|
Todorov SK, Tomasikova F, Hansen M, Shetty R, Jansen CL, Jacobsen C, Hobley TJ, Lametsch R, Bang-Berthelsen CH. Using pre-fermented sugar beet pulp as a growth medium to produce Pleurotus ostreatus mycelium for meat alternatives. Int J Food Microbiol 2024; 425:110872. [PMID: 39163813 DOI: 10.1016/j.ijfoodmicro.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.
Collapse
Affiliation(s)
| | - Frantiska Tomasikova
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Mikkel Hansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Celia L Jansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Timothy John Hobley
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | | |
Collapse
|
2
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
3
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
4
|
Barzideh Z, Siddiqi M, Mohamed HM, LaPointe G. Dynamics of Starter and Non-Starter Lactic Acid Bacteria Populations in Long-Ripened Cheddar Cheese Using Propidium Monoazide (PMA) Treatment. Microorganisms 2022; 10:1669. [PMID: 36014087 PMCID: PMC9413250 DOI: 10.3390/microorganisms10081669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The microbial community of industrially produced Canadian Cheddar cheese was examined from curd to ripened cheese at 30-32 months using a combination of viable plate counts of SLAB (GM17) and NSLAB (MRSv), qPCR and 16S rRNA gene amplicon sequencing. Cell treatment with propidium monoazide excluded DNA of permeable cells from amplification. The proportion of permeable cells of both Lactococcus spp. and Lacticaseibacillus spp. was highest at 3-6 months. While most remaining Lacticaseibacillus spp. cells were intact during later ripening stages, a consistent population of permeable Lactococcus spp. cells was maintained over the 32-month period. While Lactococcus sequence variants were significant biomarkers for viable cheese curd communities at 0-1 m, Lacticaseibacillus was identified as a distinctive biomarker for cheeses from 7 to 20 months. From 24 to 32 months, Lacticaseibacillus was replaced in significance by four genera (Pediococcus and Latilactobacillus at 24 m and at 30-32 m, Secundilactobacillus and Paucilactobacillus). These results underscore the importance of monitoring potential defects in cheeses aged over 24 months, which could be diagnosed early through microbial DNA profiling to minimize potential waste of product. Future perspectives include correlating volatile flavor compounds with microbial community composition as well as the investigation of intra-species diversity.
Collapse
Affiliation(s)
- Zoha Barzideh
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Myra Siddiqi
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hassan Mahmoud Mohamed
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Faculty of Computer and Artificial Intelligence, Benha University, Banha 13518, Egypt
| | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Zhu QZ, Wegener G, Hinrichs KU, Elvert M. Activity of Ancillary Heterotrophic Community Members in Anaerobic Methane-Oxidizing Cultures. Front Microbiol 2022; 13:912299. [PMID: 35722308 PMCID: PMC9201399 DOI: 10.3389/fmicb.2022.912299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria mediate the anaerobic oxidation of methane (AOM) in marine sediments. However, even sediment-free cultures contain a substantial number of additional microorganisms not directly related to AOM. To track the heterotrophic activity of these community members and their possible relationship with AOM, we amended meso- (37°C) and thermophilic (50°C) AOM cultures (dominated by ANME-1 archaea and their partner bacteria of the Seep-SRB2 clade or Candidatus Desulfofervidus auxilii) with L-leucine-3-13C (13C-leu). Various microbial lipids incorporated the labeled carbon from this amino acid, independent of the presence of methane as an energy source, specifically bacterial fatty acids, such as iso and anteiso-branched C15:0 and C17:0, as well as unsaturated C18:1ω9 and C18:1ω7. In natural methane-rich environments, these bacterial fatty acids are strongly 13C-depleted. We, therefore, suggest that those fatty acids are produced by ancillary bacteria that grow on 13C-depleted necromass or cell exudates/lysates of the AOM core communities. Candidates that likely benefit from AOM biomass are heterotrophic bacterial members of the Spirochetes and Anaerolineae—known to produce abundant branched fatty acids and present in all the AOM enrichment cultures. For archaeal lipids, we observed minor 13C-incorporation, but still suggesting some 13C-leu anabolism. Based on their relatively high abundance in the culture, the most probable archaeal candidates are Bathyarchaeota, Thermoplasmatales, and Lokiarchaeota. The identified heterotrophic bacterial and archaeal ancillary members are likely key players in organic carbon recycling in anoxic marine sediments.
Collapse
Affiliation(s)
- Qing-Zeng Zhu
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Gao X, Feng T, Sheng M, Wang B, Wang Z, Shan P, Zhang Y, Ma H. Characterization of the aroma-active compounds in black soybean sauce, a distinctive soy sauce. Food Chem 2021; 364:130334. [PMID: 34174649 DOI: 10.1016/j.foodchem.2021.130334] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Black soybean sauce's (BSS) aroma was scarcely investigated, which seriously affected BSS's quality and consumers' preference. Thus the aroma compounds in BSS were characterized using gas chromatography-mass spectrometry/gas chromatography-olfactometry coupling with recombination and omission experiments. Sensory evaluation showed the fruity odor was increased by 63% and the malty, alcoholic, floral, smoky, caramel-like and sour odors were decreased by 24-35% when compared to the control soy sauce (SS, p < 0.05). Totally, 126 volatile compounds, 44 aroma-active compounds and 22 vital aroma-active compounds were identified in BSS. Compared to SS, BSS exhibited a distinctive aroma characteristics which was caused by significantly higher odor activity values (OAVs) of 3-methylbutyl acetate (357%), ethyl propanoate (144%), ethyl 3-methylbutanoate (70%), ethyl 2-methylbutanoate (102%) and lower OAVs of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (52%), 4-hydroxy-2-ethyl-5-methyl-3(2H)-furan-3-one (50%), ethanol (48%), 4-vinylguaiacol (41%), 3-methylthiopropanal (37%), 3-methylbutanol (33%), 4-ethylguaiacol (28%). The results would contribute to BSS's quality control and aroma improvement.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Tuo Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Mingjian Sheng
- Honworld Group Limited, 299 Zhongxing Avenue, 313000 Huzhou, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pei Shan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yaqiong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
8
|
Beck KL, Haiminen N, Chambliss D, Edlund S, Kunitomi M, Huang BC, Kong N, Ganesan B, Baker R, Markwell P, Kawas B, Davis M, Prill RJ, Krishnareddy H, Seabolt E, Marlowe CH, Pierre S, Quintanar A, Parida L, Dubois G, Kaufman J, Weimer BC. Monitoring the microbiome for food safety and quality using deep shotgun sequencing. NPJ Sci Food 2021; 5:3. [PMID: 33558514 PMCID: PMC7870667 DOI: 10.1038/s41538-020-00083-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023] Open
Abstract
In this work, we hypothesized that shifts in the food microbiome can be used as an indicator of unexpected contaminants or environmental changes. To test this hypothesis, we sequenced the total RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that improved microbe detection specificity to >99.96% during in silico validation. The pipeline identified 119 microbial genera per HPP sample on average with 65 genera present in all samples. The most abundant of these were Bacteroides, Clostridium, Lactococcus, Aeromonas, and Citrobacter. We also observed shifts in the microbial community corresponding to ingredient composition differences. When comparing culture-based results for Salmonella with total RNA sequencing, we found that Salmonella growth did not correlate with multiple sequence analyses. We conclude that microbiome sequencing is useful to characterize complex food microbial communities, while additional work is required for predicting specific species' viability from total RNA sequencing.
Collapse
Affiliation(s)
- Kristen L. Beck
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Niina Haiminen
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481554.9IBM T.J. Watson Research Center, Yorktown Heights, Ossining, NY USA
| | - David Chambliss
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Stefan Edlund
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Mark Kunitomi
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - B. Carol Huang
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.27860.3b0000 0004 1936 9684University of California Davis, School of Veterinary Medicine, 100 K Pathogen Genome Project, Davis, CA 95616 USA
| | - Nguyet Kong
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.27860.3b0000 0004 1936 9684University of California Davis, School of Veterinary Medicine, 100 K Pathogen Genome Project, Davis, CA 95616 USA
| | - Balasubramanian Ganesan
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,Mars Global Food Safety Center, Beijing, China ,grid.507690.dWisdom Health, A Division of Mars Petcare, Vancouver, WA USA
| | - Robert Baker
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,Mars Global Food Safety Center, Beijing, China
| | - Peter Markwell
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,Mars Global Food Safety Center, Beijing, China
| | - Ban Kawas
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Matthew Davis
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Robert J. Prill
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Harsha Krishnareddy
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Ed Seabolt
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Carl H. Marlowe
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.418312.d0000 0001 2187 1663Bio-Rad Laboratories, Hercules, CA USA
| | - Sophie Pierre
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481801.40000 0004 0623 3323Bio-Rad, Food Science Division, MArnes-La-Coquette, France
| | - André Quintanar
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481801.40000 0004 0623 3323Bio-Rad, Food Science Division, MArnes-La-Coquette, France
| | - Laxmi Parida
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481554.9IBM T.J. Watson Research Center, Yorktown Heights, Ossining, NY USA
| | - Geraud Dubois
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - James Kaufman
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Bart C. Weimer
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.27860.3b0000 0004 1936 9684University of California Davis, School of Veterinary Medicine, 100 K Pathogen Genome Project, Davis, CA 95616 USA
| |
Collapse
|
9
|
Miller JJ, Weimer BC, Timme R, Lüdeke CHM, Pettengill JB, Bandoy DJD, Weis AM, Kaufman J, Huang BC, Payne J, Strain E, Jones JL. Phylogenetic and Biogeographic Patterns of Vibrio parahaemolyticus Strains from North America Inferred from Whole-Genome Sequence Data. Appl Environ Microbiol 2021; 87:e01403-20. [PMID: 33187991 PMCID: PMC7848924 DOI: 10.1128/aem.01403-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States. The draft genomes of 132 North American clinical and oyster V. parahaemolyticus isolates were sequenced to investigate their phylogenetic and biogeographic relationships. The majority of oyster isolate sequence types (STs) were from a single harvest location; however, four were identified from multiple locations. There was population structure along the Gulf and Atlantic Coasts of North America, with what seemed to be a hub of genetic variability along the Gulf Coast, with some of the same STs occurring along the Atlantic Coast and one shared between the coastal waters of the Gulf and those of Washington State. Phylogenetic analyses found nine well-supported clades. Two clades were composed of isolates from both clinical and oyster sources. Four were composed of isolates entirely from clinical sources, and three were entirely from oyster sources. Each single-source clade consisted of one ST. Some human isolates lack tdh, trh, and some type III secretion system (T3SS) genes, which are established virulence genes of V. parahaemolyticus Thus, these genes are not essential for pathogenicity. However, isolates in the monophyletic groups from clinical sources were enriched in several categories of genes compared to those from monophyletic groups of oyster isolates. These functional categories include cell signaling, transport, and metabolism. The identification of genes in these functional categories provides a basis for future in-depth pathogenicity investigations of V. parahaemolyticusIMPORTANCEVibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States and is frequently associated with shellfish consumption. This study contributes to our knowledge of the biogeography and functional genomics of this species around North America. STs shared between the Gulf Coast and the Atlantic seaboard as well as Pacific waters suggest possible transport via oceanic currents or large shipping vessels. STs frequently isolated from humans but rarely, if ever, isolated from the environment are likely more competitive in the human gut than other STs. This could be due to additional functional capabilities in areas such as cell signaling, transport, and metabolism, which may give these isolates an advantage in novel nutrient-replete environments such as the human gut.
Collapse
Affiliation(s)
- John J Miller
- FDA, Biostatistics and Bioinformatics Staff, College Park, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Bart C Weimer
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | - Ruth Timme
- FDA, Division of Microbiology, College Park, Maryland, USA
| | - Catharina H M Lüdeke
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
- University of Hamburg, Hamburg School of Food Science, Hamburg, Germany
| | - James B Pettengill
- FDA, Biostatistics and Bioinformatics Staff, College Park, Maryland, USA
| | - DJ Darwin Bandoy
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | - Allison M Weis
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | | | - B Carol Huang
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | - Justin Payne
- FDA, Division of Microbiology, College Park, Maryland, USA
| | - Errol Strain
- FDA, Biostatistics and Bioinformatics Staff, College Park, Maryland, USA
| | - Jessica L Jones
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| |
Collapse
|
10
|
Higdon SM, Huang BC, Bennett AB, Weimer BC. Identification of Nitrogen Fixation Genes in Lactococcus Isolated from Maize Using Population Genomics and Machine Learning. Microorganisms 2020; 8:microorganisms8122043. [PMID: 33419343 PMCID: PMC7768417 DOI: 10.3390/microorganisms8122043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Sierra Mixe maize is a landrace variety from Oaxaca, Mexico, that utilizes nitrogen derived from the atmosphere via an undefined nitrogen fixation mechanism. The diazotrophic microbiota associated with the plant’s mucilaginous aerial root exudate composed of complex carbohydrates was previously identified and characterized by our group where we found 23 lactococci capable of biological nitrogen fixation (BNF) without containing any of the proposed essential genes for this trait (nifHDKENB). To determine the genes in Lactococcus associated with this phenotype, we selected 70 lactococci from the dairy industry that are not known to be diazotrophic to conduct a comparative population genomic analysis. This showed that the diazotrophic lactococcal genomes were distinctly different from the dairy isolates. Examining the pangenome followed by genome-wide association study and machine learning identified genes with the functions needed for BNF in the maize isolates that were absent from the dairy isolates. Many of the putative genes received an ‘unknown’ annotation, which led to the domain analysis of the 135 homologs. This revealed genes with molecular functions needed for BNF, including mucilage carbohydrate catabolism, glycan-mediated host adhesion, iron/siderophore utilization, and oxidation/reduction control. This is the first report of this pathway in this organism to underpin BNF. Consequently, we proposed a model needed for BNF in lactococci that plausibly accounts for BNF in the absence of the nif operon in this organism.
Collapse
Affiliation(s)
- Shawn M. Higdon
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.M.H.); (A.B.B.)
| | - Bihua C. Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA
| | - Alan B. Bennett
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.M.H.); (A.B.B.)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
11
|
Lagatie O, Verheyen A, Van Asten S, Odiere MR, Djuardi Y, Levecke B, Vlaminck J, Mekonnen Z, Dana D, T'Kindt R, Sandra K, van Outersterp R, Oomens J, Lin R, Dillen L, Vreeken R, Cuyckens F, Stuyver LJ. 2-Methyl-pentanoyl-carnitine (2-MPC): a urine biomarker for patent Ascaris lumbricoides infection. Sci Rep 2020; 10:15780. [PMID: 32978457 PMCID: PMC7519643 DOI: 10.1038/s41598-020-72804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Infections with intestinal worms, such as Ascaris lumbricoides, affect hundreds of millions of people in all tropical and subtropical regions of the world. Through large-scale deworming programs, World Health Organization aims to reduce moderate-to-heavy intensity infections below 1%. Current diagnosis and monitoring of these control programs are solely based on the detection of worm eggs in stool. Here we describe how metabolome analysis was used to identify the A. lumbricoides-specific urine biomarker 2-methyl pentanoyl carnitine (2-MPC). This biomarker was found to be 85.7% accurate in determining infection and 90.5% accurate in determining a moderate-to-heavy infection. Our results also demonstrate that there is a correlation between 2-MPC levels in urine and A. lumbricoides DNA detected in stool. Furthermore, the levels of 2-MPC in urine were shown to rapidly and strongly decrease upon administration of a standard treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that, although 2-MPC levels were much lower compared to humans, there was a significant association between urinary 2-MPC levels and both worm counts (p = 0.023) and the number of eggs per gram (epg) counts (p < 0.001). This report demonstrates that urinary 2-MPC can be considered an A. lumbricoides-specific biomarker that can be used to monitor infection intensity.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Ann Verheyen
- Janssen Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stijn Van Asten
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maurice R Odiere
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Bruno Levecke
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Johnny Vlaminck
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Daniel Dana
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Ruben T'Kindt
- Research Institute for Chromatography, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Rianne van Outersterp
- FELIX Laboratory, Faculty of Science, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Faculty of Science, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Ronghui Lin
- Janssen R&D, Welsh & McKean Road, Spring House, PA, 19477-0776, USA
| | - Lieve Dillen
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Rob Vreeken
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Filip Cuyckens
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lieven J Stuyver
- Janssen Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
12
|
Tomassetti M, Garavaglia BS, Vranych CV, Gottig N, Ottado J, Gramajo H, Diacovich L. 3-methylcrotonyl Coenzyme A (CoA) carboxylase complex is involved in the Xanthomonas citri subsp. citri lifestyle during citrus infection. PLoS One 2018; 13:e0198414. [PMID: 29879157 PMCID: PMC5991677 DOI: 10.1371/journal.pone.0198414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023] Open
Abstract
Citrus canker is a disease caused by the phytopathogen Xanthomonas citri subsp. citri (Xcc), bacterium which is unable to survive out of the host for extended periods of time. Once established inside the plant, the pathogen must compete for resources and evade the defenses of the host cell. However, a number of aspects of Xcc metabolic and nutritional state, during the epiphytic stage and at different phases of infection, are poorly characterized. The 3-methylcrotonyl-CoA carboxylase complex (MCC) is an essential enzyme for the catabolism of the branched-chain amino acid leucine, which prevents the accumulation of toxic intermediaries, facilitates the generation of branched chain fatty acids and/or provides energy to the cell. The MCC complexes belong to a group of acyl-CoA carboxylases (ACCase) enzymes dependent of biotin. In this work, we have identified two ORFs (XAC0263 and XAC0264) encoding for the α and β subunits of an acyl-CoA carboxylase complex from Xanthomonas and demonstrated that this enzyme has MCC activity both in vitro and in vivo. We also found that this MCC complex is conserved in a group of pathogenic gram negative bacteria. The generation and analysis of an Xcc mutant strain deficient in MCC showed less canker lesions in the interaction with the host plant, suggesting that the expression of these proteins is necessary for Xcc fitness during infection.
Collapse
Affiliation(s)
- Mauro Tomassetti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia V. Vranych
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
13
|
Lactobacillus delbrueckii subsp. lactis as a starter culture significantly affects the dynamics of volatile compound profiles of hard cooked cheeses. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2899-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Argiroff WA, Zak DR, Lanser CM, Wiley MJ. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils. MICROBIAL ECOLOGY 2017; 73:630-644. [PMID: 27807645 DOI: 10.1007/s00248-016-0883-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/17/2016] [Indexed: 05/12/2023]
Abstract
Riverine floodplains are ecologically and economically valuable ecosystems that are heavily threatened by anthropogenic stressors. Microbial communities in floodplain soils mediate critical biogeochemical processes, yet we understand little about the relationship between these communities and variation in hydrologic connectivity related to land management or topography. Here, we present metagenomic evidence that differences among microbial communities in three floodplain soils correspond to a long-term gradient of hydrologic connectivity. Specifically, all strictly anaerobic taxa and metabolic pathways were positively associated with increased hydrologic connectivity and flooding frequency. In contrast, most aerobic taxa and all strictly aerobic pathways were negatively related to hydrologic connectivity and flooding frequency. Furthermore, the genetic potential to metabolize organic compounds tended to decrease as hydrologic connectivity increased, which may reflect either the observed concomitant decline of soil organic matter or the parallel increase in both anaerobic taxa and pathways. A decline in soil N, accompanied by an increased genetic potential for oligotrophic N acquisition subsystems, suggests that soil nutrients also shape microbial communities in these soils. We conclude that differences among floodplain soil microbial communities can be conceptualized along a gradient of hydrologic connectivity. Additionally, we show that these differences are likely due to connectivity-related variation in flooding frequency, soil organic matter, and soil N. Our findings are particularly relevant to the restoration and management of microbially mediated biogeochemical processes in riverine floodplain wetlands.
Collapse
Affiliation(s)
- William A Argiroff
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA.
| | - Donald R Zak
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA
| | - Christine M Lanser
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA
| | - Michael J Wiley
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Genomic Comparison of Campylobacter spp. and Their Potential for Zoonotic Transmission between Birds, Primates, and Livestock. Appl Environ Microbiol 2016; 82:7165-7175. [PMID: 27736787 DOI: 10.1128/aem.01746-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter is the leading cause of human gastroenteritis worldwide. Wild birds, including American crows, are abundant in urban, suburban, and agricultural settings and are likely zoonotic vectors of Campylobacter Their proximity to humans and livestock increases the potential spreading of Campylobacter via crows between the environment, livestock, and humans. However, no studies have definitively demonstrated that crows are a vector for pathogenic Campylobacter We used genomics to evaluate the zoonotic and pathogenic potential of Campylobacter from crows to other animals with 184 isolates obtained from crows, chickens, cows, sheep, goats, humans, and nonhuman primates. Whole-genome analysis uncovered two distinct clades of Campylobacter jejuni genotypes; the first contained genotypes found only in crows, while a second genotype contained "generalist" genomes that were isolated from multiple host species, including isolates implicated in human disease, primate gastroenteritis, and livestock abortion. Two major β-lactamase genes were observed frequently in these genomes (oxa-184, 55%, and oxa-61, 29%), where oxa-184 was associated only with crows and oxa-61 was associated with generalists. Mutations in gyrA, indicative of fluoroquinolone resistance, were observed in 14% of the isolates. Tetracycline resistance (tetO) was present in 22% of the isolates, yet it occurred in 91% of the abortion isolates. Virulence genes were distributed throughout the genomes; however, cdtC alleles recapitulated the crow-only and generalist clades. A specific cdtC allele was associated with abortion in livestock and was concomitant with tetO These findings indicate that crows harboring a generalist C. jejuni genotype may act as a vector for the zoonotic transmission of Campylobacter IMPORTANCE: This study examined the link between public health and the genomic variation of Campylobacter in relation to disease in humans, primates, and livestock. Use of large-scale whole-genome sequencing enabled population-level assessment to find new genes that are linked to livestock disease. With 184 Campylobacter genomes, we assessed virulence traits, antibiotic resistance susceptibility, and the potential for zoonotic transfer to observe that there is a "generalist" genotype that may move between host species.
Collapse
|
16
|
Fate of Lactococcus lactis starter cultures during late ripening in cheese models. Food Microbiol 2016; 59:112-8. [DOI: 10.1016/j.fm.2016.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
|
17
|
Nsogning Dongmo S, Procopio S, Sacher B, Becker T. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Influence of Host Ecology and Behavior on Campylobacter jejuni Prevalence and Environmental Contamination Risk in a Synanthropic Wild Bird Species. Appl Environ Microbiol 2016; 82:4811-20. [PMID: 27260356 DOI: 10.1128/aem.01456-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Campylobacter jejuni is a foodborne pathogen that often leads to human infections through the consumption of contaminated poultry. Wild birds may play a role in the transmission of C. jejuni by acting as reservoir hosts. Despite ample evidence that wild birds harbor C. jejuni, few studies have addressed the role of host ecology in transmission to domestic animals or humans. We tested the hypothesis that host social behavior and habitat play a major role in driving transmission risk. C. jejuni infection and host ecology were studied simultaneously in wild American crows (Corvus brachyrhynchos) in Davis, CA, over 3 years. We found that 178 of 337 samples tested were culture positive (53%), with infection varying by season and host age. Among adult crows, infection rates were highest during the winter, when migrants return and crows form large communal roosts. Nestlings had the highest risk of infection, and whole-genome sequencing supports the observation of direct transmission between nestlings. We deployed global positioning system (GPS) receivers to quantify habitat use by crows; space use was nonrandom, with crows preferentially occupying some habitats while avoiding others. This behavior drastically amplified the risk of environmental contamination from feces in specific locations. This study demonstrates that social behavior contributes to infection within species and that habitat use leads to a heterogeneous risk of cross-species transmission. IMPORTANCE Campylobacter jejuni is the most common cause of gastroenteritis in industrialized countries. Despite efforts to reduce the colonization of poultry flocks and eventual infection of humans, the incidence of human C. jejuni infection has remained high. Because wild birds can harbor strains of C. jejuni that eventually infect humans, there has long been speculation that wild birds might act as an important reservoir in the C. jejuni infection cycle. We simultaneously studied infection prevalence, social behavior, and movement ecology in wild American crows (Corvus brachyrhynchos). We found that social behavior contributed to patterns of infection and that movement behavior resulted in some areas having a high risk of transmission while others had a low risk. The incorporation of ecological data into studies of C. jejuni in wild birds has the potential to resolve when and how wild birds contribute to domestic animal and human C. jejuni infection, leading to better control of initial poultry contamination.
Collapse
|
19
|
Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Sci Rep 2016; 6:29525. [PMID: 27389966 PMCID: PMC4937416 DOI: 10.1038/srep29525] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. Gene expression analysis indicated that the host cell responded by regulating more than 50 genes resulting in remodeled glycans in response to Salmonella treatment. This study established the glycan structures on colonic epithelial cells, determined that Salmonella required two keystone GHs for internalization, and left remodeled host glycans as a result of infection. These data indicate that microbial GHs are undiscovered virulence factors.
Collapse
|
20
|
Dhanasekaran AR, Pearson JL, Ganesan B, Weimer BC. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction. BMC Bioinformatics 2015; 16:62. [PMID: 25887958 PMCID: PMC4347650 DOI: 10.1186/s12859-015-0462-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/13/2015] [Indexed: 01/19/2023] Open
Abstract
Background Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism’s genome as a database restricts metabolite identification to only those compounds that the organism can produce. Results To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment’s MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Conclusions Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.
Collapse
Affiliation(s)
- A Ranjitha Dhanasekaran
- Center for Integrated BioSystems, Computer Science Department, Utah State University, Logan, 84322-8700, USA. .,Linda Crnic Institute for Down Syndrome, Department of Pediatrics, School of Medicine, University of Colorado Denver, 12700 E 19th Avenue, Aurora, CO, 80045, USA.
| | - Jon L Pearson
- Center for Integrated BioSystems, Computer Science Department, Utah State University, Logan, 84322-8700, USA. .,Spillman Technologies, 4625 West Lake Park Blvd, Salt Lake City, UT, 84120, USA.
| | - Balasubramanian Ganesan
- Center for Integrated BioSystems, Computer Science Department, Utah State University, Logan, 84322-8700, USA. .,Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, 84322-8700, USA.
| | - Bart C Weimer
- University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Dr., VM3B, Room 4023, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
van de Bunt B, Bron PA, Sijtsma L, de Vos WM, Hugenholtz J. Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavour formation during dairy fermentations. Microb Cell Fact 2014; 13:176. [PMID: 25492249 PMCID: PMC4266196 DOI: 10.1186/s12934-014-0176-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Lactococcus lactis is a lactic acid bacterium that has been used for centuries in the production of a variety of cheeses, as these bacteria rapidly acidify milk and greatly contribute to the flavour of the fermentation end-products. After a short growth phase during cheese ripening L. lactis enters an extended non-growing state whilst still strongly contributing to amino acid-derived flavour formation. Here, a research approach is presented that allows investigation of strain- and amino acid-specific flavour formation during the non-growing state. Results Non-growing cells of five selected L. lactis strains were demonstrated to degrade amino acids into flavour compounds that are relevant in food fermentations and differs greatly from production of flavour compounds using growing cells. As observed earlier in other research set-ups and with other microorganisms, addition of NADH, α-ketoglutarate and pyridoxal-5-phosphate was demonstrated to be essential for optimal flavour formation, suggesting that intracellular pools of these substrates are too low for the significant production of the flavour compounds. Production of flavours during the non-growing phase strongly depends on the individual amino acids that were supplied, on the presence of other amino acids (mixtures versus single compounds), and on the strain used. Moreover, we observed that the plasmid-free model strains L. lactis MG1363 and IL1403 produce relatively low amounts of flavour components under the various conditions tested. Conclusions By using this simplified and rapid approach to study flavour formation by non-growing lactic acid bacteria, lengthy ripening periods are no longer required to assess the capacity of strains to produce flavours in the long, non-growing state of dairy fermentation. In addition, this method also provides insight into the conversion of single amino acids versus the conversion of a mixture of amino acids as produced during protein degradation. The generated results are complementary to earlier generated datasets using growing cells, allowing assessment of the full flavour forming potential of strains used as starter cultures in industrial food fermentation processes.
Collapse
Affiliation(s)
- Bert van de Bunt
- TI Food and Nutrition, Wageningen, The Netherlands. .,NIZO food research, Ede, The Netherlands.
| | - Peter A Bron
- TI Food and Nutrition, Wageningen, The Netherlands. .,NIZO food research, Ede, The Netherlands. .,The Kluyver Centre for Genomics of Industrial Fermentations/NCSB, Delft, The Netherlands.
| | - Lolke Sijtsma
- TI Food and Nutrition, Wageningen, The Netherlands. .,The Kluyver Centre for Genomics of Industrial Fermentations/NCSB, Delft, The Netherlands. .,Wageningen UR Food & Biobased Research, Wageningen, The Netherlands.
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands. .,Department Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| | - Jeroen Hugenholtz
- University of Amsterdam, Swammerdam Institute of Life Sciences, Science park 904, PO Box 94216, 1090, GE, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Colehour AM, Meadow JF, Liebert MA, Cepon-Robins TJ, Gildner TE, Urlacher SS, Bohannan BJM, Snodgrass JJ, Sugiyama LS. Local domestication of lactic acid bacteria via cassava beer fermentation. PeerJ 2014; 2:e479. [PMID: 25071997 PMCID: PMC4103073 DOI: 10.7717/peerj.479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022] Open
Abstract
Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal.
Collapse
Affiliation(s)
- Alese M Colehour
- Department of Anthropology, University of Oregon , Eugene, OR , USA ; Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA
| | - James F Meadow
- Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA
| | | | | | | | - Samuel S Urlacher
- Department of Human Evolutionary Biology, Harvard University , Cambridge, MA , USA
| | | | - J Josh Snodgrass
- Department of Anthropology, University of Oregon , Eugene, OR , USA
| | | |
Collapse
|
23
|
Xiao Z, Zhu X, Xi L, Hou X, Fang L, Lu JR. Biodegradation of C5-C8 fatty acids and production of aroma volatiles by Myroides sp. ZB35 isolated from activated sludge. J Microbiol 2014; 52:407-12. [DOI: 10.1007/s12275-014-4109-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/02/2014] [Accepted: 04/06/2014] [Indexed: 12/18/2022]
|
24
|
Ganesan B, Weimer B, Pinzon J, Dao Kong N, Rompato G, Brothersen C, McMahon D. Probiotic bacteria survive in Cheddar cheese and modify populations of other lactic acid bacteria. J Appl Microbiol 2014; 116:1642-56. [DOI: 10.1111/jam.12482] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
Affiliation(s)
- B. Ganesan
- Dairy Technology and Innovation Laboratory; Western Dairy Center; Utah State University; Logan UT USA
- Department of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan UT USA
| | - B.C. Weimer
- Department of Population Health and Reproduction; University of California; Davis CA USA
| | - J. Pinzon
- Department of Population Health and Reproduction; University of California; Davis CA USA
| | - N. Dao Kong
- Department of Population Health and Reproduction; University of California; Davis CA USA
| | - G. Rompato
- Center for Integrated BioSystems; Utah State University; Logan UT USA
| | - C. Brothersen
- Dairy Technology and Innovation Laboratory; Western Dairy Center; Utah State University; Logan UT USA
- Department of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan UT USA
| | - D.J. McMahon
- Dairy Technology and Innovation Laboratory; Western Dairy Center; Utah State University; Logan UT USA
- Department of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan UT USA
| |
Collapse
|
25
|
Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering". PLoS One 2014; 9:e84769. [PMID: 24416282 PMCID: PMC3885609 DOI: 10.1371/journal.pone.0084769] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/18/2013] [Indexed: 12/05/2022] Open
Abstract
The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the “missing links” between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.
Collapse
|
26
|
He X, Mishchuk DO, Shah J, Weimer BC, Slupsky CM. Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line. Sci Rep 2013; 3:3416. [PMID: 24301462 PMCID: PMC3849634 DOI: 10.1038/srep03416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
Although there is great interest in the specific mechanisms of how gut microbiota modulate the biological processes of the human host, the extent of host-microbe interactions and the bacteria-specific metabolic activities for survival in the co-evolved gastrointestinal environment remain unclear. Here, we demonstrate a comprehensive comparison of the host epithelial response induced by either a pathogenic or commensal strain of Escherichia coli using a multi-omics approach. We show that Caco-2 cells incubated with E. coli display an activation of defense response genes associated with oxidative stress. Indeed, in the bacteria co-culture system, the host cells experience an altered environment compared with the germ-free system that includes reduced pH, depletion of major energy substrates, and accumulation of fermentation by-products. Measurement of intracellular Caco-2 cell metabolites revealed a significantly increased lactate concentration, as well as changes in TCA cycle intermediates. Our results will lead to a deeper understanding of acute microbial-host interactions.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, University of California, Davis, CA 95616-5270, USA
| | | | | | | | | |
Collapse
|
27
|
Preadaptation to cold stress in Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Appl Environ Microbiol 2013; 79:7281-9. [PMID: 24056458 DOI: 10.1128/aem.02621-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation.
Collapse
|
28
|
Mikš-Krajnik M, Babuchowski A, Białobrzewski I. Impact of physiological state of starter culture on ripening and flavour development of Swiss-Dutch-type cheese. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marta Mikš-Krajnik
- Chair of Industrial and Food Microbiology; Faculty of Food Science; University of Warmia and Mazury; Plac Cieszyński 1; 10-726; Olsztyn; Poland
| | - Andrzej Babuchowski
- Chair of Industrial and Food Microbiology; Faculty of Food Science; University of Warmia and Mazury; Plac Cieszyński 1; 10-726; Olsztyn; Poland
| | - Ireneusz Białobrzewski
- Chair of Systems Engineering; Faculty of Engineering; University of Warmia and Mazury; Heweliusza 14; 10-718; Olsztyn; Poland
| |
Collapse
|
29
|
Vitali B, Ndagijimana M, Maccaferri S, Biagi E, Guerzoni ME, Brigidi P. An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe 2012; 18:386-91. [PMID: 22579985 DOI: 10.1016/j.anaerobe.2012.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 02/28/2012] [Accepted: 04/28/2012] [Indexed: 02/08/2023]
Abstract
In the current study, batch culture fermentations on fecal samples of 3 healthy individuals were performed to assess the effect of the addition of prebiotics (FOS), probiotics (Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13) and synbiotics (B. longum Bar33 + L. helveticus Bar13 + FOS) on the fecal metabolic profiles. A total of 84 different metabolites belonging to the families of sulfur compounds, nitrogen compounds, aldehydes, ketones, esters, alcohols, phenols, organic acids, and hydrocarbons were detected by GC-MS/SPME analysis. The highest number of metabolites varied in concentration in the models with added FOS and synbiotics, where several metabolic signatures were found in common. The increase of butyrate represented the greatest variation registered after the addition of FOS alone. Following the B. longum Bar33 addition, 2-methyl butyrate underwent the most evident variation. In the batch fermentation with added L. helveticus Bar13, the decrease of pyridine and butandiene was observed together with the increase of 2-methyl-5-ethyl-pyrazine, 2-butanone and butyrate. The modification of the fecal metabolic profiles induced by the simultaneous addition of B. longum Bar33 and L. helveticus Bar13 was very similar to that observed after the supplementation with L. helveticus Bar13, regarding mainly the decrease of pyridine and the increase of butyrate.
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Production of volatile compounds by Lactobacillus sakei from branched chain α-keto acids. Food Microbiol 2012; 29:224-8. [DOI: 10.1016/j.fm.2011.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022]
|
31
|
Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, Cocaign-Bousquet M. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 2011; 10 Suppl 1:S18. [PMID: 21995707 PMCID: PMC3236307 DOI: 10.1186/1475-2859-10-s1-s18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Amino acid assimilation is crucial for bacteria and this is particularly true for Lactic Acid Bacteria (LAB) that are generally auxotroph for amino acids. The global response of the LAB model Lactococcus lactis ssp. lactis was characterized during progressive isoleucine starvation in batch culture using a chemically defined medium in which isoleucine concentration was fixed so as to become the sole limiting nutriment. Dynamic analyses were performed using transcriptomic and proteomic approaches and the results were analysed conjointly with fermentation kinetic data. Results The response was first deduced from transcriptomic analysis and corroborated by proteomic results. It occurred progressively and could be divided into three major mechanisms: (i) a global down-regulation of processes linked to bacterial growth and catabolism (transcription, translation, carbon metabolism and transport, pyrimidine and fatty acid metabolism), (ii) a specific positive response related to the limiting nutrient (activation of pathways of carbon or nitrogen metabolism and leading to isoleucine supply) and (iii) an unexpected oxidative stress response (positive regulation of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms during this adaptation was analysed on the basis of transcriptomic data comparisons. The global regulator CodY seemed specifically dedicated to the regulation of isoleucine supply. Other regulations were massively related to growth rate and stringent response. Conclusion This integrative biology approach provided an overview of the metabolic pathways involved during isoleucine starvation and their regulations. It has extended significantly the physiological understanding of the metabolism of L. lactis ssp. lactis. The approach can be generalised to other conditions and will contribute significantly to the identification of the biological processes involved in complex regulatory networks of micro-organisms.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
32
|
Suzzi G. From wild strain to domesticated strain: the philosophy of microbial diversity in foods. Front Microbiol 2011; 2:169. [PMID: 21887153 PMCID: PMC3157009 DOI: 10.3389/fmicb.2011.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/26/2011] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giovanna Suzzi
- Food Science Department, University of Teramo Teramo, Italy
| |
Collapse
|
33
|
Lahtvee PJ, Adamberg K, Arike L, Nahku R, Aller K, Vilu R. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb Cell Fact 2011; 10:12. [PMID: 21349178 PMCID: PMC3049130 DOI: 10.1186/1475-2859-10-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 02/24/2011] [Indexed: 01/28/2023] Open
Abstract
Background Lactococcus lactis is recognised as a safe (GRAS) microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product formation etc. Moreover, collected dataset is an excellent input for developing metabolic models.
Collapse
Affiliation(s)
- Petri-Jaan Lahtvee
- Tallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
34
|
Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 2011; 77:2656-66. [PMID: 21335381 DOI: 10.1128/aem.01826-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation.
Collapse
|
35
|
Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol 2009; 26:700-11. [PMID: 19747603 DOI: 10.1016/j.fm.2009.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 01/03/2023]
Abstract
Lactic acid bacteria (LAB) are a functionally related group of organisms known primarily for their bioprocessing roles in food and beverages. The largest variety of metabolic properties is found in the group of lactobacilli the vast majority of which has been isolated in cereal environments, namely sourdoughs, in which their role ranges from sporadic contaminants to major fermentative flora. Growth or survival in each of these environmental niches depends on the ability of the organism to sense and respond to varying conditions such as temperature, pH, nutrients availability and cell population density. Fermentation process conditions, including temperature range, dough yield, oxygen, pH as well as the amount and composition of starter cultures, determine the cells' metabolic response. In fact, the exposure of microbial cells to stressful conditions during fermentation involves a broad transcriptional response with many induced or repressed genes. The complex network of such responses, involving several metabolic activities will reflect upon the metabolome of the fermentative flora, and thus on the composition and organoleptic properties of the final products. This review shall provide insight into stress response mechanisms and delineate the vast potential residing in the exploitation of the stress dependent metabolome of LAB focusing on bacteria of the sourdough environment as one of the richest sources of lactobacilli.
Collapse
|
36
|
Biochemistry of non-starter lactic acid bacteria isolate Lactobacillus casei GCRL163: Production of metabolites by stationary-phase cultures. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. J Bacteriol 2008; 191:873-81. [PMID: 19047348 DOI: 10.1128/jb.01114-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction of 2-keto acids derived from amino acids in Lactococcus lactis. The gene panE, whose inactivation suppressed hydroxyisocaproate dehydrogenase activity, was cloned and overexpressed in Escherichia coli, and the recombinant His-tagged fusion protein was purified and characterized. The gene annotated panE was the sole gene responsible for the reduction of the 2-keto acids derived from leucine, isoleucine, and valine, while ldh, encoding L-lactate dehydrogenase, was responsible for the reduction of the 2-keto acids derived from phenylalanine and methionine. The kinetic parameters of the His-tagged PanE showed the highest catalytic efficiencies with 2-ketoisocaproate, 2-ketomethylvalerate, 2-ketoisovalerate, and benzoylformate (V(max)/K(m) ratios of 6,640, 4,180, 3,300, and 2,050 U/mg/mM, respectively), with NADH as the exclusive coenzyme. For the reverse reaction, the enzyme accepted d-2-hydroxyacids but not l-2-hydroxyacids. Although PanE showed the highest degrees of identity to putative NADP-dependent 2-ketopantoate reductases (KPRs), it did not exhibit KPR activity. Sequence homology analysis revealed that, together with the d-mandelate dehydrogenase of Enterococcus faecium and probably other putative KPRs, PanE belongs to a new family of D-2-hydroxyacid dehydrogenases which is unrelated to the well-described D-2-hydroxyisocaproate dehydrogenase family. Its probable physiological role is to regenerate the NAD(+) necessary to catabolize branched-chain amino acids, leading to the production of ATP and aroma compounds.
Collapse
|
38
|
Ganesan B, Stuart MR, Weimer BC. Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis. Appl Environ Microbiol 2007; 73:2498-512. [PMID: 17293521 PMCID: PMC1855592 DOI: 10.1128/aem.01832-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study characterized the ability of lactococci to become nonculturable under carbohydrate starvation while maintaining metabolic activity. We determined the changes in physiological parameters and extracellular substrate levels of multiple lactococcal strains under a number of environmental conditions along with whole-genome expression profiles. Three distinct phases were observed, logarithmic growth, sugar exhaustion, and nonculturability. Shortly after carbohydrate starvation, each lactococcal strain lost the ability to form colonies on solid media but maintained an intact cell membrane and metabolic activity for over 3.5 years. ML3, a strain that metabolized lactose rapidly, reached nonculturability within 1 week. Strains that metabolized lactose slowly (SK11) or not at all (IL1403) required 1 to 3 months to become nonculturable. In all cases, the cells contained at least 100 pM of intracellular ATP after 6 months of starvation and remained at that level for the remainder of the study. Aminopeptidase and lipase/esterase activities decreased below detection limits during the nonculturable phase. During sugar exhaustion and entry into nonculturability, serine and methionine were produced, while glutamine and arginine were depleted from the medium. The cells retained the ability to transport amino acids via proton motive force and peptides via ATP-driven translocation. The addition of branched-chain amino acids to the culture medium resulted in increased intracellular ATP levels and new metabolic products, indicating that branched-chain amino acid catabolism resulted in energy and metabolic products to support survival during starvation. Gene expression analysis showed that the genes responsible for sugar metabolism were repressed as the cells entered nonculturability. The genes responsible for cell division were repressed, while autolysis and cell wall metabolism genes were induced neither at starvation nor during nonculturability. Taken together, these observations verify that carbohydrate-starved lactococci attain a nonculturable state wherein sugar metabolism, cell division, and autolysis are repressed, allowing the cells to maintain transcription, metabolic activity, and energy production during a state that produces new metabolites not associated with logarithmic growth.
Collapse
|