1
|
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell. Infect Immun 2019; 87:IAI.00428-19. [PMID: 31527121 DOI: 10.1128/iai.00428-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.
Collapse
|
2
|
Silva CJ, Lee BG, Yambao JC, Erickson-Beltran ML, Quiñones B. Using Nanospray Liquid Chromatography and Mass Spectrometry to Quantitate Shiga Toxin Production in Environmental Escherichia coli Recovered from a Major Produce Production Region in California. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1554-1562. [PMID: 30485086 DOI: 10.1021/acs.jafc.8b05324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A set of 45 environmental strains of Shiga toxin producing Escherichia coli (STEC) from three California counties were analyzed for Shiga toxin production by nanospray liquid chromatography-mass spectrometry and Vero cell bioassay. The STEC in this set comprised six serotypes ((O113:H21, O121:H19, O157:H7, O6:H34, O177:H25, and O185:H7) each containing either the stx2a or stx2c operon. Six of the seven O113:H21 were found to contain two distinct stx2a operons. Eight strains of O157:H7 possessed a stx2c operon whose A subunit gene was interrupted by an insertion sequence (IS1203v). Shiga toxin production was induced by nutrient depletion and quantitated by mass spectrometry. The 37 strains produced Shiga toxins in a near 50-fold range (1.4-49 ng/mL). The IS-interrupted strains expressed low but measurable amounts of the B subunits (0.5-1.9 ng/mL). Another strain possessed an identical stx operon without an IS interruption and produced intact Stx2c (5.7 ng/mL).
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Bertram G Lee
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Jaszemyn C Yambao
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Melissa L Erickson-Beltran
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| | - Beatriz Quiñones
- Produce Safety & Microbiology Research Unit , U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center , Albany , California 94710 , United States
| |
Collapse
|
3
|
Akiyama Y, Futai H, Saito E, Ogita K, Sakae H, Fukunaga M, Tsuji H, Chikahira M, Iguchi A. Shiga Toxin Subtypes and Virulence Genes in Escherichia coli Isolated from Cattle. Jpn J Infect Dis 2016; 70:181-185. [PMID: 27580573 DOI: 10.7883/yoken.jjid.2016.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Subtypes of stx1 and stx2 in 45 Shiga toxin-producing Escherichia coli (STEC) strains isolated from cattle were investigated by PCR. Only subtype stx1a was detected among all the stx1-positive strains. The major stx2 subtype was stx2a followed by stx2d, stx2c, stx2b, and stx2g in decreasing order of frequency. stx2c was found in strains of serotypes O157 and O174. stx2d was found in 11 strains. These strains were confirmed by DNA sequencing to carry both the activatable tail and the END motif; all were eae-negative, and 3 contained stx2d as the only stx. stx2g was found in 2 strains in association with stx2a, estA1, and astA. In addition, 7 hybrid strains of shigatoxigenic and enterotoxigenic E. coli (STEC/ETEC) were found to harbor one or both of stx1a and stx2a (stx1a/stx2a) and estA1. Among 27 serotypes of STEC strains isolated from cattle, O157:H7 and O109:H- strains were eae-positive. Other putative adhesin genes, such as saa, iha, espP, and lpfAO113 were detected in more than 12 serotypes.
Collapse
Affiliation(s)
- Yumi Akiyama
- Public Health Science Research Center, Hyogo Prefectural Institute of Public Health and Consumer Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shen J, Rump L, Ju W, Shao J, Zhao S, Brown E, Meng J. Virulence characterization of non-O157 Shiga toxin-producing Escherichia coli isolates from food, humans and animals. Food Microbiol 2015; 50:20-7. [DOI: 10.1016/j.fm.2015.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
5
|
Brandal LT, Wester AL, Lange H, Løbersli I, Lindstedt BA, Vold L, Kapperud G. Shiga toxin-producing escherichia coli infections in Norway, 1992-2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infect Dis 2015; 15:324. [PMID: 26259588 PMCID: PMC4531490 DOI: 10.1186/s12879-015-1017-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/08/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) infection is associated with haemolytic uremic syndrome (HUS). Therefore Norway has implemented strict guidelines for prevention and control of STEC infection. However, only a subgroup of STEC leads to HUS. Thus, identification of determinants differentiating high risk STEC (HUS STEC) from low risk STEC (non-HUS STEC) is needed to enable implementation of graded infectious disease response. METHODS A national study of 333 STEC infections in Norway, including one STEC from each patient or outbreak over two decades (1992-2012), was conducted. Serotype, virulence profile, and genotype of each STEC were determined by phenotypic or PCR based methods. The association between microbiological properties and demographic and clinical data was assessed by univariable analyses and multiple logistic regression models. RESULTS From 1992 through 2012, an increased number of STEC cases including more domestically acquired infections were notified in Norway. O157 was the most frequent serogroup (33.6 %), although a decrease of this serogroup was seen over the last decade. All 25 HUS patients yielded STEC with stx2, eae, and ehxA. In a multiple logistic regression model, age ≤5 years (OR = 16.7) and stx2a (OR = 30.1) were independently related to increased risk of HUS. eae and hospitalization could not be modelled since all HUS patients showed these traits. The combination of low age (≤5 years) and the presence of stx2a, and eae gave a positive predictive value (PPV) for HUS of 67.5 % and a negative predictive value (NPV) of 99.0 %. SF O157:[H7] and O145:H?, although associated with HUS in the univariable analyses, were not independent risk factors. stx1 (OR = 0.1) was the sole factor independently associated with a reduced risk of HUS (NPV: 79.7 %); stx2c was not so. CONCLUSIONS Our results indicate that virulence gene profile and patients' age are the major determinants of HUS development.
Collapse
Affiliation(s)
- Lin T Brandal
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
- Division of Infectious Disease Control, Department of Foodborne Infections, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403, Oslo, Norway.
| | - Astrid L Wester
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Heidi Lange
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Inger Løbersli
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | | | - Line Vold
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Georg Kapperud
- Division of Infectious Disease Control, The Norwegian Institute of Public Health, Oslo, Norway.
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
6
|
Miko A, Rivas M, Bentancor A, Delannoy S, Fach P, Beutin L. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Front Cell Infect Microbiol 2014; 4:78. [PMID: 24987616 PMCID: PMC4060028 DOI: 10.3389/fcimb.2014.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113 , terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113 , espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans.
Collapse
Affiliation(s)
- Angelika Miko
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR)Berlin, Germany
| | - Marta Rivas
- Servicio Fisiopatogenia, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”Buenos Aires, Argentina
| | - Adriana Bentancor
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Sabine Delannoy
- Food Safety Laboratory, French Agency for Food, Environmental and Occupational Health (Anses)Maisons-Alfort, France
| | - Patrick Fach
- Food Safety Laboratory, French Agency for Food, Environmental and Occupational Health (Anses)Maisons-Alfort, France
| | - Lothar Beutin
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR)Berlin, Germany
| |
Collapse
|
7
|
Characterization of Shiga toxin-producing Escherichia coli isolated from ground beef collected in different socioeconomic strata markets in Buenos Aires, Argentina. BIOMED RESEARCH INTERNATIONAL 2014; 2014:795104. [PMID: 25006586 PMCID: PMC4070525 DOI: 10.1155/2014/795104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022]
Abstract
Consumption of raw/undercooked ground beef is the most common route of transmission of Shiga toxin-producing E. coli (STEC). The aim of the study was to determine the STEC contamination level of the ground beef samples collected in 36 markets of different socioeconomic strata in Buenos Aires, Argentina, and the characterization of the isolated strains. Ninety-one out of 252 (36.1%) samples were stx+. Fifty-seven STEC strains were recovered. Eleven STEC strains belonged to O157 serogroup, and 46 to non-O157 serogroups. Virulence markers of the 57 STEC were stx1, 5.3% (3/57); stx2, 86.0% (49/57); stx1/stx2, 8.8% (5/57); ehxA, 61.4% (35/57); eae, 26.3% (15/57); saa, 24.6% (14/57). Shiga toxin subtypes were stx2, 31.5% (17/54); stx2c-vhb, 24.1% (13/54); stx2c-vha, 20.4% (11/54); stx2/stx2c-vha, 14.8% (8/54); stx2/stx2c-vhb, 5.6% (3/54); stx2c-vha/vhb, 3.7% (2/54). Serotypes O178:H19 and O157:H7 were prevalent. Contamination rate of STEC in all strata was high, and the highest O157 contamination was observed at low strata at several sampling rounds. Persistence of STEC was not detected. Sixteen strains (28.1%) were resistant to ampicillin, streptomycin, amikacin, or tetracycline. The STEC contamination level of ground beef could vary according to the sociocultural characteristics of the population.
Collapse
|
8
|
Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Appl Environ Microbiol 2014; 80:2928-40. [PMID: 24584253 DOI: 10.1128/aem.04058-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.
Collapse
|
9
|
Amézquita-López BA, Quiñones B, Lee BG, Chaidez C. Virulence profiling of Shiga toxin-producing Escherichia coli recovered from domestic farm animals in Northwestern Mexico. Front Cell Infect Microbiol 2014; 4:7. [PMID: 24551599 PMCID: PMC3908320 DOI: 10.3389/fcimb.2014.00007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/13/2014] [Indexed: 01/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic enteric pathogen that causes human gastrointestinal illnesses. The present study characterized the virulence profiles of O157 and non-O157 STEC strains, recovered from domestic animals in small rural farms within the agricultural Culiacan Valley in Mexico. Virulence genes coding for adhesins, cytotoxins, proteases, subtypes of Shiga toxin (Stx), and other effectors were identified in the STEC strains by PCR. The genotyping analysis revealed the presence of the effectors nleA, nleB, nleE, and nleH1-2, espK, and espN in the O157:H7 and O111:H8 STEC strains. Furthermore, the genes encoding the autoagglutinating adhesin (Saa) and subtilase (SubA) were exclusively identified in the O8:H19 eae-negative strains. The adhesin (iha) and the silent hemolysin (sheA) genes were detected in 79% of the O157 and non-O157 strains. To examine the relative toxicities of the STEC strains, a fluorescent Vero cell line, Vero-d2EGFPs, was employed to measure the inhibition of protein synthesis by Stx. Analysis of culture supernatants from serotype O8:H19 strains with the stx gene profile stx1a, stx2a, and stx2c and serotypes O75:H8 and O146:H8 strains with the stx gene profile stx1a, stx1c, and stx2b, resulted in a significant reduction in the Vero-d2EGFP fluorescent signal. These observations suggest that these non-O157 strains may have an enhanced ability to inhibit protein synthesis in Vero cells. Interestingly, analysis of the stx2c-positive O157:H7 strains resulted in a high fluorescent signal, indicating a reduced toxicity in the Vero-d2EGFP cells. These findings indicate that the O157 and non-O157 STEC strains, recovered in the Culiacan Valley, display distinct virulence profiles and relative toxicities in mammalian cells and have provided information for evaluating risks associated with zoonotic STEC in this agricultural region in Mexico.
Collapse
Affiliation(s)
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture/Agricultural Research Service, Western Regional Research Center Albany, CA, USA
| | - Bertram G Lee
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture/Agricultural Research Service, Western Regional Research Center Albany, CA, USA
| | - Cristóbal Chaidez
- Centro de Investigación en Alimentación y Desarrollo Culiacán, Mexico
| |
Collapse
|
10
|
Durso LM. Primary isolation of shiga toxigenic from environmental sources. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:1295-1307. [PMID: 24216409 DOI: 10.2134/jeq2013.02.0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since the time of the first microbe hunters, primary culture and isolation of bacteria has been a foundation of microbiology. Like other microbial methods, bacterial culture and isolation methodologies continue to develop. Although fundamental concepts like selection and enrichment are as relevant today as they were over 100 yr ago, advances in chemistry, molecular biology and bacterial ecology mean that today's culture and isolation techniques serve additional supporting roles. The primary isolation of Shiga toxigenic (STEC) from environmental sources relies on enriching the target while excluding extensive background flora. Due to the complexity of environmental substrates, no single method can be recommended; however, common themes are discussed. Brilliant Green Bile Broth, with or without antibiotics, is one of many broths used successfully for selective STEC enrichment. Stressed cells may require a pre-enrichment recovery step in a nonselective broth such as buffered peptone water. After enrichment, immunomagnetic separation with serotype specific beads drastically increases the chances for recovery of STEC from environmental or insect sources. Some evidence suggests that acid treating the recovered beads can further enhance isolation. Although it is common in human clinical, food safety, and water quality applications to plate the recovered beads on Sorbitol MacConkey Agar, other chromogenic media, such as modified CHROMagar, have proven helpful in field and outbreak applications, allowing the target to be distinguished from the numerous background flora. Optimum conditions for each sample and target must be determined empirically, highlighting the need for a better understanding of STEC ecology.
Collapse
|
11
|
Shen J, Wang F, Li F, Housley R, Carolan H, Yasuda I, Burrows E, Binet R, Sampath R, Zhang J, Allard MW, Meng J. Rapid Identification and Differentiation of Non-O157 Shiga Toxin–ProducingEscherichia coliUsing Polymerase Chain Reaction Coupled to Electrospray Ionization Mass Spectrometry. Foodborne Pathog Dis 2013; 10:737-43. [DOI: 10.1089/fpd.2012.1469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jinling Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
- Zhangjiagang Entry-Exit Inspection and Quarantine Bureau, Zhangjiagang, Jiangsu Province, China
| | - Fei Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Feng Li
- Ibis Biosciences, Abbott, Carlsbad, California
| | | | | | | | - Erik Burrows
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Rachel Binet
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | | | | | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Jianghong Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| |
Collapse
|
12
|
Cooley MB, Jay-Russell M, Atwill ER, Carychao D, Nguyen K, Quiñones B, Patel R, Walker S, Swimley M, Pierre-Jerome E, Gordus AG, Mandrell RE. Development of a robust method for isolation of shiga toxin-positive Escherichia coli (STEC) from fecal, plant, soil and water samples from a leafy greens production region in California. PLoS One 2013; 8:e65716. [PMID: 23762414 PMCID: PMC3675059 DOI: 10.1371/journal.pone.0065716] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/26/2013] [Indexed: 12/31/2022] Open
Abstract
During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (stx)-producing Escherichia coli (STEC). Overall, 357 and 1,912 samples were positive for E. coli O157:H7 (2.6%) or non-O157 STEC (14.0%), respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA) resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%), feral swine (4.7%), sediment (4.4%), and water (3.3%) samples were positive for E. coli O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%), feral swine (21.4%), birds (2.4%), small mammals (3.5%), deer or elk (8.3%), water (14.0%), sediment (12.3%), produce (0.3%) and soil adjacent to produce (0.6%). stx1, stx2 and stx1/stx2 genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the "Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.
Collapse
Affiliation(s)
- Michael B Cooley
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Distribution of pathogenicity islands OI-122, OI-43/48, and OI-57 and a high-pathogenicity island in Shiga toxin-producing Escherichia coli. Appl Environ Microbiol 2013; 79:3406-12. [PMID: 23524679 DOI: 10.1128/aem.03661-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.
Collapse
|
14
|
Fujioka M, Otomo Y, Ahsan CR. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli. J Microbiol Methods 2013; 92:289-92. [DOI: 10.1016/j.mimet.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 11/25/2022]
|
15
|
Lascowski KMS, Guth BEC, Martins FH, Rocha SPD, Irino K, Pelayo JS. Shiga toxin-producing Escherichia coli in drinking water supplies of north Paraná State, Brazil. J Appl Microbiol 2013; 114:1230-9. [PMID: 23279284 DOI: 10.1111/jam.12113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
Abstract
AIM To determine the occurrence and characteristics of Shiga toxin-producing Escherichia coli (STEC) in drinking water supplies treated and untreated. METHODS AND RESULTS Drinking water samples (n = 1850) were collected from 41 municipalities in the north of Paraná State between February 2005 and January 2006. Escherichia coli isolates (n = 300) were recovered from water and investigated for the presence of virulence markers related to STEC by PCR. STEC isolates recovered were then characterized for both phenotypic and genotypic traits. A total of 12 isolates (11 from untreated water and one from treated water) were positive for stx, including five positive for both stx1 and stx2, two positive for stx1 and five positive for stx2. None of the STEC isolates contained eae, but other virulence genes were observed such as ehxA (100%), saa (100%), lpfAO113 (75%), iha (42%), subAB (25%) and cdtV (8%). Multidrug resistance was identified in 25% of the STEC isolates. The 12 STEC isolates belonged to seven distinct serotypes and pulsed-field gel electrophoresis typing revealed the presence of two clusters and two clones in this region. CONCLUSION Drinking water, especially from untreated water supplies, can be source of STEC strains potentially pathogenic for humans. SIGNIFICANCE AND IMPACT OF THE STUDY The investigation of the drinking water supplies for pathogenic E. coli, as STEC, may be useful to prevent waterborne outbreaks.
Collapse
Affiliation(s)
- K M S Lascowski
- Department of Microbiology, Immunology and Parasitology - Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Ju W, Shen J, Li Y, Toro MA, Zhao S, Ayers S, Najjar MB, Meng J. Non-O157 Shiga toxin-producing Escherichia coli in retail ground beef and pork in the Washington D.C. area. Food Microbiol 2012; 32:371-7. [DOI: 10.1016/j.fm.2012.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022]
|
17
|
Rahal EA, Kazzi N, Nassar FJ, Matar GM. Escherichia coli O157:H7-Clinical aspects and novel treatment approaches. Front Cell Infect Microbiol 2012; 2:138. [PMID: 23162800 PMCID: PMC3498739 DOI: 10.3389/fcimb.2012.00138] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/19/2012] [Indexed: 12/25/2022] Open
Abstract
Escherichia coli O157:H7 is a notorious pathogen often contracted by intake of contaminated water or food. Infection with this agent is associated with a broad spectrum of illness ranging from mild diarrhea and hemorrhagic colitis to the potentially fatal hemolytic uremic syndrome (HUS). Treating E. coli O157:H7 infection with antimicrobial agents is associated with an increased risk of severe sequelae such as HUS. The difficulty in treating this bacterium using conventional modalities of antimicrobial agent administration has sparked an interest in investigating new therapeutic approaches to this bacterium. These approaches have included the use of probiotic agents and natural products with variable success rates. In addition, novel modalities and regimen of antimicrobial agent administration have been assessed in an attempt at decreasing their association with aggravating infection outcomes.
Collapse
Affiliation(s)
- Elias A Rahal
- Faculty of Medicine, Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut Beirut, Lebanon
| | | | | | | |
Collapse
|
18
|
He X, Quiñones B, McMahon S, Mandrell RE. A single-step purification and molecular characterization of functional Shiga toxin 2 variants from pathogenic Escherichia coli. Toxins (Basel) 2012; 4:487-504. [PMID: 22852065 PMCID: PMC3407889 DOI: 10.3390/toxins4070487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/15/2022] Open
Abstract
A one-step affinity chromatography method was developed to purify Shiga toxin 2 variants (Stx2) Stx2a, Stx2c, Stx2d and Stx2g from bacterial culture supernatants. Analysis of the purified Stx2 variants by denaturing gel electrophoresis revealed 32 kDa and 7 kDa protein bands, corresponding to the Stx2A- and B-subunits, respectively. However, native gel electrophoresis indicated that purified Stx2c and Stx2d were significantly higher in molecular weight than Stx2a and Stx2g. In a cytotoxicity assay with Hela cells, the 50% cytotoxic dose of Stx2a and Stx2g were 100 pg and 10 pg, respectively, but 1 ng each for Stx2c and Stx2d. Interestingly, analysis of the 50% inhibitory dose in a cell-free translational system from rabbit reticulocyte lysates indicated that Stx2g had a lower capacity to inhibit protein synthesis than the other Stx2 variants. The cytotoxicities in Hela cells were neutralized with an anti-Stx2B antibody and were denatured at 80 °C for 1 h. These findings demonstrated that Stx2 variants exhibited different toxicities, holotoxin structure, and stabilities using distinct systems for assessing toxin activities. The development of a simple method for purification of Stx2 variants will enable further studies of Stx2-mediated toxicity in various model systems.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|
19
|
Fogg PCM, Saunders JR, McCarthy AJ, Allison HE. Cumulative effect of prophage burden on Shiga toxin production in Escherichia coli. MICROBIOLOGY-SGM 2011; 158:488-497. [PMID: 22096150 DOI: 10.1099/mic.0.054981-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shigatoxigenic Escherichia coli (STEC) such as E. coli O157 are significant human pathogens, capable of producing severe, systemic disease outcomes. The more serious symptoms associated with STEC infection are primarily the result of Shiga toxin (Stx) production, directed by converting Stx bacteriophages. During phage-mediated replication and host cell lysis, the toxins are released en masse from the bacterial cells, and the severity of disease is linked inexorably to toxin load. It is common for a single bacterial host to harbour more than one heterogeneous Stx prophage, and it has also been recently proven that multiple isogenic prophage copies can exist in a single cell, contrary to the lambda immunity model. It is possible that in these multiple lysogens there is an increased potential for production of Stx. This study investigated the expression profiles of single and double isogenic lysogens of Stx phage 24(B) using quantitative PCR to examine transcription levels, and a reporter gene construct as a proxy for the translation levels of stx transcripts. Toxin gene expression in double lysogens was in excess of the single lysogen counterpart, both in the prophage state and after induction of the lytic life cycle. In addition, double lysogens were found to be more sensitive to an increased induction stimulus than single lysogens, suggesting that maintenance of a stable prophage is less likely when multiple phage genome copies are present. Overall, these data demonstrate that the phenomenon of multiple lysogeny in STEC has the potential to impact upon disease pathology through increased toxin load.
Collapse
Affiliation(s)
- Paul C M Fogg
- University of Liverpool, Microbiology Research Group, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, Merseyside L69 7ZB, UK
| | - Jon R Saunders
- University of Liverpool, Microbiology Research Group, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, Merseyside L69 7ZB, UK
| | - Alan J McCarthy
- University of Liverpool, Microbiology Research Group, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, Merseyside L69 7ZB, UK
| | - Heather E Allison
- University of Liverpool, Microbiology Research Group, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, Merseyside L69 7ZB, UK
| |
Collapse
|
20
|
Profile of Shiga toxin-producing Escherichia coli strains isolated from dogs and cats and genetic relationships with isolates from cattle, meat and humans. Vet Microbiol 2011; 156:336-42. [PMID: 22119188 DOI: 10.1016/j.vetmic.2011.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 11/24/2022]
Abstract
Pets can be reservoirs of Shiga toxin-producing Escherichia coli (STEC) strains. The aim of this study was to examine nine strains belonging to several serotypes (O91:H21, O91:H16, O178:H19, O8:H19, O22:H8, O22:HNT, ONT:H8), previously recovered from cats or dogs. To this end, we assessed a set of additional virulence genes (stx(2) subtype, subAB, ehxA, eae and saa), cytotoxic activity, and genetic relationships with strains isolated from cattle, meat and humans using pulsed-field gel electrophoresis (PFGE). Most of the isolates carried the stx(2) and/or stx(2vh-b) sequences, while only the O91:H21 isolate presented the mucus-activatable stx(2d) variant, as confirmed by sequencing the genes of subunits A and B. All the strains showed cytotoxic activity in cultured cells. One of the two O178:H19, selected for its high level of cytotoxicity in Vero cells, showed the ability to cause functional alterations in the human colon mucosa in vitro. None of the strains possessed the subAB, eae or saa genes and only the strains belonging to serotype O8:H19 carried the ehxA gene. The isolates shared 90-100% similarity by PFGE to epidemiologically unrelated strains of the corresponding serotypes recovered from cattle, meat or humans. Our results demonstrate that dogs and cats may have a role in the infection of humans by STEC, probably serving as a vehicle for bovine strains in the cycle of human infection, and thus emphasize the health risks for owners and their families.
Collapse
|
21
|
Bosilevac JM, Koohmaraie M. Prevalence and characterization of non-O157 shiga toxin-producing Escherichia coli isolates from commercial ground beef in the United States. Appl Environ Microbiol 2011; 77:2103-12. [PMID: 21257806 PMCID: PMC3067332 DOI: 10.1128/aem.02833-10] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 is a Shiga toxin (stx)-producing E. coli (STEC) strain that has been classified as an adulterant in U.S. beef. However, numerous other non-O157 STEC strains are associated with diseases of various severities and have become an increasing concern to the beef industry, regulatory officials, and the public. This study reports on the prevalence and characterization of non-O157 STEC in commercial ground beef samples (n = 4,133) obtained from numerous manufacturers across the United States over a period of 24 months. All samples were screened by DNA amplification for the presence of Shiga toxin genes, which were present in 1,006 (24.3%) of the samples. Then, culture isolation of an STEC isolate from all samples that contained stx(1) and/or stx(2) was attempted. Of the 1,006 positive ground beef samples screened for stx, 300 (7.3% of the total of 4,133) were confirmed to have at least one strain of STEC present by culture isolation. In total, 338 unique STEC isolates were recovered from the 300 samples that yielded an STEC isolate. All unique STEC isolates were serotyped and were characterized for the presence of known virulence factors. These included Shiga toxin subtypes, intimin subtypes, and accessory virulence factors related to adherence (saa, iha, lifA), toxicity (cnf, subA, astA), iron acquisition (chuA), and the presence of the large 60-MDa virulence plasmid (espP, etpD, toxB, katP, toxB). The isolates were also characterized by use of a pathogenicity molecular risk assessment (MRA; based on the presence of various O-island nle genes). Results of this characterization identified 10 STEC isolates (0.24% of the 4,133 total) that may be considered a significant food safety threat, defined by the presence of eae, subA, and nle genes.
Collapse
Affiliation(s)
- Joseph M Bosilevac
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, NE 68933-0166, USA.
| | | |
Collapse
|
22
|
Martin A, Beutin L. Characteristics of Shiga toxin-producing Escherichia coli from meat and milk products of different origins and association with food producing animals as main contamination sources. Int J Food Microbiol 2011; 146:99-104. [DOI: 10.1016/j.ijfoodmicro.2011.01.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/23/2010] [Accepted: 01/29/2011] [Indexed: 11/25/2022]
|
23
|
Abstract
Purified Shiga toxin (Stx) alone is capable of producing systemic complications, including hemolytic-uremic syndrome (HUS), in animal models of disease. Stx includes two major antigenic forms (Stx1 and Stx2), with minor variants of Stx2 (Stx2a to -h). Stx2a is more potent than Stx1. Epidemiologic studies suggest that Stx2 subtypes also differ in potency, but these differences have not been well documented for purified toxin. The relative potencies of five purified Stx2 subtypes, Stx2a, Stx2b, Stx2c, Stx2d, and activated (elastase-cleaved) Stx2d, were studied in vitro by examining protein synthesis inhibition using Vero monkey kidney cells and inhibition of metabolic activity (reduction of resazurin to fluorescent resorufin) using primary human renal proximal tubule epithelial cells (RPTECs). In both RPTECs and Vero cells, Stx2a, Stx2d, and elastase-cleaved Stx2d were at least 25 times more potent than Stx2b and Stx2c. In vivo potency in mice was also assessed. Stx2b and Stx2c had potencies similar to that of Stx1, while Stx2a, Stx2d, and elastase-cleaved Stx2d were 40 to 400 times more potent than Stx1.
Collapse
|
24
|
Verotoxins in bovine and meat verotoxin-producing Escherichia coli isolates: type, number of variants, and relationship to cytotoxicity. Appl Environ Microbiol 2010; 77:73-9. [PMID: 21037301 DOI: 10.1128/aem.01445-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we determined vt subtypes and evaluated verotoxicity in basal as well as induced conditions of verotoxin-producing Escherichia coli (VTEC) strains isolated from cattle and meat products. Most (87%) of the 186 isolates carried a vt(2) gene. Moreover, the vt(2) subtype, which is associated with serious disease, was present in 42% of our VTEC collection. The other vt subtypes detected were vt(1), vt(1d), vt(2vha), vt(2vhb), vt(2O118), vt(2d) (mucus activatable), and vt(2g). A total of 41 (22%) of the isolates possessed more than one vt subtype in its genome, and among them the most frequent combination was vt(1)/vt(2), but we also observed multiple combinations among vt(2) subtypes. Differences in verotoxicity titers were found among a selection of 54 isolates. Among isolates with a single vt(2) variant, those carrying the vt(2) subtype had high titers under both uninduced and induced conditions. However, the highest increase in cytotoxicity under mitomycin C treatment was detected among the strains carrying vt(2vha) or vt(2hb) variants. Notably, the isolates carrying the vt(1) subtype showed a lesser increase than that of most of the vt(2)-positive VTEC strains. Furthermore, the presence of more than one vt gene variant in the same isolate was not reflected in higher titers, and generally the titers were lower than those for strains with only one gene variant. The main observation was that both basal and induced cytotoxic effects seemed to be associated with the type and number of vt variants more than with the serotype or origin of the isolate.
Collapse
|
25
|
Quantification of Shiga toxin-converting bacteriophages in wastewater and in fecal samples by real-time quantitative PCR. Appl Environ Microbiol 2010; 76:5693-701. [PMID: 20622134 DOI: 10.1128/aem.00107-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin-converting bacteriophages (Stx phages) are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7. Stx phages are released from their bacterial hosts after lytic induction and remain free in the environment. Samples were analyzed for the presence of free Stx phages by an experimental approach based on the use of real-time quantitative PCR (qPCR), which enables stx to be detected in the DNA from the viral fraction of each sample. A total of 150 samples, including urban raw sewage samples, wastewater samples with fecal contamination from cattle, pigs, and poultry, and fecal samples from humans and diverse animals, were used in this study. Stx phages were detected in 70.0% of urban sewage samples (10 to 10(3) gene copies [GC] per ml) and in 94.0% of animal wastewater samples of several origins (10 to 10(10) GC per ml). Eighty-nine percent of cattle fecal samples were positive for Stx phages (10 to 10(5) GC per g of sample), as were 31.8% of other fecal samples of various origins (10 to 10(4) GC per g of sample). The stx(2) genes and stx(2) variants were detected in the viral fraction of some of the samples after sequencing of stx(2) fragments amplified by conventional PCR. The occurrence and abundance of Stx phages in the extraintestinal environment confirm the role of Stx phages as a reservoir of stx in the environment.
Collapse
|
26
|
Osés S, Rantsiou K, Cocolin L, Jaime I, Rovira J. Prevalence and quantification of Shiga-toxin producing Escherichia coli along the lamb food chain by quantitative PCR. Int J Food Microbiol 2010; 141 Suppl 1:S163-9. [DOI: 10.1016/j.ijfoodmicro.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/29/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
|
27
|
dos Santos LF, Irino K, Vaz TMI, Guth BEC. Set of virulence genes and genetic relatedness of O113 : H21 Escherichia coli strains isolated from the animal reservoir and human infections in Brazil. J Med Microbiol 2010; 59:634-640. [DOI: 10.1099/jmm.0.015263-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli strains of serotype O113 : H21 are commonly described as belonging to a Shiga toxin (Stx)-producing E. coli (STEC) pathotype worldwide. Albeit this STEC serotype is frequently identified among cattle and other domestic animals, to the best of our knowledge no human infections associated with STEC O113 : H21 have been registered in Brazil to date. Here, we report the virulence profile and genetic relatedness of a collection of O113 : H21 E. coli strains mainly isolated from the animal reservoir aimed at determining their potential as human pathogens. The strains from the animal reservoir (n=34) were all classified as STEC, whereas the few isolates recovered so far from human diarrhoea (n=3) lacked stx genes. Among the STEC, the stx
2d-activatable gene was identified in 85 % of the strains that also carried lpfA
O113, iha, saa, ehxA, subAB, astA, cdt-V, espP, espI and epeA; the human strains harboured only lpfA
O113, iha and astA. All the strains except one, isolated from cattle, were genetically classified as phylogenetic group B1. High mass plasmids were observed in 25 isolates, but only in the STEC group were these plasmids confirmed as the STEC O113 megaplasmid (pO113). Many closely related subgroups (more than 80 % similarity) were identified by PFGE, with human isolates clustering in a subgroup separate from most of the animal isolates. In conclusion, potentially pathogenic O113 : H21 STEC isolates carrying virulence markers in common with O113 : H21 clones associated with haemolytic uraemic syndrome cases in other regions were demonstrated to occur in the natural reservoir in our settings, and therefore the risk represented by them to public health should be carefully monitored.
Collapse
Affiliation(s)
- Luis Fernando dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kinue Irino
- Section of Bacteriology, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Flagler MJ, Mahajan SS, Kulkarni AA, Iyer SS, Weiss AA. Comparison of binding platforms yields insights into receptor binding differences between shiga toxins 1 and 2. Biochemistry 2010; 49:1649-57. [PMID: 20092352 DOI: 10.1021/bi902084y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-glycan interactions are typically very weak, and avid binding is achieved when proteins express multiple glycan binding sites. Shiga toxin (Stx) uses glycan receptors to enter cells. Stx has five identical binding subunits, each with three nonidentical glycan binding sites. Previous studies examined binding to biantennary glycans expressing Pk trisaccharide mimics immobilized on streptavidin, resulting in display of four trisaccharides per streptavidin face. Stx1 preferred the Pk trisaccharide of its native receptor, globotriaosylceramide (Gb3), while the more potent and clinically relevant variant, Stx2, preferred the Pk trisaccharide with the terminal galactose replaced with N-acetylgalactosamine (NHAc-Pk). In the present study, binding of Stxs to Pk analogues was examined using two experimental platforms, ELISA and surface plasmon resonance (SPR). ELISA was more sensitive than SPR. Sensitivity in the ELISA was due to high streptavidin density, suggesting that avid binding may require engagement of more than four trisaccharides. Selectivity for the Pk analogues was maintained in both experimental platforms. Glycan preference was mapped to binding site 2, since reciprocal mutation of a single amino acid (asparagine 32 of Stx1 B-subunit/serine 31 of Stx2 B-subunit) reversed binding preference. However, native Stx1 bound well to plates loaded with a 50:50 mixture of Pk-NHAc-Pk, while Stx2 bound less efficiently, suggesting that one of the Stx1 binding sites may only engage Pk, while another may tolerate either Pk or NHAc-Pk. Varying glycan structure and density across different in vitro binding platforms revealed important differences in receptor binding properties between Stx1 and Stx2.
Collapse
Affiliation(s)
- Michael J Flagler
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
29
|
Presence and characterization of shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats. Appl Environ Microbiol 2010; 76:1709-17. [PMID: 20080990 DOI: 10.1128/aem.01968-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx(1) and stx(2), 2 positive for stx(1), and 10 positive for stx(2). The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx(2) genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.
Collapse
|
30
|
Molecular analysis of virulence profiles and Shiga toxin genes in food-borne Shiga toxin-producing Escherichia coli. Appl Environ Microbiol 2009; 75:6187-97. [PMID: 19684176 DOI: 10.1128/aem.00874-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, 75 Shiga toxin (Stx)-producing Escherichia coli (STEC) strains originating from foods (n = 73) and drinking water (n = 2) were analyzed for their stx genotype, as well as for further chromosome-, phage-, and plasmid-encoded virulence factors. A broad spectrum of stx genes was detected. Fifty-three strains (70.7%) contained stx(2) or stx(2) variants, including stx(2d), mucus-activatable stx(2d), stx(2e), and stx(2g). Seven strains (9.3%) harbored stx(1) or stx(1c), and 15 strains (20.0%) carried both stx(2) and/or stx(2) variants and stx(1) or stx(1c). Beside stx, the most abundant accessory virulence markers in STEC food isolates were iha (57.3%), ehxA (40.0%), espP (28.0%), and subAB (25.3%). Only four strains were eae positive; three of these belonged to the serogroups O26, O103, and O157 and contained a typical enterohemorrhagic E. coli virulence spectrum. The results of this study show that a number of STEC strains that occur in foods appear to be pathogenic for humans, based on their virulence profiles. Analysis of stx subtypes and detection of additional virulence factors in eae-negative strains may help to better assess the risk of such strains for causing human infection.
Collapse
|
31
|
Shiga toxin, cytolethal distending toxin, and hemolysin repertoires in clinical Escherichia coli O91 isolates. J Clin Microbiol 2009; 47:2061-6. [PMID: 19403777 DOI: 10.1128/jcm.00201-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains of serogroup O91 are the most common human pathogenic eae-negative STEC strains. To facilitate diagnosis and subtyping of these pathogens, we genotypically and phenotypically characterized 100 clinical STEC O91 isolates. Motile strains expressed flagellar antigens H8 (1 strain), H10 (2 strains), H14 (52 strains), and H21 (20 strains) or were H nontypeable (Hnt) (10 strains); 15 strains were nonmotile. All nonmotile and Hnt strains possessed the fliC gene encoding the flagellin subunit of the H14 antigen (fliC(H14)). Most STEC O91 strains possessed enterohemorrhagic E. coli hlyA and expressed an enterohemolytic phenotype. Among seven stx alleles identified, stx(2dact), encoding mucus- and elastase-activatable Stx2d, was present solely in STEC O91:H21, whereas most strains of the other serotypes possessed stx(1). Moreover, only STEC O91:H21 possessed the cdt-V cluster, encoding cytolethal distending toxin V; the toxin was regularly expressed and was lethal to human microvascular endothelial cells. Infection with STEC O91:H21 was associated with hemolytic-uremic syndrome (P = 0.0015), whereas strains of the other serotypes originated mostly in patients with nonbloody diarrhea. We conclude that STEC O91 clinical isolates belong to at least four lineages that differ by H antigens/fliC types, stx genotypes, and non-stx putative virulence factors, with accumulation of virulence determinants in the O91:H21 lineage. Isolation of STEC O91 from patients' stools on enterohemolysin agar and the rapid initial subtyping of these isolates using fliC genotyping facilitate the identification of these emerging pathogens in clinical and epidemiological studies and enable prediction of the risk of a severe clinical outcome.
Collapse
|
32
|
Lenahan M, O’Brien S, Byrne C, Ryan M, Kennedy CA, McNamara E, Fanning S, Sheridan J, Sweeney T. Molecular characterization of Irish E. coli O157:H7 isolates of human, bovine, ovine and porcine origin. J Appl Microbiol 2009; 107:1340-9. [DOI: 10.1111/j.1365-2672.2009.04320.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Madic J, Lecureuil C, Dilasser F, Derzelle S, Jamet E, Fach P, Auvray F. Screening of food raw materials for the presence of Shiga toxin-producingEscherichia coliO91:H21. Lett Appl Microbiol 2009; 48:447-51. [DOI: 10.1111/j.1472-765x.2008.02549.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Detection and characterization of the fimbrial sfp cluster in enterohemorrhagic Escherichia coli O165:H25/NM isolates from humans and cattle. Appl Environ Microbiol 2008; 75:64-71. [PMID: 18978078 DOI: 10.1128/aem.01815-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sfp cluster, encoding Sfp fimbriae and located in the large plasmid of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157 (pSFO157), has been considered a unique characteristic of this organism. We discovered and then characterized the sfp cluster in EHEC O165:H25/NM (nonmotile) isolates of human and bovine origin. All seven strains investigated harbored a complete sfp cluster (carrying sfpA, sfpH, sfpC, sfpD, sfpJ, sfpF, and sfpG) of 6,838 bp with >99% nucleotide sequence homology to the sfp cluster of SF EHEC O157:NM. The sfp cluster in EHEC O165:H25/NM strains was located in an approximately 80-kb (six strains) or approximately 120-kb (one strain) plasmid which differed in structure, virulence genes, and sfp flanks from pSFO157. All O165:H25/NM strains belonged to the same multilocus sequence type (ST119) and were only distantly phylogenetically related to SF EHEC O157:NM (ST11). The highly conserved sfp cluster in different clonal backgrounds suggests that this segment was acquired independently by EHEC O165:H25 and SF EHEC O157:NM. Its presence in an additional EHEC serotype extends the diagnostic utility of PCR targeting sfpA as an easy and efficient approach to seek EHEC in patients' stools. The reasons for the convergence of pathogenic EHEC strains on a suite of virulence loci remain unknown.
Collapse
|