1
|
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V, López‐Otín C, Kroemer G. Acyl coenzyme A binding protein (ACBP): An aging- and disease-relevant "autophagy checkpoint". Aging Cell 2023; 22:e13910. [PMID: 37357988 PMCID: PMC10497816 DOI: 10.1111/acel.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Faculté de MédecineUniversité de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Department of CardiologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
- Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Carlos López‐Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
2
|
Ping L, Zhuoya L, Pei J, Jingchao C, Yi L, Guosheng L, Hailei W. Editing of a Specific Strain of Escherichia coli in the Mouse Gut Using Native Phages. Microbiol Spectr 2022; 10:e0180422. [PMID: 36301104 PMCID: PMC9770003 DOI: 10.1128/spectrum.01804-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
There is a lack of methodological investigation of the in situ functions of bacterial species in microecosystems. Here, we used native phages as a microbial editing tool for eliminating Escherichia coli strain MG1655 labeled with green fluorescent protein (GFP) in the mouse gut. The virulent phages (W1 and W3) possessed host specificity at both the genus and species levels, resulting in an 8.8-log10 difference in the titer of viable bacteria after 12 h of phage treatment compared with that in the phage-free control in an in vitro test. In vivo, they reduced strain MG1655 colonizing the mouse gut at concentrations of 106 to 108 CFU g-1 to a 102 CFU g-1 level, which is almost undetectable by the plate colony-counting method. Moreover, the impact of phage treatment on the microbial community structure of the mouse gut was not significant (P > 0.05), indicating that native phages can effectively edit a target bacterium, with limited perturbation of microbial diversity and relative abundance. Therefore, we developed an engineering technique for investigation of the functions of a specific bacterium by depleting its abundance in microecosystems. IMPORTANCE This report describes a gut engineering technique for investigation of the functions of a specific bacterium. Native phages with host specificity can knock down the corresponding E. coli strain in the mouse gut with limited perturbation of microbial diversity and relative abundance, indicating that they, as a microbial editing tool, can effectively edit the abundance of a target bacterium. Such an approach is undoubtedly of interest in the context of lack of knowledge of how to methodologically study the in situ function of a specific species in a complex microecosystem.
Collapse
Affiliation(s)
- Li Ping
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Zhuoya
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jia Pei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chen Jingchao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Yi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Liu Guosheng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wang Hailei
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Advanced Environmental Biotechnology Center, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Role of the Gut Microbiota in the Increased Infant Body Mass Index Induced by Gestational Diabetes Mellitus. mSystems 2022; 7:e0046522. [PMID: 36154141 PMCID: PMC9601173 DOI: 10.1128/msystems.00465-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The connection between gestational diabetes mellitus (GDM) and the offspring's development, such as obesity, is well established. Emerging evidence indicates that the microbiota of the neonate's meconium is associated with maternal GDM status. To explore whether the association between GDM and infant body mass index (BMI) in early childhood is affected by the meconium microbiota, we recruited 120 mothers (60 healthy women and 60 with GDM) and their newborns from the Women's Hospital of Nanjing Medical University. Meconium of 120 neonates was collected within a few hours after birth and sequenced using 16S rRNA sequencing analysis. Children's BMI was measured at 12 months of age. The results revealed that infants born to mothers with GDM had increased BMI Z-scores at 12 months old and that the β-diversity of their meconium microbiota was reduced. Several genera were observed to be significantly different between the GDM and control groups. The genus Burkholderia-Caballeronia-Paraburkholderia and an untitled genus in the family Enterobacteriaceae enriched in neonates born to healthy mothers were found to be negatively associated with infant BMI by using regression analysis. A coabundance group depleted in the GDM group was correlated negatively with 12-month BMI and mediated 21.65% of the association between GDM and infant BMI by mediation analyses. This study provided evidence for the associations among maternal GDM, the meconium microbiota, and infant BMI. Maternal GDM was demonstrated to affect infant BMI, mediated by the gut microbiome. Gut microbiome interventions might represent a novel technique to decrease the risk of GDM-induced childhood obesity. IMPORTANCE Using 16S rRNA sequencing analysis, regression analysis and mediation analysis were used to explore whether maternal gestational diabetes mellitus (GDM) changed the function and composition of the meconium microbiota and whether this explained the GDM-induced alterations of infant body mass index (BMI). This study showed that gut microbiome dysbiosis induced by maternal GDM might play an important role in the increased infant BMI during the first 12 months of life. Therefore, gut microbiome interventions might represent a novel technique to decrease the risk of GDM-induced childhood obesity.
Collapse
|
4
|
ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. Proc Natl Acad Sci U S A 2022; 119:e2207344119. [PMID: 36191214 PMCID: PMC9565466 DOI: 10.1073/pnas.2207344119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.
Collapse
|
5
|
Hu J, Yang J, Chen L, Meng X, Zhang X, Li W, Li Z, Huang G. Alterations of the Gut Microbiome in Patients With Pituitary Adenoma. Pathol Oncol Res 2022; 28:1610402. [PMID: 35991836 PMCID: PMC9385953 DOI: 10.3389/pore.2022.1610402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
Pituitary adenoma (PA) includes invasive pituitary adenoma (IPA) and noninvasive pituitary adenoma (NIPA), which are associated with the endocrine system. The gut microbiome plays an important role in human metabolism, but the association between the gut microbiome and pituitary adenoma remains unclear. A total of 44 subjects were enrolled in this study. Of these, 29 PA patients were further divided into IPA patients (n = 13) and NIPA patients (n = 16), while 15 healthy age-matched subjects were defined as control subjects. We collected faecal samples and characterized the gut microbial profiles by metagenomic sequencing using the Illumina X-ten platform. PLS-DA showed different microbial clusters among the three groups, and slightly different microbial ecological networks were observed. LEfSe analysis revealed significant alterations in the microbial community among PA patients. In particular, the enrichment of Clostridium innocuum, along with the reduced abundance of Oscillibacter sp. 57_20 and Fusobacterium mortiferum, were observed both in the IPA and NIPA groups compared to the control group. Moreover, PA patients could be effectively classified based on these bacteria using a support vector machine algorithm. In summary, this study demonstrated significant differences in the gut microbiome between PA patients and healthy controls. Future mechanistic experiments are needed to determine whether such alterations are a cause or consequence of pituitary adenoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Li S, Joseph A, Martins I, Kroemer G. Elevated plasma levels of the appetite-stimulator ACBP/DBI in fasting and obese subjects. Cell Stress 2021; 5:89-98. [PMID: 34308254 PMCID: PMC8283301 DOI: 10.15698/cst2021.07.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells release the phylogenetically ancient protein acyl coenzyme A binding protein (ACBP, which in humans is encoded by the gene DBI, diazepam binding inhibitor) upon nutrient deprivation. Accordingly, mice that are starved for one to two days and humans that undergo voluntary fasting for one to three weeks manifest an increase in the plasma concentration of ACBP/DBI. Paradoxically, ACBP/DBI levels also increase in obese mice and humans. Since ACBP/DBI stimulates appetite, this latter finding may explain why obesity constitutes a self-perpetuating state. Here, we present a theoretical framework to embed these findings in the mechanisms of weight control, as well as a bioinformatics analysis showing that, irrespective of the human cell or tissue type, one single isoform of ACBP/DBI (ACBP1) is preponderant (~90% of all DBI transcripts, with the sole exception of the testis, where it is ~70%). Based on our knowledge, we conclude that ACBP1 is subjected to a biphasic transcriptional and post-transcriptional regulation, explaining why obesity and fasting both are associated with increased circulating ACBP1 protein levels.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France.,SL and AJ equally contributed to this paper
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France.,SL and AJ equally contributed to this paper
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|