1
|
Astorch-Cardona A, Bertaux L, Denis Y, Dolla A, Rommevaux C. Diversity and dynamics of bacteria from iron-rich microbial mats and colonizers in the Mediterranean Sea (EMSO-Western Ligurian Sea Observatory): Focus on Zetaproteobacteria. PLoS One 2024; 19:e0305626. [PMID: 39008445 PMCID: PMC11249232 DOI: 10.1371/journal.pone.0305626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Autotrophic microaerophilic iron-oxidizing Zetaproteobacteria seem to play an important role in mineral weathering and metal corrosion in different environments. Here, we compare the bacterial and zetaproteobacterial communities of a mature iron-rich mat together with in situ incubations of different Fe-bearing materials at the EMSO-Ligure West seafloor observatory, which is located on the abyssal plain in the NW Mediterranean Sea. Our results on bacterial communities enable us to make a clear distinction between those growing on mild steel anthropic substrata and those developing on basaltic substrata. Moreover, on anthropic substrata we highlight an influence of mat age on the bacterial communities. Regarding zetaproteobacterial communities, our results point to an increase in ZetaOTUs abundance and diversification with the age of the mat. We corroborate the key role of the ZetaOTU 2 in mat construction, whatever the environment, the substrata on which they develop or the age of the mat. We also show that ZetaOTU 28 is specific to anthropogenic substrata. Finally, we demonstrate the advantage of using dPCR to precisely quantify very low abundant targets, as Zetaproteobacteria on our colonizers. Our study, also, allows to enrich our knowledge on the biogeography of Zetaproteobacteria, by adding new information on this class and their role in the Mediterranean Sea.
Collapse
Affiliation(s)
| | | | - Yann Denis
- Institut de Microbiologie de la Méditerranée, CNRS - Aix Marseille Université, Marseille, France
| | - Alain Dolla
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Céline Rommevaux
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
2
|
Astorch-Cardona A, Odin GP, Chavagnac V, Dolla A, Gaussier H, Rommevaux C. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats from the Lucky Strike hydrothermal field (EMSO-Azores observatory). Appl Environ Microbiol 2024; 90:e0204123. [PMID: 38193671 PMCID: PMC10880625 DOI: 10.1128/aem.02041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Zetaproteobacteria have been reported in different marine and terrestrial environments all over the globe. They play an essential role in marine iron-rich microbial mats, as one of their autotrophic primary producers, oxidizing Fe(II) and producing Fe-oxyhydroxides with different morphologies. Here, we study and compare the Zetaproteobacterial communities of iron-rich microbial mats from six different sites of the Lucky Strike Hydrothermal Field through the use of the Zetaproteobacterial operational taxonomic unit (ZetaOTU) classification. We report for the first time the Zetaproteobacterial core microbiome of these iron-rich microbial mats, which is composed of four ZetaOTUs that are cosmopolitan and essential for the development of the mats. The study of the presence and abundance of different ZetaOTUs among sites reveals two clusters, which are related to the lithology and permeability of the substratum on which they develop. The Zetaproteobacterial communities of cluster 1 are characteristic of poorly permeable substrata, with little evidence of diffuse venting, while those of cluster 2 develop on hydrothermal slabs or deposits that allow the percolation and outflow of diffuse hydrothermal fluids. In addition, two NewZetaOTUs 1 and 2 were identified, which could be characteristic of anthropic iron and unsedimented basalt, respectively. We also report significant correlations between the abundance of certain ZetaOTUs and that of iron oxide morphologies, indicating that their formation could be taxonomically and/or environmentally driven. We identified a new morphology of Fe(III)-oxyhydroxides that we named "corals." Overall, our work contributes to the knowledge of the biogeography of this bacterial class by providing additional data from the Atlantic Ocean, a lesser-studied ocean in terms of Zetaproteobacterial diversity.IMPORTANCEUp until now, Zetaproteobacterial diversity studies have revealed possible links between Zetaproteobacteria taxa, habitats, and niches. Here, we report for the first time the Zetaproteobacterial core microbiome of iron-rich mats from the Lucky Strike Hydrothermal Field (LSHF), as well as two new Zetaproteobacterial operational taxonomic units (NewZetaOTUs) that could be substratum specific. We highlight that the substratum on which iron-rich microbial mats develop, especially because of its permeability to diffuse hydrothermal venting, has an influence on their Zetaproteobacterial communities. Moreover, our work adds to the knowledge of the biogeography of this bacterial class by providing additional data from the hydrothermal vent sites along the Mid-Atlantic Ridge. In addition to the already described iron oxide morphologies, we identify in our iron-rich mats a new morphology that we named corals. Finally, we argue for significant correlations between the relative abundance of certain ZetaOTUs and that of iron oxide morphologies, contributing to the understanding of the drivers of iron oxide production in iron-oxidizing bacteria.
Collapse
Affiliation(s)
- Aina Astorch-Cardona
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giliane P. Odin
- Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Marne-la-Vallée, France
| | - Valérie Chavagnac
- Géosciences Environnement Toulouse, CNRS UMR 5563 (CNRS/UPS/IRD/CNES), Université de Toulouse, Observatoire Midi-Pyrénées, Toulouse, France
| | - Alain Dolla
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Gaussier
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Céline Rommevaux
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
3
|
Fullerton H, Smith L, Enriquez A, Butterfield D, Wheat CG, Moyer CL. Seafloor incubation experiments at deep-sea hydrothermal vents reveal distinct biogeographic signatures of autotrophic communities. FEMS Microbiol Ecol 2024; 100:fiae001. [PMID: 38200713 PMCID: PMC10808952 DOI: 10.1093/femsec/fiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - Lindsey Smith
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| | - Alejandra Enriquez
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - David Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, John M. Wallace Hall, 3737 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - C Geoffrey Wheat
- Institute of Marine Studies, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, 245 O’Neill Building, PO Box 757220, Fairbanks, Alaska 99775-7220, United States
| | - Craig L Moyer
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| |
Collapse
|
4
|
Masuda N, Kato S, Ohkuma M, Endo K. Metagenomic Insights into Ecophysiology of Zetaproteobacteria and Gammaproteobacteria in Shallow Zones within Deep-sea Massive Sulfide Deposits. Microbes Environ 2024; 39:ME23104. [PMID: 39343535 PMCID: PMC11427306 DOI: 10.1264/jsme2.me23104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Deep-sea massive sulfide deposits serve as energy sources for chemosynthetic ecosystems in dark, cold environments even after hydrothermal activity ceases. However, the vertical distribution of microbial communities within sulfide deposits along their depth from the seafloor as well as their ecological roles remain unclear. We herein conducted a culture-independent metagenomic ana-lysis of a core sample of massive sulfide deposits collected in a hydrothermally inactive field of the Southern Mariana Trough, Western Pacific, by drilling (sample depth: 0.52 m below the seafloor). Based on the gene context of the metagenome-assembled genomes (MAGs) obtained, we showed the metabolic potential of as-yet-uncultivated microorganisms, particularly those unique to the shallow zone rich in iron hydroxides. Some members of Gammaproteobacteria have potential for the oxidation of reduced sulfur species (such as sulfide and thiosulfate) to sulfate coupled to nitrate reduction to ammonia and carbon fixation via the Calvin-Benson-Bassham (CBB) cycle, as the primary producers. The Zetaproteobacteria member has potential for iron oxidation coupled with microaerobic respiration. A comparative ana-lysis with previously reported metagenomes from deeper zones (~2 m below the seafloor) of massive sulfide deposits revealed a difference in the relative abundance of each putative primary producer between the shallow and deep zones. Our results expand knowledge on the ecological potential of uncultivated microorganisms in deep-sea massive sulfide deposits and provide insights into the vertical distribution patterns of chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Nao Masuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
- Submarine Resources Research Center (SRRC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
| | - Kazuyoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| |
Collapse
|
5
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Deissová T, Zapletalová M, Kunovský L, Kroupa R, Grolich T, Kala Z, Bořilová Linhartová P, Lochman J. 16S rRNA gene primer choice impacts off-target amplification in human gastrointestinal tract biopsies and microbiome profiling. Sci Rep 2023; 13:12577. [PMID: 37537336 PMCID: PMC10400661 DOI: 10.1038/s41598-023-39575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
16S rRNA amplicon sequencing or, more recently, metatranscriptomic analysis are currently the only preferred methods for microbial profiling of samples containing a predominant ratio of human to bacterial DNA. However, due to the off-target amplification of human DNA, current protocols are inadequate for bioptic samples. Here we present an efficient, reliable, and affordable method for the bacteriome analysis of clinical samples human DNA content predominates. We determined the microbiota profile in a total of 40 human biopsies of the esophagus, stomach, and duodenum using 16S rRNA amplicon sequencing with the widely used 515F-806R (V4) primers targeting the V4 region, 68F-338R primers and a modified set of 68F-338R (V1-V2M) primers targeting the V1-V2 region. With the V4 primers, on average 70% of amplicon sequence variants (ASV) mapped to the human genome. On the other hand, this off-target amplification was absent when using the V1-V2M primers. Moreover, the V1-V2M primers provided significantly higher taxonomic richness and reproducibility of analysis compared to the V4 primers. We conclude that the V1-V2M 16S rRNA sequencing method is reliable, cost-effective, and applicable for low-bacterial abundant human samples in medical research.
Collapse
Affiliation(s)
- Tereza Deissová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 735/5, 62500, Brno, Czech Republic
| | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 735/5, 62500, Brno, Czech Republic
| | - Lumír Kunovský
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, and Faculty of Medicine, Masaryk, University, Jihlavská 20, 62500, Brno, Czech Republic
- Department of Surgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, Jihlavská 20, 62500, Brno, Czech Republic
| | - Radek Kroupa
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, and Faculty of Medicine, Masaryk, University, Jihlavská 20, 62500, Brno, Czech Republic
| | - Tomáš Grolich
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, and Faculty of Medicine, Masaryk, University, Jihlavská 20, 62500, Brno, Czech Republic
| | - Zdeněk Kala
- Department of Surgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, Jihlavská 20, 62500, Brno, Czech Republic
| | - Petra Bořilová Linhartová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500, Brno, Czech Republic
- Faculty of Science, RECETOX, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 735/5, 62500, Brno, Czech Republic.
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500, Brno, Czech Republic.
| |
Collapse
|
7
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
8
|
Ambrosio M, Nocera FP, Garofalo F, De Luca P, Grinberg A, De Martino L. Staphylococcus microti Strains Isolated from an Italian Mediterranean Buffalo Herd. Animals (Basel) 2023; 13:ani13010182. [PMID: 36611790 PMCID: PMC9817920 DOI: 10.3390/ani13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
S. microti is a new species among non-aureus staphylococci (NAS) frequently found in bovine milk samples and associated with subclinical mastitis (SCM). The aim of this study was to analyze the presence of S. microti in 200 composite milk samples and 104 milking parlor surface swabs collected at a buffalo farm in Southern Italy to define its presence in milk and a milking parlor environment. The samples were inoculated onto different agar plates, and the isolates were identified by MALDI-TOF MS. The strains identified as S. microti (54/304 samples, 17.8%) were collected, and their purified genomic DNA was subjected to PCR amplification and whole 16S rRNA gene sequencing. Furthermore, their phenotypic resistance profiles were evaluated by a disk diffusion method, and the genotypic characterization of the tetracycline resistance was performed for the tetM and tetK genes by multiplex PCR. Four and forty-seven S. microti isolates from milk samples of lactating animals with subclinical mastitis (SCM) and intramammary infection (IMI), respectively, and three isolates from milking parlor surfaces were recovered. The genomic DNA was purified from the bacterial isolates, and the amplification and sequencing of the 16S gene further supported the proteomic identification as S. microti. No clinical mastitis was detected in the herd during the study period. The antimicrobial susceptibility testing revealed a worrisome 100% resistance to tetracyclines, genotypically mediated by the tetM gene for all strains. This study highlights that S. microti may be commonly isolated from dairy buffalo milk and milking parlor equipment. Its association with SCM or IMI remains to be established.
Collapse
Affiliation(s)
- Monica Ambrosio
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via Delpino 1, 80137 Naples, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via Delpino 1, 80137 Naples, Italy
- Correspondence:
| | - Francesca Garofalo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Pasquale De Luca
- Stazione Zoologica Anton Dohrn of Naples, Villa Comunale, 80121 Naples, Italy
| | - Alex Grinberg
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via Delpino 1, 80137 Naples, Italy
- Task Force on Microbiome Studies, University of Naples ‘Federico II’, 80131 Naples, Italy
| |
Collapse
|
9
|
He Y, Zeng X, Xu F, Shao Z. Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents. Microorganisms 2022; 11:microorganisms11010100. [PMID: 36677390 PMCID: PMC9861301 DOI: 10.3390/microorganisms11010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the Carlsberg Ridge in the Indian Ocean, nine to the γ-proteobacteria (Halomonas (4), Pseudomonas (2), Marinobacter (2), and Rheinheimera (1)), seven to the α-proteobacteria (Thalassospira, Qipengyuania, Salipiger, Seohaeicola, Martelella, Citromicrobium, and Aurantimonas), and one to the Actinobacteria (Agromyces), as determined by their 16S rRNA and genome sequences. The physiological characterization of these isolates revealed wide versatility in electron donors (Fe(II) and Mn(II), or thiosulfate) and a variety of lifestyles as lithotrophic or heterotrophic, microaerobic, or anaerobic. As a representative strain, Pseudomonas sp. IOP_13 showed its autotrophic gowth from 105 cells/ml to 107 cells/ml;carbon dioxide fixation capacity with the δ13CVPDB in the biomass increased from -27.42‱ to 3460.06‱; the thiosulfate-oxidizing ability with produced SO42- increased from 60 mg/L to 287 mg/L; and the iron-oxidizing ability with Fe(II) decreased from 10 mM to 5.2 mM. In addition, iron-oxide crust formed outside the cells. Gene coding for energy metabolism involved in possible iron, manganese, and sulfur oxidation, and denitrification was identified by their genome analysis. This study sheds light on the function of the mixotrophic microbial community in the iron/manganese/sulfur cycles and the carbon fixation of the hydrothermal fields.
Collapse
|
10
|
Xue S, He X, Jiang X, Pan W, Li W, Xia L, Wu C. Arsenic biotransformation genes and As transportation in soil-rice system affected by iron-oxidizing strain (Ochrobactrum sp.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120311. [PMID: 36181941 DOI: 10.1016/j.envpol.2022.120311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) biotransformation in soil affects As biogeochemical cycling and is associated with As accumulation in rice. After inoculation with 1% iron-oxidizing bacteria (FeOB) in paddy soil, As speciation, As biotransformation genes in soil, As/Fe in Fe plaques, and As accumulation in rice were characterized. Compared with the control, the available As concentrations in soils decreased while amorphous and poorly crystalline Fe-Al oxidized As and crystalline Fe-Al oxidized As fractions increased of F (FeOB) and RF (rice and FeOB) treatments. Fe concentrations increased and positively correlated with As concentrations in Fe plaques on the rice root surface (***P < 0.001). Compared with R (rice), Monomethyl As (MMA), dimethyl As (DMA), arsenate (As(V)), and arsenite (As(III)) concentrations in rice plants showed a downwards trend of RF treatment. The As concentration in grains was below the National Standard for Food Safety (GB 2762-2017). A total of 16 As biotransformation genes in rhizosphere soils of different treatments (CK, F, R and RF were quantified by high-throughput qPCR (HT-qPCR). Compared with the control, the As(V) reduction and As transport genes abundance in other treatments increased respectively by 54.54%-69.17% and 54.63%-73.71%; the As(III) oxidation and As (de) methylation genes did not change significantly; however, several As(III) oxidation genes (aoxA, aoxB, aoxS, and arsH) increased. These results revealed that FeOB could reduce, transport As, and maybe also oxidize As. In addition, As(III) oxidation gene (aoxC) in rhizosphere soil was more abundant than in non-rhizosphere soil. It indicated that radial oxygen loss (ROL) promoted As(III) oxidation in rhizosphere soils. The results provide evidence for As biotransformation by ROL and FeOB in soil-rice system. ROL affects As oxidation and immobilization, and FeOB affects As reduction, transportation and may also affect As oxidation.
Collapse
Affiliation(s)
- Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xuan He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xingxing Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Weisong Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Administrative Region, Hong Kong, PR China
| | - Libing Xia
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Department of Science and Environmental Studies, The Education University of Hong Kong, Administrative Region, Hong Kong, PR China.
| |
Collapse
|
11
|
Stromecki A, Murray L, Fullerton H, Moyer CL. Unexpected diversity found within benthic microbial mats at hydrothermal springs in Crater Lake, Oregon. Front Microbiol 2022; 13:876044. [PMID: 36187998 PMCID: PMC9516098 DOI: 10.3389/fmicb.2022.876044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Crater Lake, Oregon is an oligotrophic freshwater caldera lake fed by thermally and chemically enriched hydrothermal springs. These vents distinguish Crater Lake from other freshwater systems and provide a unique ecosystem for study. This study examines the community structure of benthic microbial mats occurring with Crater Lake hydrothermal springs. Small subunit rRNA gene amplicon sequencing from eight bacterial mats was used to assess community structure. These revealed a relatively homogeneous, yet diverse bacterial community. High alpha diversity and low beta diversity indicate that these communities are likely fueled by homogeneous hydrothermal fluids. An examination of autotrophic taxa abundance indicates the potential importance of iron and sulfur inputs to the primary productivity of these mats. Chemoautotrophic potential within the mats was dominated by iron oxidation from Gallionella and Mariprofundus and by sulfur oxidation from Sulfuricurvum and Thiobacillus with an additional contribution of nitrite oxidation from Nitrospira. Metagenomic analysis showed that cbbM genes were identified as Gallionella and that aclB genes were identified as Nitrospira, further supporting these taxa as autotrophic drivers of the community. The detection of several taxa containing arsC and nirK genes suggests that arsenic detoxification and denitrification processes are likely co-occurring in addition to at least two modes of carbon fixation. These data link the importance of the detected autotrophic metabolisms driven by fluids derived from benthic hydrothermal springs to Crater Lake’s entire lentic ecosystem.
Collapse
Affiliation(s)
- Amanda Stromecki
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Laura Murray
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Craig L. Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
- *Correspondence: Craig L. Moyer,
| |
Collapse
|
12
|
Symbiont Community Composition in Rimicaris kairei Shrimps from Indian Ocean Vents with Notes on Mineralogy. Appl Environ Microbiol 2022; 88:e0018522. [PMID: 35404070 PMCID: PMC9040608 DOI: 10.1128/aem.00185-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrothermal vent ecosystems are home to a wide array of symbioses between animals and chemosynthetic microbes, among which shrimps in the genus Rimicaris is one of the most iconic. So far, studies of Rimicaris symbioses have been restricted to Atlantic species, including Rimicaris exoculata, which is totally reliant on the symbionts for nutrition, and the mixotrophic species Rimicaris chacei. Here, we expand this by investigating and characterizing the symbiosis of the Indian Ocean species Rimicaris kairei using specimens from two vent fields, Kairei and Edmond. We also aimed to evaluate the differences in mineralogy and microbial communities between two cephalothorax color morphs, black and brown, through a combination of 16S metabarcoding, scanning electron microscopy, fluorescent in situ hybridization, energy-dispersive X-ray spectroscopy, and synchrotron near-edge X-ray absorption structure analyses. Overall, our results highlight that R. kairei exhibits similar symbiont lineages to those of its Atlantic congeners, although with a few differences, such as the lack of Zetaproteobacteria. We found distinct mineralization processes behind the two color morphs that were linked to differences in the vent fluid composition, but the symbiotic community composition was surprisingly similar. In R. exoculata, such mineralogical differences have been shown to stem from disparity in the microbial communities, but our results indicate that in R. kairei this is instead due to the shift of dominant metabolisms by the same symbiotic partners. We suggest that a combination of local environmental factors and biogeographic barriers likely contribute to the differences between Atlantic and Indian Ocean Rimicaris symbioses. IMPORTANCE Hydrothermal vent shrimps in the genus Rimicaris are among the most charismatic deep-sea animals of Atlantic and Indian Oceans, often occurring on towering black smokers in dense aggregates of thousands of individuals. Although this dominance is only possible because of symbiosis, no study on the symbiosis of Indian Ocean Rimicaris species has been conducted. Here, we characterize the Rimicaris kairei symbiosis by combining molecular, microscopic, and elemental analyses, making comparisons with those of the Atlantic species possible for the first time. Although most symbiotic partners remained consistent across the two oceans, some differences were recognized in symbiont lineages, as well as in the mechanisms behind the formation of two color morphs with distinct mineralogies. Our results shed new light on relationships among mineralogy, environmental factors, and microbial communities that are useful for understanding other deep-sea symbioses in the future.
Collapse
|
13
|
Francioli D, Lentendu G, Lewin S, Kolb S. DNA Metabarcoding for the Characterization of Terrestrial Microbiota-Pitfalls and Solutions. Microorganisms 2021; 9:361. [PMID: 33673098 PMCID: PMC7918050 DOI: 10.3390/microorganisms9020361] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Soil-borne microbes are major ecological players in terrestrial environments since they cycle organic matter, channel nutrients across trophic levels and influence plant growth and health. Therefore, the identification, taxonomic characterization and determination of the ecological role of members of soil microbial communities have become major topics of interest. The development and continuous improvement of high-throughput sequencing platforms have further stimulated the study of complex microbiota in soils and plants. The most frequently used approach to study microbiota composition, diversity and dynamics is polymerase chain reaction (PCR), amplifying specific taxonomically informative gene markers with the subsequent sequencing of the amplicons. This methodological approach is called DNA metabarcoding. Over the last decade, DNA metabarcoding has rapidly emerged as a powerful and cost-effective method for the description of microbiota in environmental samples. However, this approach involves several processing steps, each of which might introduce significant biases that can considerably compromise the reliability of the metabarcoding output. The aim of this review is to provide state-of-the-art background knowledge needed to make appropriate decisions at each step of a DNA metabarcoding workflow, highlighting crucial steps that, if considered, ensures an accurate and standardized characterization of microbiota in environmental studies.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland;
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| |
Collapse
|
14
|
Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME JOURNAL 2020; 15:1271-1286. [PMID: 33328652 PMCID: PMC8114936 DOI: 10.1038/s41396-020-00849-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.
Collapse
|
15
|
Bellec L, Cambon-Bonavita MA, Durand L, Aube J, Gayet N, Sandulli R, Brandily C, Zeppilli D. Microbial Communities of the Shallow-Water Hydrothermal Vent Near Naples, Italy, and Chemosynthetic Symbionts Associated With a Free-Living Marine Nematode. Front Microbiol 2020; 11:2023. [PMID: 32973733 PMCID: PMC7469538 DOI: 10.3389/fmicb.2020.02023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Shallow-water hydrothermal vents are widespread, especially in the Mediterranean Sea, owing to the active volcanism of the area. Apart free microbial communities’ investigations, few biological studies have been leaded yet. Investigations of microbial communities associated with Nematoda, an ecologically important group in sediments, can help to improve our overall understanding of these ecosystems. We used a multidisciplinary-approach, based on microscopic observations (scanning electron microscopy: SEM and Fluorescence In Situ Hybridization: FISH) coupled with a molecular diversity analysis using metabarcoding, based on the 16S rRNA gene (V3-V4 region), to characterize the bacterial community of a free-living marine nematode and its environment, the shallow hydrothermal vent near Naples (Italy). Observations of living bacteria in the intestine (FISH), molecular and phylogenetic analyses showed that this species of nematode harbors its own bacterial community, distinct from the surrounding sediment and water. Metabarcoding results revealed the specific microbiomes of the sediment from three sites of this hydrothermal area to be composed mainly of sulfur oxidizing and reducing related bacteria.
Collapse
Affiliation(s)
- Laure Bellec
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France.,EPOC, UMR 5805, University of Bordeaux, Arcachon, France
| | | | - Lucile Durand
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France
| | - Johanne Aube
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France
| | - Nicolas Gayet
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| | - Roberto Sandulli
- Laboratory of Marine Ecology, Department of Science and Technology, University of Naples "Parthenope," Naples, Italy
| | - Christophe Brandily
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| | - Daniela Zeppilli
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| |
Collapse
|
16
|
Price KA, Garrison CE, Richards N, Field EK. A Shallow Water Ferrous-Hulled Shipwreck Reveals a Distinct Microbial Community. Front Microbiol 2020; 11:1897. [PMID: 32973699 PMCID: PMC7466744 DOI: 10.3389/fmicb.2020.01897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Shipwrecks act as artificial reefs and provide a solid surface in aquatic systems for many different forms of life to attach to, especially microbial communities, making them a hotspot of biogeochemical cycling. Depending on the microbial community and surrounding environment, they may either contribute to the wreck’s preservation or deterioration. Even within a single wreck, preservation and deterioration processes may vary, suggesting that the microbial community may also vary. This study aimed to identify the differences through widespread sampling of the microbial communities associated with the Pappy Lane shipwreck (NC shipwreck site #PAS0001), a shallow water ferrous-hulled shipwreck in Pamlico Sound, North Carolina to determine if there are differences across the wreck as well as from its surrounding environment. Loose shipwreck debris, drilled shipcores, surrounding sediment, and seawater samples were collected from the Pappy Lane shipwreck to characterize the microbial communities on and around the shipwreck. Results indicated that the shipwreck samples were more similar to each other than the surrounding sediment and aquatic environments suggesting they have made a specialized niche associated with the shipwreck. There were differences between the microbial community across the shipwreck, including between visibly corroded and non-corroded shipwreck debris pieces. Relative abundance estimates for neutrophilic iron-oxidizing bacteria (FeOB), an organism that may contribute to deterioration through biocorrosion, revealed they are present across the shipwreck and at highest abundance on the samples containing visible corrosion products. Zetaproteobacteria, a known class of marine iron-oxidizers, were also found in higher abundance on shipwreck samples with visible corrosion. A novel Zetaproteobacteria strain, Mariprofundus ferrooxydans O1, was isolated from one of the shipwreck pieces and its genome analyzed to elucidate the functional potential of the organism. In addition to iron oxidation pathways, the isolate has the genomic potential to perform carbon fixation in both high and low oxygen environments, as well as perform nitrogen fixation, contributing to the overall biogeochemical cycling of nutrients and metals in the shipwreck ecosystem. By understanding the microbial communities associated with shallow water ferrous-hulled shipwrecks, better management strategies and preservation plans can be put into place to preserve these artificial reefs and non-renewable cultural resources.
Collapse
Affiliation(s)
- Kyra A Price
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Cody E Garrison
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Nathan Richards
- Program in Maritime Studies, Department of History, East Carolina University, Greenville, NC, United States
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
McAllister SM, Polson SW, Butterfield DA, Glazer BT, Sylvan JB, Chan CS. Validating the Cyc2 Neutrophilic Iron Oxidation Pathway Using Meta-omics of Zetaproteobacteria Iron Mats at Marine Hydrothermal Vents. mSystems 2020; 5:e00553-19. [PMID: 32071158 PMCID: PMC7029218 DOI: 10.1128/msystems.00553-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Zetaproteobacteria create extensive iron (Fe) oxide mats at marine hydrothermal vents, making them an ideal model for microbial Fe oxidation at circumneutral pH. Comparison of neutrophilic Fe oxidizer isolate genomes has revealed a hypothetical Fe oxidation pathway, featuring a homolog of the Fe oxidase Cyc2 from Acidithiobacillus ferrooxidans However, Cyc2 function is not well verified in neutrophilic Fe oxidizers, particularly in Fe-oxidizing environments. Toward this, we analyzed genomes and metatranscriptomes of Zetaproteobacteria, using 53 new high-quality metagenome-assembled genomes reconstructed from Fe mats at Mid-Atlantic Ridge, Mariana Backarc, and Loihi Seamount (Hawaii) hydrothermal vents. Phylogenetic analysis demonstrated conservation of Cyc2 sequences among most neutrophilic Fe oxidizers, suggesting a common function. We confirmed the widespread distribution of cyc2 and other model Fe oxidation pathway genes across all represented Zetaproteobacteria lineages. High expression of these genes was observed in diverse Zetaproteobacteria under multiple environmental conditions and in incubations. The putative Fe oxidase gene cyc2 was highly expressed in situ, often as the top expressed gene. The cyc2 gene showed increased expression in Fe(II)-amended incubations, with corresponding increases in carbon fixation and central metabolism gene expression. These results substantiate the Cyc2-based Fe oxidation pathway in neutrophiles and demonstrate its significance in marine Fe-mineralizing environments.IMPORTANCE Iron oxides are important components of our soil, water supplies, and ecosystems, as they sequester nutrients, carbon, and metals. Microorganisms can form iron oxides, but it is unclear whether this is a significant mechanism in the environment. Unlike other major microbial energy metabolisms, there is no marker gene for iron oxidation, hindering our ability to track these microbes. Here, we investigate a promising possible iron oxidation gene, cyc2, in iron-rich hydrothermal vents, where iron-oxidizing microbes dominate. We pieced together diverse Zetaproteobacteria genomes, compared these genomes, and analyzed expression of cyc2 and other hypothetical iron oxidation genes. We show that cyc2 is widespread among iron oxidizers and is highly expressed and potentially regulated, making it a good marker for the capacity for iron oxidation and potentially a marker for activity. These findings will help us understand and potentially quantify the impacts of neutrophilic iron oxidizers in a wide variety of marine and terrestrial environments.
Collapse
Affiliation(s)
- Sean M McAllister
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David A Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Brian T Glazer
- Department of Oceanography, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
18
|
Evidence for auxiliary anaerobic metabolism in obligately aerobic Zetaproteobacteria. ISME JOURNAL 2020; 14:1057-1062. [PMID: 31969684 DOI: 10.1038/s41396-020-0586-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 11/08/2022]
Abstract
Zetaproteobacteria are obligate chemolithoautotrophs that oxidize Fe(II) as an electron and energy source, and play significant roles in nutrient cycling and primary production in the marine biosphere. Zetaproteobacteria thrive under microoxic conditions near oxic-anoxic interfaces, where they catalyze Fe(II) oxidation faster than the abiotic reaction with oxygen. Neutrophilic Fe(II) oxidizing bacteria produce copious amounts of insoluble iron oxyhydroxides as a by-product of their metabolism. Oxygen consumption by aerobic respiration and formation of iron oxyhydroxides at oxic-anoxic interfaces can result in periods of oxygen limitation for bacterial cells. Under laboratory conditions, all Zetaproteobacteria isolates have been shown to strictly require oxygen as an electron acceptor for growth, and anaerobic metabolism has not been observed. However, genomic analyses indicate a range of potential anaerobic pathways present in Zetaproteobacteria. Heterologous expression of proteins from Mariprofundus ferrooxydans PV-1, including pyruvate formate lyase and acetate kinase, further support a capacity for anaerobic metabolism. Here we define auxiliary anaerobic metabolism as a mechanism to provide maintenance energy to cells and suggest that it provides a survival advantage to Zetaproteobacteria in environments with fluctuating oxygen availability.
Collapse
|
19
|
Kellogg CTE, McClelland JW, Dunton KH, Crump BC. Strong Seasonality in Arctic Estuarine Microbial Food Webs. Front Microbiol 2019; 10:2628. [PMID: 31849850 PMCID: PMC6896822 DOI: 10.3389/fmicb.2019.02628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Microbial communities in the coastal Arctic Ocean experience extreme variability in organic matter and inorganic nutrients driven by seasonal shifts in sea ice extent and freshwater inputs. Lagoons border more than half of the Beaufort Sea coast and provide important habitats for migratory fish and seabirds; yet, little is known about the planktonic food webs supporting these higher trophic levels. To investigate seasonal changes in bacterial and protistan planktonic communities, amplicon sequences of 16S and 18S rRNA genes were generated from samples collected during periods of ice-cover (April), ice break-up (June), and open water (August) from shallow lagoons along the eastern Alaska Beaufort Sea coast from 2011 through 2013. Protist communities shifted from heterotrophic to photosynthetic taxa (mainly diatoms) during the winter–spring transition, and then back to a heterotroph-dominated summer community that included dinoflagellates and mixotrophic picophytoplankton such as Micromonas and Bathycoccus. Planktonic parasites belonging to Syndiniales were abundant under ice in winter at a time when allochthonous carbon inputs were low. Bacterial communities shifted from coastal marine taxa (Oceanospirillaceae, Alteromonadales) to estuarine taxa (Polaromonas, Bacteroidetes) during the winter-spring transition, and then to oligotrophic marine taxa (SAR86, SAR92) in summer. Chemolithoautotrophic taxa were abundant under ice, including iron-oxidizing Zetaproteobacteria. These results suggest that wintertime Arctic bacterial communities capitalize on the unique biogeochemical gradients that develop below ice near shore, potentially using chemoautotrophic metabolisms at a time when carbon inputs to the system are low. Co-occurrence networks constructed for each season showed that under-ice networks were dominated by relationships between parasitic protists and other microbial taxa, while spring networks were by far the largest and dominated by bacteria-bacteria co-occurrences. Summer networks were the smallest and least connected, suggesting a more detritus-based food web less reliant on interactions among microbial taxa. Eukaryotic and bacterial community compositions were significantly related to trends in concentrations of stable isotopes of particulate organic carbon and nitrogen, among other physiochemical variables such as dissolved oxygen, salinity, and temperature. This suggests the importance of sea ice cover and terrestrial carbon subsidies in contributing to seasonal trends in microbial communities in the coastal Beaufort Sea.
Collapse
Affiliation(s)
| | - James W McClelland
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Kenneth H Dunton
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
20
|
Duchinski K, Moyer CL, Hager K, Fullerton H. Fine-Scale Biogeography and the Inference of Ecological Interactions Among Neutrophilic Iron-Oxidizing Zetaproteobacteria as Determined by a Rule-Based Microbial Network. Front Microbiol 2019; 10:2389. [PMID: 31708884 PMCID: PMC6823593 DOI: 10.3389/fmicb.2019.02389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Hydrothermal vents, such as those at Lō‘ihi Seamount and the Mariana Arc and back-arc, release iron required to support life from the Earth’s crust. In these ecosystems, bacteria and archaea can oxidize the released iron and therefore play an important role in the biogeochemical cycles of essential nutrients. These organisms often form microbial mats, and the primary producers in these communities can support diverse higher trophic levels. One such class of bacteria are the Zetaproteobacteria. This class of bacteria oxidize iron and commonly produce extracellular iron oxyhydroxide matrices that provide architecture to the microbial mats, so they are considered foundational members of the community and ecosystem engineers. Zetaproteobacteria are responsible for the majority of iron-oxidation in circumneutral, marine, low-oxygen environments. To study the composition of these communities, microbial mats were collected using a biomat sampler, which allows for fine-scale collection of microbial mats. DNA was then extracted and amplified for analysis of the SSU rRNA gene. After quality control and filtering, the SSU rRNA genes from Mariana Arc and Lō‘ihi Seamount microbial mat communities were compared pairwise to determine which site exhibits a greater microbial diversity and how much community overlap exists between the two sites. In-depth analysis was performed with the rule-based microbial network (RMN) algorithm, which identified a possible competitive relationship across oligotypes of a cosmopolitan Zetaproteobacteria operational taxonomic unit (OTU). This result demonstrated the ecological relevance of oligotypes, or fine-scale OTU variants. The oligotype distributions of the cosmopolitan ZetaOTUs varied greatly across the Pacific Ocean. The competitive relationship between dominant oligotypes at Lō‘ihi Seamount and the Mariana Arc and back-arc may be driving their differential distributions across the two regions and may result in species divergence within a cosmopolitan ZetaOTU. This implementation of the RMN algorithm can both predict directional relationships within a community and provide insight to the level at which evolution is occurring across ecosystems.
Collapse
Affiliation(s)
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Kevin Hager
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| |
Collapse
|
21
|
McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol 2019; 95:fiz015. [PMID: 30715272 PMCID: PMC6443915 DOI: 10.1093/femsec/fiz015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023] Open
Abstract
The Zetaproteobacteria are a class of bacteria typically associated with marine Fe(II)-oxidizing environments. First discovered in the hydrothermal vents at Loihi Seamount, Hawaii, they have become model organisms for marine microbial Fe(II) oxidation. In addition to deep sea and shallow hydrothermal vents, Zetaproteobacteria are found in coastal sediments, other marine subsurface environments, steel corrosion biofilms and saline terrestrial springs. Isolates from a range of environments all grow by autotrophic Fe(II) oxidation. Their success lies partly in their microaerophily, which enables them to compete with abiotic Fe(II) oxidation at Fe(II)-rich oxic/anoxic transition zones. To determine the known diversity of the Zetaproteobacteria, we have used 16S rRNA gene sequences to define 59 operational taxonomic units (OTUs), at 97% similarity. While some Zetaproteobacteria taxa appear to be cosmopolitan, others are enriched by specific habitats. OTU networks show that certain Zetaproteobacteria co-exist, sharing compatible niches. These niches may correspond with adaptations to O2, H2 and nitrate availability, based on genomic analyses of metabolic potential. Also, a putative Fe(II) oxidation gene has been found in diverse Zetaproteobacteria taxa, suggesting that the Zetaproteobacteria evolved as Fe(II) oxidation specialists. In all, studies suggest that Zetaproteobacteria are widespread, and therefore may have a broad influence on marine and saline terrestrial Fe cycling.
Collapse
Affiliation(s)
- Sean M McAllister
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, 205 Delaware Biotechnology Institute, Newark, Delaware, USA 19711
| | - Amy Gartman
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine, USA 04544
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
- Department of Geological Sciences, University of Delaware, 101 Penny Hall, Newark, Delaware, USA 19716
| |
Collapse
|
22
|
Vander Roost J, Daae FL, Steen IH, Thorseth IH, Dahle H. Distribution Patterns of Iron-Oxidizing Zeta- and Beta-Proteobacteria From Different Environmental Settings at the Jan Mayen Vent Fields. Front Microbiol 2018; 9:3008. [PMID: 30574135 PMCID: PMC6292416 DOI: 10.3389/fmicb.2018.03008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Iron oxidizers are widespread in marine environments and play an important role in marine iron cycling. However, little is known about the overall distribution of iron oxidizers within hydrothermal systems, including settings with little hydrothermal activity. Moreover, the extent to which different phylogenetic groups of iron oxidizers exhibit niche specialization toward different environmental settings, remains largely unknown. Obtaining such knowledge is critical to unraveling the impact of the activity of iron oxidizers and how they are adapted. Here, we used 16S rRNA sequencing to characterize the distribution of iron oxidizers in different environmental settings within the Jan Mayen hydrothermal vent fields (JMVFs). Putative iron oxidizers affiliated to Zetaproteobacteria and Betaproteobacteria were detected within iron mounds, bottom seawater, basalt surfaces, and surface layers of sediments. The detected iron oxidizers were compared to sequence types previously observed in patchily distributed iron mats associated with diffuse venting at the JMVFs. Most OTUs of iron oxidizers reoccurred under different environmental settings, suggesting a limited degree of niche specialization. Consequently, most of the detected iron oxidizers seem to be generalists with a large habitat range. Our study highlights the importance of gathering information about the overall distribution of iron oxidizers in hydrothermal systems to fully understand the role of this metabolic group regarding cycling of iron. Furthermore, our results provide further evidence of the presence of iron-oxidizing members of Betaproteobacteria in marine environments.
Collapse
Affiliation(s)
- Jan Vander Roost
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Frida Lise Daae
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Ingunn Hindeness Thorseth
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Earth Science, University of Bergen, Bergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Sheng Y, Wang G, Zhao D, Hao C, Liu C, Cui L, Zhang G. Groundwater Microbial Communities Along a Generalized Flowpath in Nomhon Area, Qaidam Basin, China. GROUND WATER 2018; 56:719-731. [PMID: 29121391 DOI: 10.1111/gwat.12615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Spatial distribution (horizonal and vertical) of groundwater microbial communities and the hydrogeochemistry in confined aquifers were studied approximately along the groundwater flow path from coteau to plain in the Nomhon area, Qinghai-Tibet plateau, China. The confined groundwater samples at different depths and locations were collected in three boreholes through a hydrogeological section in this arid and semi-arid area. The phylogenetic analysis of 16S rRNA genes and multivariate statistical analysis were used to elucidate similarities and differences between groundwater microbial communities and hydrogeochemical properties. The integrated isotopic geochemical measurements were applied to estimate the source and recharge characteristics of groundwater. The results showed that groundwater varied from fresh to saline water, and modern water to ancient water following the flowpath. The recharge characteristics of the saline water was distinct with that of fresh water. Cell abundance did not vary greatly along the hydrogeochemical zonality; however, dissimilarities in habitat-based microbial community structures were evident, changing from Betaproteobacteria in the apex of alluvial fan to Gammaproteobacteria and then to Epsilonproteobacteria in the core of the basin (alluvial-lacustrine plain). Rhodoferax, Hydrogenophaga, Pseudomonas, and bacterium isolated from similar habitats unevenly thrived in the spatially distinct fresh water environments, while Sulfurimonas dominanted in the saline water environment. The microbial communities presented likely reflected to the hydrogeochemical similarities and zonalities along groundwater flowpath.
Collapse
Affiliation(s)
- Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences, Beijing, 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences, Beijing, 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Dan Zhao
- State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences, Beijing, 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Chunbo Hao
- State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences, Beijing, 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Chenglong Liu
- Institute of Geology, China Earthquake Administration, Beijing, 100029, China
| | - Linfeng Cui
- State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences, Beijing, 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Ge Zhang
- Xi'an Center of Geological Survey, China Geological Survey, Xi'an, 710054, China
| |
Collapse
|
24
|
McAllister SM, Moore RM, Chan CS. ZetaHunter, a Reproducible Taxonomic Classification Tool for Tracking the Ecology of the Zetaproteobacteria and Other Poorly Resolved Taxa. Microbiol Resour Announc 2018; 7:e00932-18. [PMID: 30533906 PMCID: PMC6256443 DOI: 10.1128/mra.00932-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
Like many taxa, the Zetaproteobacteria lack well-defined taxonomic divisions, making it difficult to compare them between studies. We designed ZetaHunter to reproducibly assign 16S rRNA gene sequences to previously described operational taxonomic units (OTUs) based on a curated database. While ZetaHunter can use any given database, we included a curated classification of publicly available Zetaproteobacteria.
Collapse
Affiliation(s)
- Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - Ryan M. Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Department of Geological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
25
|
Iron-oxidizing bacteria in marine environments: recent progresses and future directions. World J Microbiol Biotechnol 2018; 34:110. [PMID: 29974320 DOI: 10.1007/s11274-018-2491-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Iron-oxidizing bacteria (FeOB) refers to a group of bacteria with the ability to exchange and accumulate divalent iron dissolved in water as trivalent iron inside and outside the bacterial cell. Most FeOB belong the largest bacterial phylum, Proteobacteria. Within this phylum, FeOB with varying physiology with regards to their response to oxygen (obligate aerobes, facultative and obligate anaerobes) and pH optimum for proliferation (neutrophiles, moderate and extreme acidophiles) can be found. Although FeOB have been reported from a wide variety of environments, most of them have not been isolated and their biochemical characteristics remain largely unknown. This is especially true for those living in the marine realm, where the properties of FeOB was not known until the isolation of the Zetaproteobacteria Mariprofundus ferrooxydans, first reported in 2007. Since the proposal of Zetaproteobacteria by Emerson et al., the detection and isolation of those microorganisms from the marine environment has greatly escalated. Furthermore, FeOB have also recently been reported from works on ocean drilling and metal corrosion. This review aims to summarize the current state of phylogenetic and physiological diversity in marine FeOB, the significance of their roles in their environments (on both global and local scales), as well as their growing importance and applications in the industry.
Collapse
|
26
|
Abstract
Mariprofundus micogutta strain ET2 was isolated in 2014 from a deep-sea hydrothermal field on the Bayonnaise Knoll of the Izu-Ogasawara arc. Here, we report its draft genome, which comprises 2,497,805 bp and contains 2,417 predicted coding sequences.
Collapse
|
27
|
Beam JP, Scott JJ, McAllister SM, Chan CS, McManus J, Meysman FJR, Emerson D. Biological rejuvenation of iron oxides in bioturbated marine sediments. ISME JOURNAL 2018; 12:1389-1394. [PMID: 29343830 DOI: 10.1038/s41396-017-0032-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 02/04/2023]
Abstract
The biogeochemical cycle of iron is intricately linked to numerous element cycles. Although biological processes that catalyze the reductive side of the iron cycle are established, little is known about microbial oxidative processes on iron cycling in sedimentary environments-resulting in the formation of iron oxides. Here we show that a potential source of sedimentary iron oxides originates from the metabolic activity of iron-oxidizing bacteria from the class Zetaproteobacteria, presumably enhanced by burrowing animals in coastal sediments. Zetaproteobacteria were estimated to be a global total of 1026 cells in coastal, bioturbated sediments, and predicted to annually produce 8 × 1015 g of Fe in sedimentary iron oxides-55 times larger than the annual flux of iron oxides deposited by rivers. These data suggest that iron-oxidizing Zetaproteobacteria are keystone organisms in marine sedimentary environments-despite their low numerical abundance-yet exert a disproportionate impact via the rejuvenation of iron oxides.
Collapse
Affiliation(s)
- Jacob P Beam
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.
| | - Jarrod J Scott
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Republic of Panama
| | - Sean M McAllister
- Department of Geological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Clara S Chan
- Department of Geological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - James McManus
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Filip J R Meysman
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.,Department of Biotechnology, Technical University of Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| |
Collapse
|
28
|
Pop Ristova P, Pichler T, Friedrich MW, Bühring SI. Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles). Front Microbiol 2017; 8:2400. [PMID: 29255454 PMCID: PMC5722836 DOI: 10.3389/fmicb.2017.02400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.
Collapse
Affiliation(s)
- Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Pichler
- Geochemistry and Hydrogeology, University of Bremen, Bremen, Germany
| | - Michael W. Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Solveig I. Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
29
|
Vander Roost J, Thorseth IH, Dahle H. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge. PLoS One 2017; 12:e0185008. [PMID: 28931087 PMCID: PMC5607188 DOI: 10.1371/journal.pone.0185008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Over the last decade it has become increasingly clear that Zetaproteobacteria are widespread in hydrothermal systems and that they contribute to the biogeochemical cycling of iron in these environments. However, how chemical factors control the distribution of Zetaproteobacteria and their co-occurring taxa remains elusive. Here we analysed iron mats from the Troll Wall Vent Field (TWVF) located at the Arctic Mid-Ocean Ridge (AMOR) in the Norwegian-Greenland Sea. The samples were taken at increasing distances from high-temperature venting chimneys towards areas with ultraslow low-temperature venting, encompassing a large variety in geochemical settings. Electron microscopy revealed the presence of biogenic iron stalks in all samples. Using 16S rRNA gene sequence profiling we found that relative abundances of Zetaproteobacteria in the iron mats varied from 0.2 to 37.9%. Biogeographic analyses of Zetaproteobacteria, using the ZetaHunter software, revealed the presence of ZetaOtus 1, 2 and 9, supporting the view that they are cosmopolitan. Relative abundances of co-occurring taxa, including Thaumarchaeota, Euryarchaeota and Proteobacteria, also varied substantially. From our results, combined with results from previous microbiological and geochemical analyses of the TWVF, we infer that the distribution of Zetaproteobacteria is connected to fluid-flow patterns and, ultimately, variations in chemical energy landscapes. Moreover, we provide evidence for iron-oxidizing members of Gallionellaceae being widespread in TWVF iron mats, albeit at low relative abundances.
Collapse
Affiliation(s)
- Jan Vander Roost
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ingunn Hindenes Thorseth
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
30
|
Hager KW, Fullerton H, Butterfield DA, Moyer CL. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc. Front Microbiol 2017; 8:1578. [PMID: 28970817 PMCID: PMC5609546 DOI: 10.3389/fmicb.2017.01578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.
Collapse
Affiliation(s)
- Kevin W Hager
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| | - David A Butterfield
- National Oceanic and Atmospheric Administration Pacific Marine Environmental Lab, Joint Institute for the Study of the Atmosphere and Ocean, University of WashingtonSeattle, WA, United States
| | - Craig L Moyer
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| |
Collapse
|
31
|
Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME JOURNAL 2017; 11:2624-2636. [PMID: 28820506 PMCID: PMC5649172 DOI: 10.1038/ismej.2017.132] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/26/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023]
Abstract
Chemosynthetic Fe-oxidizing communities are common at diffuse-flow hydrothermal vents throughout the world's oceans. The foundational members of these communities are the Zetaproteobacteria, a class of Proteobacteria that is primarily associated with ecosystems fueled by ferrous iron, Fe(II). We report here the discovery of two new isolates of Zetaproteobacteria isolated from the Mid-Atlantic Ridge (TAG-1), and the Mariana back-arc (SV-108), that are unique in that they can utilize either Fe(II) or molecular hydrogen (H2) as sole electron donor and oxygen as terminal electron acceptor for growth. Both strains precipitated Fe-oxyhydroxides as amorphous particulates. The cell doubling time on H2 vs Fe(II) for TAG-1 was 14.1 vs 21.8 h, and for SV-108 it was 16.3 vs 20 h, and it appeared both strains could use either H2 or Fe(II) simultaneously. The strains were close relatives, based on genomic analysis, and both possessed genes for the uptake NiFe-hydrogenase required for growth on H2. These two strains belong to Zetaproteobacteria operational taxonomic unit 9 (ZetaOTU9). A meta-analysis of public databases found ZetaOTU9 was only associated with Fe(II)-rich habitats, and not in other environments where known H2-oxidizers exist. These results expand the metabolic repertoire of the Zetaproteobacteria, yet confirm that Fe(II) metabolism is the primary driver of their physiology and ecology.
Collapse
|
32
|
Li J, Cui J, Yang Q, Cui G, Wei B, Wu Z, Wang Y, Zhou H. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney. Front Microbiol 2017; 8:1378. [PMID: 28785251 PMCID: PMC5519607 DOI: 10.3389/fmicb.2017.01378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
When its hydrothermal supply ceases, hydrothermal sulfide chimneys become inactive and commonly experience oxidative weathering on the seafloor. However, little is known about the oxidative weathering of inactive sulfide chimneys, nor about associated microbial community structures and their succession during this weathering process. In this work, an inactive sulfide chimney and a young chimney in the early sulfate stage of formation were collected from the Main Endeavor Field of the Juan de Fuca Ridge. To assess oxidative weathering, the ultrastructures of secondary alteration products accumulating on the chimney surface were examined and the presence of possible Fe-oxidizing bacteria (FeOB) was investigated. The results of ultrastructure observation revealed that FeOB-associated ultrastructures with indicative morphologies were abundantly present. Iron oxidizers primarily consisted of members closely related to Gallionella spp. and Mariprofundus spp., indicating Fe-oxidizing species likely promote the oxidative weathering of inactive sulfide chimneys. Abiotic accumulation of Fe-rich substances further indicates that oxidative weathering is a complex, dynamic process, alternately controlled by FeOB and by abiotic oxidization. Although hydrothermal fluid flow had ceased, inactive chimneys still accommodate an abundant and diverse microbiome whose microbial composition and metabolic potential dramatically differ from their counterparts at active vents. Bacterial lineages within current inactive chimney are dominated by members of α-, δ-, and γ-Proteobacteria and they are deduced to be closely involved in a diverse set of geochemical processes including iron oxidation, nitrogen fixation, ammonia oxidation and denitrification. At last, by examining microbial communities within hydrothermal chimneys at different formation stages, a general microbial community succession can be deduced from early formation stages of a sulfate chimney to actively mature sulfide structures, and then to the final inactive altered sulfide chimney. Our findings provide valuable insights into the microbe-involved oxidative weathering process and into microbial succession occurring at inactive hydrothermal sulfide chimney after high-temperature hydrothermal fluids have ceased venting.
Collapse
Affiliation(s)
- Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Jiamei Cui
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Qunhui Yang
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Guojie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Bingbing Wei
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Zijun Wu
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji UniversityShanghai, China
| |
Collapse
|
33
|
Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone. Front Microbiol 2017; 8:1280. [PMID: 28769885 PMCID: PMC5513912 DOI: 10.3389/fmicb.2017.01280] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/26/2017] [Indexed: 01/11/2023] Open
Abstract
Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).
Collapse
Affiliation(s)
- Beverly K Chiu
- Department of Geological Sciences, University of Delaware, NewarkDE, United States
| | - Shingo Kato
- Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and TechnologyKanagawa, Japan
| | - Sean M McAllister
- School of Marine Science and Policy, University of Delaware, NewarkDE, United States
| | - Erin K Field
- Department of Biology, East Carolina University, GreenvilleNC, United States
| | - Clara S Chan
- Department of Geological Sciences, University of Delaware, NewarkDE, United States.,School of Marine Science and Policy, University of Delaware, NewarkDE, United States
| |
Collapse
|
34
|
Gomez-Saez GV, Pop Ristova P, Sievert SM, Elvert M, Hinrichs KU, Bühring SI. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System. Front Microbiol 2017; 8:702. [PMID: 28484442 PMCID: PMC5399606 DOI: 10.3389/fmicb.2017.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism.
Collapse
Affiliation(s)
- Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods HoleMA, USA
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| |
Collapse
|
35
|
Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō'ihi Seamount, Hawai'i. ISME JOURNAL 2017; 11:1900-1914. [PMID: 28362721 PMCID: PMC5520029 DOI: 10.1038/ismej.2017.40] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes were recovered from nearly all the Zetaproteobacteria genome bins. In addition, the Zetaproteobacteria genome bins contain genes for uptake and utilization of bioavailable nitrogen, detoxification of arsenic, and a terminal electron acceptor adapted for low oxygen concentration. Our results also support the hypothesis of a Cyc2-like protein as the site for iron oxidation, now detected across a majority of the Zetaproteobacteria genome bins. Whole genome comparisons showed a high genomic diversity across the Zetaproteobacteria OTUs and genome bins that were previously unidentified by SSU rRNA gene analysis. A single lineage of cosmopolitan Zetaproteobacteria (zOTU 2) was found to be monophyletic, based on cluster analysis of average nucleotide identity and average amino acid identity comparisons. From these data, we can begin to pinpoint genomic adaptations of the more ecologically ubiquitous Zetaproteobacteria, and further understand their environmental constraints and metabolic potential.
Collapse
|
36
|
Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160829. [PMID: 28484604 PMCID: PMC5414241 DOI: 10.1098/rsos.160829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.
Collapse
Affiliation(s)
- Anni Djurhuus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
- e-mail:
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Noatun 3, Torshavn, Faroe Islands
| | - Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, , Germany
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
| |
Collapse
|
37
|
Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks. Appl Environ Microbiol 2017; 83:AEM.03118-16. [PMID: 28159791 DOI: 10.1128/aem.03118-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microaerophilic Fe(II) oxidizers are commonly found in habitats containing elevated Fe(II) and low O2 concentrations and often produce characteristic Fe mineral structures, so-called twisted stalks or tubular sheaths. Isolates originating from freshwater habitats are all members of the Betaproteobacteria, while isolates from marine habitats belong almost exclusively to the Zetaproteobacteria So far, only a few isolates of marine microaerophilic Fe(II) oxidizers have been described, all of which are obligate microaerophilic Fe(II) oxidizers and have been thought to be restricted to Fe-rich systems. Here, we present two new isolates of marine microaerophilic Fe(II)-oxidizing Zetaproteobacteria that originate from typical coastal marine sediments containing only low Fe concentrations (2 to 11 mg of total Fe/g of sediment [dry weight]; 70 to 100 μM dissolved Fe2+ in the porewater). The two novel Zetaproteobacteria share characteristic physiological properties of the Zetaproteobacteria group, even though they come from low-Fe environments: the isolates are obligate microaerophilic Fe(II) oxidizers and, like most isolated Zetaproteobacteria, they produce twisted stalks. We found a low organic carbon content in the stalks (∼0.3 wt%), with mostly polysaccharides and saturated aliphatic chains (most likely lipids). The Fe minerals in the stalks were identified as lepidocrocite and possibly ferrihydrite. Immobilization experiments with Ni2+ showed that the stalks can function as a sink for trace metals. Our findings show that obligate microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria group are not restricted to Fe-rich environments but can also be found in low-Fe marine environments, which increases their overall importance for the global biogeochemical Fe cycle.IMPORTANCE So far, only a few isolates of benthic marine microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria exist, and most isolates were obtained from habitats containing elevated Fe concentrations. Consequently, it was thought that these microorganisms are important mainly in habitats with high Fe concentrations. The two novel isolates of Zetaproteobacteria that are presented in the present study were isolated from typical coastal marine sediments that do not contain elevated Fe concentrations. This increases the knowledge about possible habitats in which Zetaproteobacteria can exist. Furthermore, we show that the physiology and the typical organo-mineral structures (twisted stalks) that are produced by the isolates do not notably differ from the physiology and the cell-mineral structures of isolates from environments with high Fe concentrations. We also showed that the organo-mineral structures can function as a sink for trace metals.
Collapse
|
38
|
Thijs S, Op De Beeck M, Beckers B, Truyens S, Stevens V, Van Hamme JD, Weyens N, Vangronsveld J. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys. Front Microbiol 2017; 8:494. [PMID: 28400755 PMCID: PMC5368227 DOI: 10.3389/fmicb.2017.00494] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
Bacterial taxonomic community analyses using PCR-amplification of the 16S rRNA gene and high-throughput sequencing has become a cornerstone in microbiology research. To reliably detect the members, or operational taxonomic units (OTUs), that make up bacterial communities, taxonomic surveys rely on the use of the most informative PCR primers to amplify the broad range of phylotypes present in up-to-date reference databases. However, primers specific for the domain Bacteria were often developed some time ago against database versions that are now out of date. Here we evaluated the performance of four bacterial primers for characterizing complex microbial communities in explosives contaminated and non-contaminated forest soil and by in silico evaluation against the current SILVA123 database. Primer pair 341f/785r produced the highest number of bacterial OTUs, phylogenetic richness, Shannon diversity, low non-specificity and most reproducible results, followed by 967f/1391r and 799f/1193r. Primer pair 68f/518r showed overall low coverage and a bias toward Alphaproteobacteria. In silico, primer pair 341f/785r showed the highest coverage of the domain Bacteria (96.1%) with no obvious bias toward the majority of bacterial species. This suggests the high utility of primer pair 341f/785r for soil and plant-associated bacterial microbiome studies.
Collapse
Affiliation(s)
- Sofie Thijs
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | | | - Bram Beckers
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Sascha Truyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Vincent Stevens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University Kamloops, BC, Canada
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| |
Collapse
|
39
|
Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. In-situincubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role forThiomicrospira. Environ Microbiol 2017; 19:1322-1337. [DOI: 10.1111/1462-2920.13666] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Roman A. Barco
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Colleen L. Hoffman
- Department of Earth Sciences; University of Minnesota-Twin Cities; St. Paul MN USA
| | - Gustavo A. Ramírez
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Brandy M. Toner
- Department of Earth Sciences; University of Minnesota-Twin Cities; St. Paul MN USA
- Department of Soil; Water, and Climate, University of Minnesota-Twin Cities; St. Paul MN USA
| | - Katrina J. Edwards
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Jason B. Sylvan
- Department of Oceanography; Texas A&M University; College Station TX USA
| |
Collapse
|
40
|
Scott JJ, Glazer BT, Emerson D. Bringing microbial diversity into focus: high-resolution analysis of iron mats from the Lō'ihi Seamount. Environ Microbiol 2016; 19:301-316. [PMID: 27871143 DOI: 10.1111/1462-2920.13607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
Abstract
Thirty kilometers south of the island of Hawai'i lies the Lō'ihi Seamount, an active submarine volcano that hosts a network of low-temperature hydrothermal vents enriched in ferrous iron that supports extensive microbial mats. These mats, which can be a half a meter deep, are composed of ferric iron bound to organic polymers - the metabolic byproduct of iron-oxidizing Zetaproteobacteria. Though the role of Zetaproteobacteria in mat formation is well established, we have a limited understanding of how differences in diversity are related to mat morphology. We used Minimum Entropy Decomposition and ZetaOtu classification to demonstrate cryptic diversity between closely related Zetaproteobacteria while showing habitat and geographic specificity. Veiled mats, common structures at Lō'ihi, exhibit distinct community composition and contain diversity not detected in other mat types, including specific Zetaproteobacteria and an unclassified Gammaproteobacteria. Our analyses also indicate that diversity can change dramatically across small spatial transects from points of active venting, yet we found comparatively few differences between major sampling sites. This study provides a better picture of the microbiome responsible for iron mat production at Lō'ihi and has broad implications for our understanding of these globally distributed communities.
Collapse
Affiliation(s)
- Jarrod J Scott
- Ocean Microbiome & Blue Biotechnology Center, Bigelow Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME, 04544, USA
| | - Brian T Glazer
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Rd. Honolulu, HI, 96822, USA
| | - David Emerson
- Ocean Microbiome & Blue Biotechnology Center, Bigelow Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME, 04544, USA
| |
Collapse
|
41
|
Makita H, Tanaka E, Mitsunobu S, Miyazaki M, Nunoura T, Uematsu K, Takaki Y, Nishi S, Shimamura S, Takai K. Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis nov. Arch Microbiol 2016; 199:335-346. [PMID: 27766355 DOI: 10.1007/s00203-016-1307-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/20/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
A novel iron-oxidizing chemolithoautotrophic bacterium, strain ET2T, was isolated from a deep-sea sediment in a hydrothermal field of the Bayonnaise knoll of the Izu-Ogasawara arc. Cells were bean-shaped, curved short rods. Growth was observed at a temperature range of 15-30 °C (optimum 25 °C, doubling time 24 h) and a pH range of 5.8-7.0 (optimum pH 6.4) in the presence of NaCl at a range of 1.0-4.0 % (optimum 2.75 %). The isolate was a microaerophilic, strict chemolithoautotroph capable of growing using ferrous iron and molecular oxygen (O2) as the sole electron donor and acceptor, respectively; carbon dioxide as the sole carbon source; and either ammonium or nitrate as the sole nitrogen source. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the new isolate was related to the only previously isolated Mariprofundus species, M. ferrooxydans. Although relatively high 16S rRNA gene similarity (95 %) was found between the new isolate and M. ferrooxydans, the isolate was distinct in terms of cellular fatty acid composition, genomic DNA G+C content and cell morphology. Furthermore, genomic comparison between ET2T and M. ferrooxydans PV-1 indicated that the genomic dissimilarity of these strains met the standard for species-level differentiation. On the basis of its physiological and molecular characteristics, strain ET2T (= KCTC 15556T = JCM 30585 T) represents a novel species of Mariprofundus, for which the name Mariprofundus micogutta is proposed. We also propose the subordinate taxa Mariprofundales ord. nov. and Zetaproteobacteria classis nov. in the phylum Proteobacteria.
Collapse
Affiliation(s)
- Hiroko Makita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan. .,Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa, 243-0292, Japan.
| | - Emiko Tanaka
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.,Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa, 243-0292, Japan
| | - Satoshi Mitsunobu
- Department of Environmental Conservation, Graduate School of Agriculture, Ehime University, Tarumi, Matsuyama, 790-8566, Japan
| | - Masayuki Miyazaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Takuro Nunoura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Katsuyuki Uematsu
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd., Yokosuka, 237-0061, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Shinro Nishi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Ken Takai
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
42
|
Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments. Appl Environ Microbiol 2016; 82:5741-55. [PMID: 27422841 DOI: 10.1128/aem.01151-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields.
Collapse
|
43
|
Chan CS, Emerson D, Luther GW. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. GEOBIOLOGY 2016; 14:509-528. [PMID: 27392195 DOI: 10.1111/gbi.12192] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe-oxidizing micro-organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O2 co-exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O2 concentrations, measured as low as 2 μm to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O2 concentrations, many FeOM appear to prefer and thrive at low O2 concentrations (~3-25 μm). These are similar to the estimated dissolved O2 concentrations in the few hundred million years prior to the 'Great Oxidation Event' (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well-known BIFs associated with the GOE, as well as afterward when global O2 levels increased.
Collapse
Affiliation(s)
- C S Chan
- Department of Geological Sciences, University of Delaware, and the Delaware Biotechnology Institute, Newark, DE, USA
- School of Marine Science and Policy, University of Delaware, Newark & Lewes, DE, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - G W Luther
- School of Marine Science and Policy, University of Delaware, Newark & Lewes, DE, USA
| |
Collapse
|
44
|
Sheng Y, Bibby K, Grettenberger C, Kaley B, Macalady JL, Wang G, Burgos WD. Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Appl Environ Microbiol 2016; 82:3611-3621. [PMID: 27084004 PMCID: PMC4959181 DOI: 10.1128/aem.00917-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Two acid mine drainage (AMD) sites in the Appalachian bituminous coal basin were selected to enrich for Fe(II)-oxidizing microbes and measure rates of low-pH Fe(II) oxidation in chemostatic bioreactors. Microbial communities were enriched for 74 to 128 days in fed-batch mode, then switched to flowthrough mode (additional 52 to 138 d) to measure rates of Fe(II) oxidation as a function of pH (2.1 to 4.2) and influent Fe(II) concentration (80 to 2,400 mg/liter). Biofilm samples were collected throughout these operations, and the microbial community structure was analyzed to evaluate impacts of geochemistry and incubation time. Alpha diversity decreased as the pH decreased and as the Fe(II) concentration increased, coincident with conditions that attained the highest rates of Fe(II) oxidation. The distribution of the seven most abundant bacterial genera could be explained by a combination of pH and Fe(II) concentration. Acidithiobacillus, Ferrovum, Gallionella, Leptospirillum, Ferrimicrobium, Acidiphilium, and Acidocella were all found to be restricted within specific bounds of pH and Fe(II) concentration. Temporal distance, defined as the cumulative number of pore volumes from the start of flowthrough mode, appeared to be as important as geochemical conditions in controlling microbial community structure. Both alpha and beta diversities of microbial communities were significantly correlated to temporal distance in the flowthrough experiments. Even after long-term operation under nearly identical geochemical conditions, microbial communities enriched from the different sites remained distinct. While these microbial communities were enriched from sites that displayed markedly different field rates of Fe(II) oxidation, rates of Fe(II) oxidation measured in laboratory bioreactors were essentially the same. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor startup. IMPORTANCE This study showed that different microbial communities enriched from two sites maintained distinct microbial community traits inherited from their respective seed materials. Long-term operation (up to 128 days of fed-batch enrichment followed by up to 138 days of flowthrough experiments) of these two systems did not lead to the same, or even more similar, microbial communities. However, these bioreactors did oxidize Fe(II) and remove total iron [Fe(T)] at very similar rates. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor startup. This would be advantageous, because system performance should be well constrained and predictable for many different sites.
Collapse
Affiliation(s)
- Yizhi Sheng
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christen Grettenberger
- Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bradley Kaley
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer L Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Guangcai Wang
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - William D Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
45
|
Chan CS, McAllister SM, Leavitt AH, Glazer BT, Krepski ST, Emerson D. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments. Front Microbiol 2016; 7:796. [PMID: 27313567 PMCID: PMC4888753 DOI: 10.3389/fmicb.2016.00796] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to chemolithotrophic Fe oxidation, including (1) removing Fe oxyhydroxide waste without entombing cells or clogging flow paths through the mat and (2) colonizing niches where Fe(II) and O2 overlap. This work improves our understanding of Fe mat developmental history and how mat morphology links to metabolism. We can use these results to interpret biogenicity, metabolism, and paleoenvironmental conditions of Fe microfossil mats, which would give us insight into Earth's Fe and O2 history.
Collapse
Affiliation(s)
- Clara S Chan
- School of Marine Science and Policy, University of DelawareNewark, DE, USA; Geological Sciences, University of DelawareNewark, DE, USA
| | - Sean M McAllister
- School of Marine Science and Policy, University of DelawareNewark, DE, USA; Geological Sciences, University of DelawareNewark, DE, USA
| | - Anna H Leavitt
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Brian T Glazer
- Department of Oceanography, University of Hawaii Honolulu, HI, USA
| | - Sean T Krepski
- Geological Sciences, University of Delaware Newark, DE, USA
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| |
Collapse
|
46
|
Beckers B, Op De Beeck M, Thijs S, Truyens S, Weyens N, Boerjan W, Vangronsveld J. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Front Microbiol 2016; 7:650. [PMID: 27242686 PMCID: PMC4865482 DOI: 10.3389/fmicb.2016.00650] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs.
Collapse
Affiliation(s)
- Bram Beckers
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | | | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Sascha Truyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| |
Collapse
|
47
|
Henri PA, Rommevaux-Jestin C, Lesongeur F, Mumford A, Emerson D, Godfroy A, Ménez B. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge. Front Microbiol 2016; 6:1518. [PMID: 26834704 PMCID: PMC4720738 DOI: 10.3389/fmicb.2015.01518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022] Open
Abstract
To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity.
Collapse
Affiliation(s)
- Pauline A Henri
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche Scientifique Paris, France
| | - Céline Rommevaux-Jestin
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche Scientifique Paris, France
| | - Françoise Lesongeur
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS/UMR 6197 Plouzané, France
| | - Adam Mumford
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Anne Godfroy
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS/UMR 6197 Plouzané, France
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche Scientifique Paris, France
| |
Collapse
|
48
|
Hoshino T, Kuratomi T, Morono Y, Hori T, Oiwane H, Kiyokawa S, Inagaki F. Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan. Front Microbiol 2016; 6:1554. [PMID: 26793184 PMCID: PMC4707226 DOI: 10.3389/fmicb.2015.01554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
Previous studies of microbial communities in deep-sea hydrothermal ferric deposits have demonstrated that members of Zetaproteobacteria play significant ecological roles in biogeochemical iron-cycling. However, the ecophysiological characteristics and interaction between other microbial members in the habitat still remain largely unknown. In this study, we investigated microbial communities in a core sample obtained from shallow hydrothermal iron-oxyhydroxide deposits at Nagahama Bay of Satsuma Iwo-Jima, Japan. Scanning electron microscopic observation showed numerous helical stalk structures, suggesting the occurrence of iron-oxidizing bacteria. Analysis of 16S rRNA gene sequences indicated the co-occurrence of iron-oxidizing Zetaproteobacteria and iron-reducing bacteria such as the genera Deferrisoma and Desulfobulbus with strong correlations on the sequence abundance. CARD-FISH indicated that the numbers of Zetaproteobacteria were not always consistent to the frequency of stalk structures. In the stalk-abundant layers with relatively small numbers of Zetaproteobacteria cells, accumulation of polyphosphate was observed inside Zetaproteobacteria cells, whereas no polyphosphate grains were observed in the topmost layers with fewer stalks and abundant Zetaproteobacteria cells. These results suggest that Zetaproteobacteria store intracellular polyphosphates during active iron oxidation that contributes to the mineralogical growth and biogeochemical iron cycling.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| | - Takashi Kuratomi
- Department Earth and Planetary Sciences, Kyushu University Fukuoka, Japan
| | - Yuki Morono
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | | | - Shoichi Kiyokawa
- Department Earth and Planetary Sciences, Kyushu University Fukuoka, Japan
| | - Fumio Inagaki
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| |
Collapse
|
49
|
Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Appl Environ Microbiol 2015; 82:1433-1447. [PMID: 26682861 PMCID: PMC4771319 DOI: 10.1128/aem.03527-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Iron is abundant in sediments, where it can be biogeochemically cycled between its divalent and trivalent redox states. The neutrophilic microbiological Fe cycle involves Fe(III)-reducing and three different physiological groups of Fe(II)-oxidizing microorganisms, i.e., microaerophilic, anoxygenic phototrophic, and nitrate-reducing Fe(II) oxidizers. However, it is unknown whether all three groups coexist in one habitat and how they are spatially distributed in relation to gradients of O2, light, nitrate, and Fe(II). We examined two coastal marine sediments in Aarhus Bay, Denmark, by cultivation and most probable number (MPN) studies for Fe(II) oxidizers and Fe(III) reducers and by quantitative-PCR (qPCR) assays for microaerophilic Fe(II) oxidizers. Our results demonstrate the coexistence of all three metabolic types of Fe(II) oxidizers and Fe(III) reducers. In qPCR, microaerophilic Fe(II) oxidizers (Zetaproteobacteria) were present with up to 3.2 × 10(6) cells g dry sediment(-1). In MPNs, nitrate-reducing Fe(II) oxidizers, anoxygenic phototrophic Fe(II) oxidizers, and Fe(III) reducers reached cell numbers of up to 3.5 × 10(4), 3.1 × 10(2), and 4.4 × 10(4) g dry sediment(-1), respectively. O2 and light penetrated only a few millimeters, but the depth distribution of the different iron metabolizers did not correlate with the profile of O2, Fe(II), or light. Instead, abundances were homogeneous within the upper 3 cm of the sediment, probably due to wave-induced sediment reworking and bioturbation. In microaerophilic Fe(II)-oxidizing enrichment cultures, strains belonging to the Zetaproteobacteria were identified. Photoferrotrophic enrichments contained strains related to Chlorobium and Rhodobacter; the nitrate-reducing Fe(II) enrichments contained strains related to Hoeflea and Denitromonas. This study shows the coexistence of all three types of Fe(II) oxidizers in two near-shore marine environments and the potential for competition and interrelationships between them.
Collapse
Affiliation(s)
- Katja Laufer
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Mark Nordhoff
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Caroline Schmidt
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Sebastian Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
50
|
Singer E, Chong LS, Heidelberg JF, Edwards KJ. Similar Microbial Communities Found on Two Distant Seafloor Basalts. Front Microbiol 2015; 6:1409. [PMID: 26733957 PMCID: PMC4679871 DOI: 10.3389/fmicb.2015.01409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 11/21/2022] Open
Abstract
The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.
Collapse
Affiliation(s)
| | - Lauren S Chong
- Department of Earth Sciences, University of Southern California, Los Angeles CA, USA
| | - John F Heidelberg
- Department of Marine Environmental Biology, University of Southern California, Los Angeles CA, USA
| | - Katrina J Edwards
- Department of Earth Sciences, University of Southern California, Los AngelesCA, USA; Department of Marine Environmental Biology, University of Southern California, Los AngelesCA, USA
| |
Collapse
|