1
|
Pandey J, Jaishwal N, Jayswal M, Gupta DC, Dhakal B, Budean D, Lamichhane G, Devkota HP. Evaluation of Antioxidant, Xanthine Oxidase-Inhibitory, and Antibacterial Activity of Syzygium cumini Linn. Seed Extracts. PLANTS (BASEL, SWITZERLAND) 2025; 14:316. [PMID: 39942878 PMCID: PMC11820589 DOI: 10.3390/plants14030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Syzygium cumini (L.) Skeels, commonly known as the Jamun or Indian blackberry, is a tropical evergreen tree native to the Indian subcontinent, and it belongs to the Myrtaceae family. This research aimed to assess the antibacterial properties of the extracts derived from S. cumini seed kernels and evaluate their total flavonoid content, total phenol content, total carbohydrate content, antioxidant capacity, and inhibitory effects on xanthine oxidase. Cold maceration was chosen for its ability to preserve thermolabile compounds and efficiently extract bioactive constituents with minimal energy and equipment requirement, with hexane and methanol employed as extraction solvents. The methanolic seed kernel extract of S. cumini showed the highest flavonoid (127.78 μg quercetin equivalent/mg dried extract vs. 21.24 μg quercetin equivalent/mg in hexane dried extract) and polyphenol content (153.81 μg gallic acid equivalent/mg dried extract vs. 38.89 μg gallic acid equivalent/mg in hexane dried extract), along with significant carbohydrate content (475.61 μg glucose equivalent/mg dried extract vs. 5.57 μg GE/mg in hexane dried extract). It also demonstrated potent antioxidant activity (IC50: 9.23 μg/mL; ascorbic acid: 5.10 μg/mL) and xanthine oxidase inhibition (IC50: 14.88 μg/mL), comparable to the standard drug allopurinol (IC50: 6.54 μg/mL), suggesting its therapeutic potential. Moreover, the methanolic extract of seed kernels exhibited strong antibacterial activity, with inhibition zones of 19.00 mm against S. epidermidis, higher than the standard antibiotic (gentamicin: 18.33 mm) against K. pneumonia (ciprofloxacin: 33.66 mm). The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.32 mg/mL and 0.52 mg/mL, respectively, were observed for the same extract against S. epidermis. In conclusion, this study demonstrated the remarkable antibacterial effects of S. cumini methanolic seed kernel extract against various pathogenic microorganisms as well as significant inhibitory effects on xanthine oxidase and antioxidant activity.
Collapse
Affiliation(s)
- Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Nitesh Jaishwal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Mamta Jayswal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Deep Chand Gupta
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Bishnu Dhakal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - David Budean
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Yarmolinsky L, Nakonechny F, Haddis T, Khalfin B, Dahan A, Ben-Shabat S. Natural Antimicrobial Compounds as Promising Preservatives: A Look at an Old Problem from New Perspectives. Molecules 2024; 29:5830. [PMID: 39769919 PMCID: PMC11728848 DOI: 10.3390/molecules29245830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/14/2025] Open
Abstract
Antimicrobial compounds of natural origin are of interest because of the large number of reports regarding the harmfulness of food preservatives. These natural products can be derived from plants, animal sources, microorganisms, algae, or mushrooms. The aim of this review is to consider known antimicrobials of natural origin and the mechanisms of their action, antimicrobial photodynamic technology, and ultrasound for disinfection. Plant extracts and their active compounds, chitosan and chitosan oligosaccharide, bioactive peptides, and essential oils are highly potent preservatives. It has been experimentally proven that they possess strong antibacterial capabilities against bacteria, yeast, and fungi, indicating the possibility of their use in the future to create preservatives for the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Ludmila Yarmolinsky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Faina Nakonechny
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Tigabu Haddis
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Boris Khalfin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Arik Dahan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| |
Collapse
|
3
|
Kang MJ, Kim DK. Synergistic antimicrobial action of chlorogenic acid and ultraviolet-A (365 nm) irradiation; mechanisms and effects on DNA integrity. Food Res Int 2024; 196:115132. [PMID: 39614588 DOI: 10.1016/j.foodres.2024.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Chlorogenic acid (CGA) is abundant in various plants and notably in coffee beans. This study investigated the bactericidal activity of CGA combined with ultraviolet-A light (UVA, 365 nm) (CGA + UVA) against Escherichia coli DH5α, with the aim of developing novel strategies for food preservation and healthcare. CGA + UVA treatment was superiorin reducing bacterial survival than either treatment alone. At 20 J/cm2 and pH 7, CGA (0.3%) + UVA treatment resulted in only about a 3-log reduction in bacterial survival, whereas at 15 J/cm2 and pH 3, no surviving bacteria could be detected, demostrating that the treatment was more effective at acidic pH. CGA + UVA treatment was also bactericidal in green plum juice, confirming that its low pH-dependent property could be effective in acidic food products. To elucidate the bactericidal mechanism of CGA + UVA treatment, its effects on reactive oxygen species (ROS) generation, membrane integrity, and enzyme activity were measured. ROS generated via the type-1 reaction, such as hydrogen peroxide (H2O2) and hydroxyl radicals (·OH), were mainly detected. CGA + UVA disrupted the bacterial cell membrane, causing the leakage of cellular components, particularly proteins. CGA + UVA treatment also led to deoxyribonucleic acid (DNA) degradation and reduced succinate-coenzyme Q reductase activity by approximately 72 %. Furthermore, CGA + UVA treatment decreased β-lactamase activity and plasmid transforming efficacy with maximal reductions of 68 % and 98 %, respectively, highlighting its potential for increasing antibiotic susceptibility and preventing the spread of antimicrobial resistance. The results demonstrate that CGA + UVA treatment could be used to effectively combat antibiotic-resistant bacteria and prevent the spoilage of preserved foods or food poisoning.
Collapse
Affiliation(s)
- Min-Ju Kang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
5
|
Tang XM, Xie MX, Gou JL, Chen L, Tian JL, Zhang X, Lu YY, Wang HQ. Antibacterial Activity of Plants in Cirsium: A Comprehensive Review. Chin J Integr Med 2024; 30:835-841. [PMID: 38532154 DOI: 10.1007/s11655-024-3757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 03/28/2024]
Abstract
As ethnic medicine, the whole grass of plants in Cirsium was used as antimicrobial. This review focuses on the antimicrobial activity of plants in Cirsium, including antimicrobial components, against different types of microbes and bacteriostatic mechanism. The results showed that the main antimicrobial activity components in Cirsium plants were flavonoids, triterpenoids and phenolic acids, and the antimicrobial ability varied according to the species and the content of chemicals. Among them, phenolic acids showed a strong antibacterial ability against Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecium. The antibacterial mechanisms include: (1) damaging the cell membrane, cell walls, mitochondria and nucleus of bacteria; (2) inhibiting the synthesis of proteins and nucleic acids; (3) suppressing the synthesis of enzymes for tricarboxylic acid cycle pathways and glycolysis, and then killing the bacteria via inhibition of energy production. Totally, most research results on antimicrobial activity of Cirsium plants are reported based on in vitro assays. The evidence from clinical data and comprehensive evaluation are needed.
Collapse
Affiliation(s)
- Xiao-Meng Tang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ming-Xia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jun-Li Gou
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Liang Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jin-Long Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - You-Yuan Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Han-Qing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Lai Y, Dong X, Song Y, Zhao J, Du Y, Li Z. Novel MAXPOWER biological antibacterial liquid for eradicating oral Helicobacter pylori. BMC Infect Dis 2024; 24:540. [PMID: 38811871 PMCID: PMC11137934 DOI: 10.1186/s12879-024-09424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Eradication of oral Helicobacter pylori (H. pylori) not only reduces the infection rate from the transmission route but also improves the success rate of intragastric eradication. MAXPOWER Biological Bacteriostatic Liquid, developed in our previous work, is a composite biological preparation with strong antibacterial ability and unique antibacterial mechanism. The present study evaluated the efficacy of the MAXPOWER biocontrol solution on H. pylori and its success rate in eradicating oral H. pylori in clinical patients. METHODS Live-dead cell staining and hemolysis test were used to evaluate the cellular safety of MAXPOWER biocontrol solution; plate spreading, live-dead bacterial staining, and scanning electron microscopy methods were used to evaluate its antimicrobial effect against H. pylori. Transcriptomics was used to analyze the changes in H. pylori genes before and after treatment. After seven days of gavage treatment, H&E staining and mice feces were collected for 16SrDNA sequencing to evaluate the animals' safety. Oral H. pylori-positive patients were randomized to be given a placebo and MAXPOWER Bio-Bacteriostatic Liquid gargle for seven days to evaluate the effect on oral H. pylori eradication. RESULTS In vitro tests demonstrated that this product has excellent biocompatibility and hemocompatibility and can effectively eradicate oral H. pylori. In vivo tests further showed that it has good biosafety and virtually no adverse effect on intestinal microflora. Transcriptomics analysis revealed that it kills H. pylori cells mainly by disrupting their cell membranes and metabolism. Additionally, the results of randomized controlled trials on humans disclosed that the oral H. pylori eradication rates achieved by MAXPOWER Biological Antibacterial Liquid were 71.4% and 78.9% according to the intention-to-treat and the per-protocol analysis, respectively. CONCLUSION MAXPOWER Biological Antibacterial Liquid is both safe and efficacious in the eradication of oral H. pylori. TRIAL REGISTRATION This study was retrospectively registered in the ClinicalTrials.gov Trial Registry on 21/09/2023 (NCT06045832).
Collapse
Affiliation(s)
- Yongkang Lai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou, 341000, China
| | - Xiaoyang Dong
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
| | - Yingxiao Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China.
- National Clinical Research Center for Digestive Diseases, Changhai Hospital, Naval Medical University, Shanghai, China.
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai hospital, Naval Medical University, Shanghai, China.
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China.
- National Clinical Research Center for Digestive Diseases, Changhai Hospital, Naval Medical University, Shanghai, China.
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai hospital, Naval Medical University, Shanghai, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
| |
Collapse
|
8
|
Zhang X, Qiu H, Ismail BB, He Q, Yang Z, Zou Z, Xiao G, Xu Y, Ye X, Liu D, Guo M. Ultrasonically functionalized chitosan-gallic acid films inactivate Staphylococcus aureus through envelope-disruption under UVA light exposure. Int J Biol Macromol 2024; 255:128217. [PMID: 37992932 DOI: 10.1016/j.ijbiomac.2023.128217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
The significant threat of foodborne pathogens contamination has continuously promoted the development of efficient antimicrobial food packaging materials. Here, an antimicrobial film was prepared with gallic acid-grafted-chitosan (CS/GA) that obtained by a two-step ultrasound method. The resultant films exhibited good transparency, improved UV barrier performance, and enhanced mechanical strength. Specifically, with the grafting of 1.2 % GA, the UV blocking ability of CS/GA film at 400 nm was significantly increased by 19.7 % and the tensile strength was nearly two times higher than that of CS film. Moreover, the CS/GA films exhibited an inspiring photoactivated bactericidal ability under 400 nm UVA light irradiation that eradicated almost 99.9 % of Staphylococcus aureus (S. aureus) cells within 60 min. To gain more insights into the antibacterial mechanism, the treated S. aureus cells were further investigated by visualizing bacterial ultrastructure and analyzing membrane properties. The results pointed to the peptidoglycan layer as the primary action target when bacteria come into contact with CS/GA films. Afterward, the intracellular oxidative lesions, disrupted bacterial integrity, and disordered membrane functional properties collectively resulted in eventual cell death. The findings revealed the unique peptidoglycan targeting and membrane disruptive mechanisms of CS/GA films, confirming the application values in controlling foodborne pathogens.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Han Qiu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Gengsheng Xiao
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Xu X, Yang M, Jiang Y, Tao N, Fu Y, Fan J, Xu X, Shi H, Lu Z, Shen C. A new acridine-based photosensitizer with ultra-low light requirement efficiently inactivates carbapenem-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus and degrades their antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 173:107839. [PMID: 36822004 DOI: 10.1016/j.envint.2023.107839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (1O2) in an aqueous environment. The 1O2 yield of YM-3 was 4.9 times that of its modified precursor. YM-3 could reduce the culturable number and even the viable counts of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Acinetobacter baumannii to 0 (inactivation rate > 99.99999%) after 2 and 8 h of low-intensity blue light (15 W/m2) irradiation, respectively. After 20 h of light exposure, the copy numbers of ARGs in both bacteria were reduced by 5.80 and 4.48 log, respectively, which might indicate that ARGs had been degraded. In addition, YM-3 still had an efficient bactericidal effect after five inactivation cycle. These characteristics of ultra-low light intensity requirement and efficient bactericidal ability make YM-3 have good application prospects for disinfection in indoor and sunlight environment.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Min Yang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yunhan Jiang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Ningyao Tao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, PR China
| | - Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Huixiang Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Lee IH, Cho ER, Kang DH. The effect of quercetin mediated photodynamic inactivation on apple juice properties at different temperature and its bactericidal mechanism. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Garzoli S, Maggio F, Vinciguerra V, Rossi C, Donadu MG, Serio A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023; 28:molecules28031380. [PMID: 36771045 PMCID: PMC9921591 DOI: 10.3390/molecules28031380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
In this study, for the first time, the chemical composition of Echinacea purpurea (L.) Moench. and propolis (EAP) hydroalcoholic solution from the Trentino Alto Adige region of northern Italy was investigated by using SPME-GC-MS to describe the volatile content and GC-MS after silylation to detect the non-volatile compounds in the extractable organic matter. The antimicrobial activity of EAP hydroalcoholic solution was evaluated by Minimum Inhibitory Concentration (MIC) determination on 13 type strains, food and clinical isolates. Time Kill Kinetics (TKK) assays and the determination on swimming and swarming motility for 48 h gave more details on the mode of action of EAP solution. The results highlighted the presence of some terpenes and a large number of compounds belonging to different chemical classes. Among these, sugars and organic acids excelled. The EAP hydroalcoholic solution exhibited a strong antimicrobial activity in terms of MIC, with a clear decrease in the cellular load after 48 h. However, the bacterial motility may not be affected by the EAP treatment, displaying a dynamic swarming and swimming motility capacity over time. Given the complexity of chemical profile and the strong antimicrobial effectiveness, the EAP hydroalcoholic solution can be considered a source of bioactive molecules, deserving further investigation for the versatility of application.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
- Correspondence: (S.G.); (A.S.)
| | - Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence: (S.G.); (A.S.)
| |
Collapse
|
12
|
TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157:H7. Food Microbiol 2023; 109:104119. [DOI: 10.1016/j.fm.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
|
13
|
Krishnamoorthi R, Anbazhagan R, Thankachan D, Thuy Dinh VT, Tsai HC, Lai JY, Wang CF. Antiblood Cell Adhesion of Mussel-Inspired Chondroitin Sulfate- and Caffeic Acid-Modified Polycarbonate Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:717-727. [PMID: 36584671 DOI: 10.1021/acs.langmuir.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resisted cell adhesion, such as platelets and leucocytes. Therefore, this work disclosed a new way to design a simple and versatile modification of the membrane surface by caffeic acid and chondroitin sulfate and apply it for cell adhesion.
Collapse
Affiliation(s)
- Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Darieo Thankachan
- Department of materials science and engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Van Thi Thuy Dinh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 320, Taiwan
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
14
|
Dual-Species Biofilms Formed by Escherichia coli and Salmonella Enhance Chlorine Tolerance. Appl Environ Microbiol 2022; 88:e0148222. [PMID: 36300924 PMCID: PMC9680634 DOI: 10.1128/aem.01482-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of
Escherichia coli
and
Salmonella
in food might be associated with the cross-contamination of biofilms on food-contact surfaces. The knowledge of the sanitization of mono-species biofilm on the food-contact surface is well established, while mixed-species biofilm occurs more naturally, which could profoundly affect the efficacy of sanitizer.
Collapse
|
15
|
Wu S, Luo H, Zhong Z, Ai Y, Zhao Y, Liang Q, Wang Y. Phytochemistry, Pharmacology and Quality Control of Xiasangju: A Traditional Chinese Medicine Formula. Front Pharmacol 2022; 13:930813. [PMID: 35814215 PMCID: PMC9259862 DOI: 10.3389/fphar.2022.930813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a traditional Chinese herbal formula, Xiasangju (XSJ) is widely used in China for antipyresis and influenza treatment. However, XSJ still fails to have a comprehensive summary of the research progress in the last decade. This review summarizes the advanced research on the extraction process, phytochemistry, pharmacological activity, and quality control of XSJ. Current research mainly focuses on quality control and the pharmacological effects of single herbs and active ingredients, but many pharmacological mechanisms of the formula are unclear. The development of active ingredients reflects the active characteristics of triterpenes, phenolic acids and flavonoids, but the hepatotoxicity of Prunella vulgaris L. has not been taken into account. XSJ has extensive historical practical experiences, while systematic clinical trials remain lacking. Therefore, it is necessary to study the active ingredients and define the mechanisms of XSJ to develop multiple applications, and further studies on the dose range between its hepatoprotective activity and hepatotoxicity are necessary to improve the safety of the clinical application. In this review, the current problems are discussed to facilitate the reference basis for the subsequent research on the development of XSJ and future application directions.
Collapse
Affiliation(s)
- Siyuan Wu
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yongjian Ai
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Yonghua Zhao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Qionglin Liang
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| |
Collapse
|
16
|
The combined effect of folic acid and 365–405 nm light emitting diode for inactivation of foodborne pathogens and its bactericidal mechanisms. Int J Food Microbiol 2022; 373:109704. [DOI: 10.1016/j.ijfoodmicro.2022.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
17
|
Rawangkan A, Siriphap A, Yosboonruang A, Kiddee A, Pook-In G, Saokaew S, Sutheinkul O, Duangjai A. Potential Antimicrobial Properties of Coffee Beans and Coffee By-Products Against Drug-Resistant Vibrio cholerae. Front Nutr 2022; 9:865684. [PMID: 35548583 PMCID: PMC9083461 DOI: 10.3389/fnut.2022.865684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae is the causative organism of the cholera epidemic, and it remains a serious global health problem, particularly the multidrug-resistant strain, despite the development of several generic drugs and vaccines over time. Natural products have long been exploited for the treatment of various diseases, and this study aimed to evaluate the in vitro antibacterial activity of coffee beans and coffee by-products against V. cholerae antimicrobial resistant strains. A total of 9 aqueous extracts were investigated, including light coffee (LC), medium coffee (MC), dark coffee (DC), dried green coffee (DGC), dried red coffee (DRC), fresh red coffee (FRC), Arabica leaf (AL), Robusta leaf (RL), and coffee pulp (CP). The influential coffee phytochemicals, i.e., chlorogenic acid (CGA), caffeic acid (CA), and caffeine, were determined using HPLC. The antibacterial properties were tested by agar well-diffusion techniques, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined against 20 V. cholerae isolates. The results revealed that all tested strains were sensitive to coffee extracts, with MIC and MBC values in the range of 3.125-25.0 mg/mL and 12.5-50.0 mg/mL, respectively. With a MIC of 6.25 mg/mL, DGC, DRC, and CP appeared to be the most effective compounds against 65, 60, and 55% of clinical strains, respectively. The checkerboard assay revealed that the combination of coffee extract and tetracycline was greater than either treatment alone, with the fractional inhibitory concentration index (FICI) ranging from 0.005 to 0.258. It is important to note that CP had the lowest FICI (0.005) when combined with tetracycline at 60 ng/mL, which is the most effective dose against V. cholerae six-drug resistance strains (azithromycin, colistin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim), with a MIC of 47.5 μg/mL (MIC alone = 12.5 mg/mL). Time killing kinetics analysis suggested that CA might be the most effective treatment for drug-resistant V. cholerae as it reduced bacterial growth by 3 log10 CFU/mL at a concentration of 8 mg/mL within 1 h, via disrupting membrane permeability, as confirmed by scanning electron microscopy (SEM). This is the first report showing that coffee beans and coffee by-product extracts are an alternative for multidrug-resistant V. cholerae treatment.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | | | | | - Anong Kiddee
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Grissana Pook-In
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Acharaporn Duangjai
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
18
|
Qamar M, Akhtar S, Ismail T, Wahid M, Barnard RT, Esatbeyoglu T, Ziora ZM. The Chemical Composition and Health-Promoting Effects of the Grewia Species-A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13124565. [PMID: 34960117 PMCID: PMC8707743 DOI: 10.3390/nu13124565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
Globally grown and organoleptically appreciated Grewia species are known as sources of bioactive compounds that avert the risk of communicable and non-communicable diseases. Therefore, in recent years, the genus Grewia has attracted increasing scientific attention. This is the first systematic review which focusses primarily on the nutritional composition, phytochemical profile, pharmacological properties, and disease preventative role of Grewia species. The literature published from 1975 to 2021 was searched to retrieve relevant articles from databases such as Google Scholar, Scopus, PubMed, and Web of Science. Two independent reviewers carried out the screening, selection of articles, and data extraction. Of 815 references, 56 met our inclusion criteria. G. asiatica and G. optiva were the most frequently studied species. We found 167 chemical compounds from 12 Grewia species, allocated to 21 categories. Flavonoids represented 41.31% of the reported bioactive compounds, followed by protein and amino acids (10.7%), fats and fatty acids (9.58%), ash and minerals (6.58%), and non-flavonoid polyphenols (5.96%). Crude extracts, enriched with bioactive compounds, and isolated compounds from the Grewia species show antioxidant, anticancer, anti-inflammatory, antidiabetic, hepatoprotective/radioprotective, immunomodulatory, and sedative hypnotic potential. Moreover, antimicrobial properties, improvement in learning and memory deficits, and effectiveness against neurodegenerative ailments are also described within the reviewed article. Nowadays, the side effects of some synthetic drugs and therapies, and bottlenecks in the drug development pathway have directed the attention of researchers and pharmaceutical industries towards the development of new products that are safe, cost-effective, and readily available. However, the application of the Grewia species in pharmaceutical industries is still limited.
Collapse
Affiliation(s)
- Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.A.); (T.I.)
- Correspondence: (M.Q.); (T.E.); (Z.M.Z.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.A.); (T.I.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.A.); (T.I.)
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 188, SE-221 00 Lund, Sweden
| | - Muqeet Wahid
- Department of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: (M.Q.); (T.E.); (Z.M.Z.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: (M.Q.); (T.E.); (Z.M.Z.)
| |
Collapse
|
19
|
George AS, Brandl MT. Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms 2021; 9:2485. [PMID: 34946087 PMCID: PMC8704493 DOI: 10.3390/microorganisms9122485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming.
Collapse
Affiliation(s)
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| |
Collapse
|