1
|
dos Santos AM, da Costa CHS, Martins M, Goldbeck R, Skaf MS. Exploring the Structural and Dynamic Properties of a Chimeric Glycoside Hydrolase Protein in the Presence of Calcium Ions. Int J Mol Sci 2024; 25:11961. [PMID: 39596029 PMCID: PMC11594105 DOI: 10.3390/ijms252211961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
GH10 xylanases and GH62 Arabinofuranosidases play key roles in the breakdown of arabinoxylans and are important tools in various industrial and biotechnological processes, such as renewable biofuel production, the paper industry, and the production of short-chain xylooligosaccharides (XOS) from plant biomass. However, the use of these enzymes in industrial settings is often limited due to their relatively low thermostability and reduced catalytic efficiency. To overcome these limitations, strategies based on enzymatic chimera construction and the use of metal ions and other cofactors have been proposed to produce new recombinant enzymes with improved catalytic activity and thermostability. Here, we examine the conformational dynamics of a GH10-GH62 chimera at different calcium ion concentrations through molecular dynamics simulations. While experimental data have demonstrated improved activity and thermostability in GH10-GH62 chimera, the mechanistic basis for these enhancements remains unclear. We explored the structural details of the binding subsites of Ca2+ in the parental enzymes GH62 from Aspergillus fumigatus (Afafu62) and a recombinant GH10 from Cryptococcus flavescens (Xyn10cf), as well as their chimeric combination, and how negatively charged electron pairing located at the protein surface affects Ca2+ capture. The results indicate that Ca2+ binding significantly contributes to structural stability and catalytic cavity modulation in the chimera, particularly evident at a concentration of 0.01 M. This effect, not observed in the parental GH10 and GH62 enzymes, highlights how Ca2+ enhances stability in the overall chimeric enzyme, while supporting a larger cavity volume in the chimera GH62 subunit. The increased catalytic site volume and reduced structural flexibility in response to Ca2+ suggest that calcium binding minimizes non-productive conformational states, which could potentially improve catalytic turnover. The findings presented here may aid in the development of more thermostable and efficient catalytic systems.
Collapse
Affiliation(s)
- Alberto M. dos Santos
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil; (A.M.d.S.); (C.H.S.d.C.)
| | - Clauber H. S. da Costa
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil; (A.M.d.S.); (C.H.S.d.C.)
| | - Manoela Martins
- School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Rosana Goldbeck
- School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil; (A.M.d.S.); (C.H.S.d.C.)
| |
Collapse
|
2
|
Martins M, Dos Santos AM, da Costa CHS, Canner SW, Chungyoun M, Gray JJ, Skaf MS, Ostermeier M, Goldbeck R. Thermostability Enhancement of GH 62 α-l-Arabinofuranosidase by Directed Evolution and Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4225-4236. [PMID: 38354215 DOI: 10.1021/acs.jafc.3c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
GH 62 arabinofuranosidases are known for their excellent specificity for arabinoxylan of agroindustrial residues and their synergism with endoxylanases and other hemicellulases. However, the low thermostability of some GH enzymes hampers potential industrial applications. Protein engineering research highly desires mutations that can enhance thermostability. Therefore, we employed directed evolution using one round of error-prone PCR and site-saturation mutagenesis for thermostability enhancement of GH 62 arabinofuranosidase from Aspergillus fumigatus. Single mutants with enhanced thermostability showed significant ΔΔG changes (<-2.5 kcal/mol) and improvements in perplexity scores from evolutionary scale modeling inverse folding. The best mutant, G205K, increased the melting temperature by 5 °C and the energy of denaturation by 41.3%. We discussed the functional mechanisms for improved stability. Analyzing the adjustments in α-helices, β-sheets, and loops resulting from point mutations, we have obtained significant knowledge regarding the potential impacts on protein stability, folding, and overall structural integrity.
Collapse
Affiliation(s)
- Manoela Martins
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
- Department of Food Engineering, State University of Campinas, Monteiro Lobato, 80, Cidade Universitária, Campinas, São Paulo 13083-862, Brazil
| | - Alberto M Dos Santos
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126-Cidade Universitária, Campinas, São Paulo 13083-861, Brazil
| | - Clauber H S da Costa
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126-Cidade Universitária, Campinas, São Paulo 13083-861, Brazil
| | - Samuel W Canner
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Michael Chungyoun
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Jeffrey J Gray
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Munir S Skaf
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126-Cidade Universitária, Campinas, São Paulo 13083-861, Brazil
| | - Marc Ostermeier
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Rosana Goldbeck
- Department of Food Engineering, State University of Campinas, Monteiro Lobato, 80, Cidade Universitária, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
3
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
4
|
Wen J, Miao T, Basit A, Li Q, Tan S, Chen S, Ablimit N, Wang H, Wang Y, Zheng F, Jiang W. Highly efficient synergistic activity of an α-L-arabinofuranosidase for degradation of arabinoxylan in barley/wheat. Front Microbiol 2023; 14:1230738. [PMID: 38029111 PMCID: PMC10655120 DOI: 10.3389/fmicb.2023.1230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Here, an α-L-arabinofuranosidase (termed TtAbf62) from Thermothelomyces thermophilus is described, which efficiently removes arabinofuranosyl side chains and facilitates arabinoxylan digestion. The specific activity of TtAbf62 (179.07 U/mg) toward wheat arabinoxylan was the highest among all characterized glycoside hydrolase family 62 enzymes. TtAbf62 in combination with endoxylanase and β-xylosidase strongly promoted hydrolysis of barley and wheat. The release of reducing sugars was significantly higher for the three-enzyme combination relative to the sum of single-enzyme treatments: 85.71% for barley hydrolysis and 33.33% for wheat hydrolysis. HPLC analysis showed that TtAbf62 acted selectively on monosubstituted (C-2 or C-3) xylopyranosyl residues rather than double-substituted residues. Site-directed mutagenesis and interactional analyses of enzyme-substrate binding structures revealed the catalytic sites of TtAbf62 formed different polysaccharide-catalytic binding modes with arabinoxylo-oligosaccharides. Our findings demonstrate a "multienzyme cocktail" formed by TtAbf62 with other hydrolases strongly improves the efficiency of hemicellulose conversion and increases biomass hydrolysis through synergistic interaction.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology, University of Jhang, Jhang, Punjab, Pakistan
| | - Qunhong Li
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shenglin Tan
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shuqing Chen
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Nuraliya Ablimit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
6
|
Leschonski KP, Kaasgaard SG, Spodsberg N, Krogh KBRM, Kabel MA. Two Subgroups within the GH43_36 α-l-Arabinofuranosidase Subfamily Hydrolyze Arabinosyl from Either Mono-or Disubstituted Xylosyl Units in Wheat Arabinoxylan. Int J Mol Sci 2022; 23:ijms232213790. [PMID: 36430284 PMCID: PMC9693073 DOI: 10.3390/ijms232213790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.
Collapse
Affiliation(s)
| | | | | | | | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
7
|
Martins M, Silva MF, Dinamarco TM, Goldbeck R. Novel bi-functional thermostable chimeric enzyme for feasible xylo-oligosaccharides production from agro-industrial wastes. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Martins M, Tramontina R, Squina FM, Dinamarco TM, Goldbeck R. Synergism for xylo-oligosaccharides, ρ-coumaric and ferulic acid production, and thermostability modulation of GH 62 α-l-arabinofuranosidase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Garrido MM, Piccinni FE, Landoni M, Peña MJ, Topalian J, Couto A, Wirth SA, Urbanowicz BR, Campos E. Insights into the xylan degradation system of Cellulomonas sp. B6: biochemical characterization of rCsXyn10A and rCsAbf62A. Appl Microbiol Biotechnol 2022; 106:5035-5049. [PMID: 35799069 DOI: 10.1007/s00253-022-12061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to β-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.
Collapse
Affiliation(s)
- Mercedes María Garrido
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Florencia Elizabeth Piccinni
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Malena Landoni
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - María Jesús Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina
| | - Alicia Couto
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Sonia Alejandra Wirth
- Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Breeanna Rae Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Baudrexl M, Fida T, Berk B, Schwarz WH, Zverlov VV, Groll M, Liebl W. Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity. Front Mol Biosci 2022; 9:907439. [PMID: 35847984 PMCID: PMC9278983 DOI: 10.3389/fmolb.2022.907439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Functional, biochemical, and preliminary structural properties are reported for three glycoside hydrolases of the recently described glycoside hydrolase (GH) family 159. The genes were cloned from the genomic sequences of different Caldicellulosiruptor strains. This study extends the spectrum of functions of GH159 enzymes. The only activity previously reported for GH159 was hydrolytic activity on β-galactofuranosides. Activity screening using a set of para-nitrophenyl (pNP) glycosides suggested additional arabinosidase activity on substrates with arabinosyl residues, which has not been previously reported for members of GH159. Even though the thermophilic enzymes investigated-Cs_Gaf159A, Ch_Gaf159A, and Ck_Gaf159A-cleaved pNP-α-l-arabinofuranoside, they were only weakly active on arabinogalactan, and they did not cleave arabinose from arabinan, arabinoxylan, or gum arabic. However, the enzymes were able to hydrolyze the α-1,3-linkage in different arabinoxylan-derived oligosaccharides (AXOS) with arabinosylated xylose at the non-reducing end (A3X, A2,3XX), suggesting their role in the intracellular hydrolysis of oligosaccharides. Crystallization and structural analysis of the apo form of one of the Caldicellulosiruptor enzymes, Ch_Gaf159A, enabled the elucidation of the first 3D structure of a GH159 member. This work revealed a five-bladed β-propeller structure for GH159 enzymes. The 3D structure and its substrate-binding pocket also provides an explanation at the molecular level for the observed exo-activity of the enzyme. Furthermore, the structural data enabled the prediction of the catalytic amino acids. This was supported by the complete inactivation by mutation of residues D19, D142, and E190 of Ch_Gaf159A.
Collapse
Affiliation(s)
- Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Tarik Fida
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Berkay Berk
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | | | - Vladimir V. Zverlov
- Chair of Microbiology, Technical University of Munich, Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - Michael Groll
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Garching, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Long L, Sun L, Liu Z, Lin Q, Wang J, Ding S. Functional characterization of a GH62 family α-L-arabinofuranosidase from Eupenicillium parvum suitable for monosaccharification of corncob arabinoxylan in combination with key enzymes. Enzyme Microb Technol 2021; 154:109965. [PMID: 34933174 DOI: 10.1016/j.enzmictec.2021.109965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Corncob rich in arabinoxylan is an important raw material widely used in bio-refinery. Complete saccharification of arabinoxylan depends on the synergism of different enzymes including α-L-arabinofuranosidase (ABF). This study aimed to investigate the functional characteristics of a new ABF EpABF62A belonging to glycoside hydrolase (GH) 62 family from the fungus Eupenicillium parvum, and to explore its potential in the saccharification of corncob arabinoxylan. The recombinant EpABF62A showed high activity against wheat arabinoxylan and rye arabinoxylan, with the optimal temperature of 55 °C and pH of 4.5. The protein contains an N-terminal cellulose-binding domain family 1 (CBM_1) domain, and displayed a 59.5% absorption rate to phosphoric acid swollen cellulose. Regioselectivity analysis indicated that the enzyme selectively removed α-1,2 or α-1,3 linked arabinofuranosyl residues on mono-substituted xylose residues on arabinoxylan. Corncob arabinoxylans (CAX1 or CAX2) with different (low or high) branching degrees were extracted from the raw material by alkaline hydrogen peroxide pretreatment and graded ethanol precipitation. Single EpABF62A removed 69.5% or 67.1% arabinose from CAX1 or CAX2, respectively. EpABF62A combined with a GH10 xylanase, a GH43 β-D-xylosidase and a GH67 α-glucuronidase released 75.0% or 64.5% xylose from CAX1 or CAX2, respectively. The addition of the four hemicellulases enhanced the saccharification the solid fraction of the pretreated corncob by the commercial cellulase Cellic® CTec2, and the conversion ratios of glucose, xylose and arabinose were up to 94.0%, 91.8% and 82.6%, respectively.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing 210037, China.
| |
Collapse
|
12
|
Vuong TV, Master ER. Enzymatic upgrading of heteroxylans for added-value chemicals and polymers. Curr Opin Biotechnol 2021; 73:51-60. [PMID: 34311175 DOI: 10.1016/j.copbio.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-dglucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
13
|
Ma L, Jiang H, Li W, Qin H, Lv Z, Huang J, Hou X, Wang W. Biochemical properties of a native β-1,4-mannanase from Aspergillus aculeatus QH1 and partial characterization of its N-glycosylation. Biochem Biophys Rep 2021; 26:100922. [PMID: 33644418 PMCID: PMC7887645 DOI: 10.1016/j.bbrep.2021.100922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
N-glycosylation plays critical roles in protein secretion, sorting, stability, activity modulation, and interactions to other molecules in the eukaryotic organisms. Fungal β-1,4-mannanases have been widely used in the agri-food industry and contribute to the pathogenesis on plants. However, the information on N-glycosylation of a specific fungal carbohydrate-active enzyme (CAZyme) is currently limited. Herein, a cDNA was cloned from Aspergillus aculeatus QH1, displaying a full length of 1302 bp with an open reading frame of 1134 bp encoding for a GH5 subfamily 7 β-1, 4-mannanase, namely AacMan5_7A. The enzyme was purified and exhibited an optimal activity at pH 4.6 and 60 °C, hydrolyzing glucomannan and galactomannan, but not yeast mannan. AacMan5_7A is an N-glycosylated protein decorated with a high-mannose type glycan. Further through UPLC-ESI-MS/MS analysis, one of the four predicted N-glycosylation sites at N255 position was experimentally verified. The present study expands the information of N-glycosylation in fungal CAZymes, providing scientific bases for enhancing the production of fungal enzymes and their applications in food, feed, and plant biomass conversions. A cDNA was cloned from Aspergillus aculeatus QH1 for a GH5 subfamily 7 β-1, 4-mannanase, namely AacMan5_7A. AacMan5_7A was characterized for its general enzyme properties. AacMan5_7A is an N-glycosylated protein decorated with a high-mannose type glycan. One of the four predicted N-glycosylation sites at N255 position was experimentally verified.
Collapse
Affiliation(s)
- Liqing Ma
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Heping Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Li
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hua Qin
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Zhi Lv
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiujiu Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuewen Hou
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weijun Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
14
|
Yan R, Wang W, Vuong TV, Xiu Y, Skarina T, Di Leo R, Gatenholm P, Toriz G, Tenkanen M, Stogios PJ, Master ER. Structural characterization of the family GH115 α-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with α-arabinofuranosidases. N Biotechnol 2021; 62:49-56. [PMID: 33486119 DOI: 10.1016/j.nbt.2021.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 01/01/2023]
Abstract
The coordinated action of carbohydrate-active enzymes has mainly been evaluated for the purpose of complete saccharification of plant biomass (lignocellulose) to sugars. By contrast, the coordinated action of accessory hemicellulases on xylan debranching and recovery is less well characterized. Here, the activity of two family GH115 α-glucuronidases (SdeAgu115A from Saccharophagus degradans, and AxyAgu115A from Amphibacillus xylanus) on spruce arabinoglucuronoxylan (AGX) was evaluated in combination with an α-arabinofuranosidase from families GH51 (AniAbf51A, aka E-AFASE from Aspergillus niger) and GH62 (SthAbf62A from Streptomyces thermoviolaceus). The α-arabinofuranosidases boosted (methyl)-glucuronic acid release by SdeAgu115A by approximately 50 % and 30 %, respectively. The impact of the α-arabinofuranosidases on AxyAgu115A activity was comparatively low, motivating its structural characterization. The crystal structure of AxyAgu115A revealed increased length and flexibility of the active site loop compared to SdeAgu115A. This structural difference could explain the ability of AxyAgu115A to accommodate more highly substituted arabinoglucuronoxylan, and inform enzyme selections for improved AGX recovery and use.
Collapse
Affiliation(s)
- Ruoyu Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Yang Xiu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Paul Gatenholm
- Department of Chemistry and Chemical Engineering, Wallenberg Wood Science Center and Biopolymer Technology, Chalmers University of Technology, Kemivägen 4, Gothenburg, 412 96, Sweden
| | - Guillermo Toriz
- Department of Wood, Cellulose and Paper Research, University of Guadalajara, Guadalajara, 44100, Mexico
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada; Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Kemistintie 1, Espoo, Finland.
| |
Collapse
|
15
|
Raji O, Arnling Bååth J, Vuong TV, Larsbrink J, Olsson L, Master ER. The coordinated action of glucuronoyl esterase and α-glucuronidase promotes the disassembly of lignin-carbohydrate complexes. FEBS Lett 2021; 595:351-359. [PMID: 33277689 PMCID: PMC8044923 DOI: 10.1002/1873-3468.14019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin–carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α‐glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α‐glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α‐glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.
Collapse
Affiliation(s)
- Olanrewaju Raji
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada
| | - Jenny Arnling Bååth
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada
| | - Johan Larsbrink
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Emma R Master
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
16
|
Functional and structural characterization of an α-ʟ-arabinofuranosidase from Thermothielavioides terrestris and its exquisite domain-swapped β-propeller fold crystal packing. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140533. [DOI: 10.1016/j.bbapap.2020.140533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/25/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
|
17
|
Long L, Sun L, Lin Q, Ding S, St John FJ. Characterization and functional analysis of two novel thermotolerant α-L-arabinofuranosidases belonging to glycoside hydrolase family 51 from Thielavia terrestris and family 62 from Eupenicillium parvum. Appl Microbiol Biotechnol 2020; 104:8719-8733. [PMID: 32880690 PMCID: PMC7502447 DOI: 10.1007/s00253-020-10867-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022]
Abstract
Abstract Arabinofuranose substitutions on xylan are known to interfere with enzymatic hydrolysis of this primary hemicellulose. In this work, two novel α-l-arabinofuranosidases (ABFs), TtABF51A from Thielavia terrestris and EpABF62C from Eupenicillium parvum, were characterized and functionally analyzed. From sequences analyses, TtABF51A and EpABF62C belong to glycoside hydrolase (GH) families 51 and 62, respectively. Recombinant TtABF51A showed high activity on 4-nitrophenyl-α-l-arabinofuranoside (83.39 U/mg), low-viscosity wheat arabinoxylan (WAX, 39.66 U/mg), high-viscosity rye arabinoxylan (RAX, 32.24 U/mg), and sugarbeet arabinan (25.69 U/mg), while EpABF62C preferred to degrade arabinoxylan. For EpABF62C, the rate of hydrolysis of RAX (94.10 U/mg) was 2.1 times that of WAX (45.46 U/mg). The optimal pH and reaction temperature for the two enzymes was between 4.0 and 4.5 and 65 °C, respectively. Calcium played an important role in the thermal stability of EpABF62C. TtABF51A and EpABF62C showed the highest thermal stabilities at pH 4.5 or 5.0, respectively. At their optimal pHs, TtABF51A and EpABF62C retained greater than 80% of their initial activities after incubation at 55 °C for 96 h or 144 h, respectively. 1H NMR analysis indicated that the two enzymes selectively removed arabinose linked to C-3 of mono-substituted xylose residues in WAX. Compared with the singular application of the GH10 xylanase EpXYN1 from E. parvum, co-digestions of WAX including TtABF51A and/or EpABF62C released 2.49, 3.38, and 4.81 times xylose or 3.38, 1.65, and 2.57 times of xylobiose, respectively. Meanwhile, the amount of arabinose released from WAX by TtABF51A with EpXYN1 was 2.11 times the amount with TtABF51A alone. Key points • Two novel α-l-arabinofuranosidases (ABFs) displayed high thermal stability. • The thermal stability of GH62 family EpABF62C was dependent on calcium. • Buffer pH affects the thermal stability of the two ABFs. • Both ABFs enhance the hydrolysis of WAX by a GH10 xylanase. Electronic supplementary material The online version of this article (10.1007/s00253-020-10867-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liangkun Long
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Lu Sun
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, 211111, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726, USA.
| |
Collapse
|
18
|
Li X, Xie X, Liu J, Wu D, Cai G, Lu J. Characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Aspergillus niger and its potential use in beer production. Food Chem 2020; 305:125382. [DOI: 10.1016/j.foodchem.2019.125382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 01/01/2023]
|
19
|
Mroueh M, Aruanno M, Borne R, de Philip P, Fierobe HP, Tardif C, Pagès S. The xyl- doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:144. [PMID: 31198441 PMCID: PMC6556953 DOI: 10.1186/s13068-019-1483-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The α-l-arabinofuranosidases (α-l-ABFs) are exoenzymes involved in the hydrolysis of α-l-arabinosyl linkages in plant cell wall polysaccharides. They play a crucial role in the degradation of arabinoxylan and arabinan and they are used in many biotechnological applications. Analysis of the genome of R. cellulolyticum showed that putative cellulosomal α-l-ABFs are exclusively encoded by the xyl-doc gene cluster, a large 32-kb gene cluster. Indeed, among the 14 Xyl-Doc enzymes encoded by this gene cluster, 6 are predicted to be α-l-ABFs belonging to the CAZyme families GH43 and GH62. RESULTS The biochemical characterization of these six Xyl-Doc enzymes revealed that four of them are α-l-ABFs. GH4316-1229 (RcAbf43A) which belongs to the subfamily 16 of the GH43, encoded by the gene at locus Ccel_1229, has a low specific activity on natural substrates and can cleave off arabinose decorations located at arabinoxylan chain extremities. GH4310-1233 (RcAbf43Ad2,3), the product of the gene at locus Ccel_1233, belonging to subfamily 10 of the GH43, can convert the double arabinose decorations present on arabinoxylan into single O2- or O3-linked decorations with high velocity (k cat = 16.6 ± 0.6 s-1). This enzyme acts in synergy with GH62-1234 (RcAbf62Am2,3), the product of the gene at locus Ccel_1234, a GH62 α-l-ABF which hydrolyzes α-(1 → 3) or α-(1 → 2)-arabinosyl linkages present on polysaccharides and arabinoxylooligosaccharides monodecorated. Finally, a bifunctional enzyme, GH62-CE6-1240 (RcAbf62Bm2,3Axe6), encoded by the gene at locus Ccel_1240, which contains a GH62-α-l-ABF module and a carbohydrate esterase (CE6) module, catalyzes deacylation of plant cell wall polymers and cleavage of arabinosyl mono-substitutions. These enzymes are also active on arabinan, a component of the type I rhamnogalacturonan, showing their involvement in pectin degradation. CONCLUSION Arabinofuranosyl decorations on arabinoxylan and pectin strongly inhibit the action of xylan-degrading enzymes and pectinases. α-l-ABFs encoded by the xyl-doc gene cluster of R. cellulolyticum can remove all the decorations present in the backbone of arabinoxylan and arabinan, act synergistically, and, thus, play a crucial role in the degradation of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Mohamed Mroueh
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Marion Aruanno
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Romain Borne
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Pascale de Philip
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Henri-Pierre Fierobe
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Chantal Tardif
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Sandrine Pagès
- Aix Marseille Université, CNRS, LCB UMR7283, IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
20
|
Sarch C, Suzuki H, Master ER, Wang W. Kinetics and regioselectivity of three GH62 α-L-arabinofuranosidases from plant pathogenic fungi. Biochim Biophys Acta Gen Subj 2019; 1863:1070-1078. [DOI: 10.1016/j.bbagen.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023]
|
21
|
Ouephanit C, Boonvitthya N, Theerachat M, Bozonnet S, Chulalaksananukul W. Efficient expression and secretion of endo-1,4-β-xylanase from Penicillium citrinum in non-conventional yeast Yarrowia lipolytica directed by the native and the preproLIP2 signal peptides. Protein Expr Purif 2019; 160:1-6. [PMID: 30923012 DOI: 10.1016/j.pep.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Filamentous fungi are the most common industrial xylanase producers. In this study, the xynA gene encoding xylanase A of Penicilium citrinum was successfully synthesized and expressed in Yarrowia lipolytica under the control of the strong constitutive TEF promoter. Native and preproLIP2 secretion signals were used for comparison of the expression and secretion level. The recombinant xylanase was produced as a soluble protein, and the total activity production reached 11 and 52 times higher than the level of activity produced by the fungus P. citrinum native strain, respectively. Maximum activity was observed with the preproLIP2 secretion signal at 180 U/mL. Post translational glycosylation affected the molecular mass of the recombinant xylanase, resulting in an apparent molecular weight larger than 60 kDa, whereas after deglycosylation, the recombinant XynA displayed a molecular mass of 20 kDa. The deglycosylated xylanase was purified by ion exchange chromatography and reached 185-fold of purification. The enzyme was optimally active at 55 °C and pH 5 and stable over a broad pH range (3-9). It retained more than 80% of the original activity after 24 h. It conserved around 80% of the original activity after pre-incubation at 40 °C for 6 h. With birchwood xylan as substrate, the enzyme showed a Km of 5.2 mg/mL, and kcat of 245 per s. The high level of secretion and the stability over a wide range of pH and at moderate temperatures of the re-XynA could be useful for variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Monnat Theerachat
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, 31077, France
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Highly thermostable GH51 α-arabinofuranosidase from Hungateiclostridium clariflavum DSM 19732. Appl Microbiol Biotechnol 2019; 103:3783-3793. [DOI: 10.1007/s00253-019-09753-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/18/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
23
|
Sürmeli Y, İlgü H, Şanlı-Mohamed G. Improved activity of α-L-arabinofuranosidase from Geobacillus vulcani GS90 by directed evolution: Investigation on thermal and alkaline stability. Biotechnol Appl Biochem 2018; 66:101-107. [PMID: 30334285 DOI: 10.1002/bab.1702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
α-L-Arabinofuranosidase (Abf) is a potential enzyme because of its synergistic effect with other hemicellulases in agro-industrial field. In this study, directed evolution was applied to Abf from Geobacillus vulcani GS90 (GvAbf) using one round error-prone PCR and constructed a library of 73 enzyme variants of GvAbf. The activity screening of the enzyme variants was performed on soluble protein extracts using p-nitrophenyl α-L-arabinofuranoside as substrate. Two high activity displaying variants (GvAbf L307S and GvAbf Q90H/L307S) were selected, purified, partially characterized, and structurally analyzed. The specific activities of both variants were almost 2.5-fold more than that of GvAbf. Both GvAbf variants also exhibited higher thermal stability but lower alkaline stability in reference to GvAbf. The structural analysis of GvAbf model indicated that two mutation sites Q90H and L307S in both GvAbf variants are located in TIM barrel domain, responsible for catalytic action in many Glycoside Hydrolase Families including GH51. The structure of GvAbf model displayed that the position of L307S mutation is closer to the catalytic residues of GvAbf compared with Q90H mutation and also L307S mutation is conserved in both variants of GvAbf. Therefore, it was hypothesized that L307S amino acid substitution may play a critical role in catalytic activity of GvAbf.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Hüseyin İlgü
- Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| | | |
Collapse
|
24
|
Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2018; 187:1515-1538. [PMID: 30267287 DOI: 10.1007/s12010-018-2873-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Thermophiles have several beneficial properties for the conversion of biomass at high temperatures. Thermomyces lanuginosus is a thermophilic filamentous fungus that was shown to secrete 40 glycoside hydrolases and 25 proteases when grown on different carbon sources. Among the 13 identified glycoside hydrolases with high expression levels, 9 were reduced sugar glycosidases (RSGs) belonging to seven GH families, and 7 of the 10 identified proteases were exopeptidases belonging to six different protease families. High expression of RSGs and exopeptidases may allow the fungus to efficiently degrade oligosaccharides and oligopeptides in saprophytic habitats. There were no xylan side chain-degrading enzymes predicted in the genome of T. lanuginosus, and only one thermophilic GH11 xylanase (g4601.t1) and one GH43 xylosidase (g3706.t1) were detected by liquid chromatography-mass spectrometry/mass spectrometry when T. lanuginosus grown on xylan, which led to the accumulation of substituted xylooligosaccharides (SXOS) during corncob xylan degradation where SXOS output made up more than 8% of the total xylan. The SXOS are beneficial prebiotics and important inducers for enzymes secretion of microorganisms. Thus, T. lanuginosus exhibits distinct advantages in utilizing cheap raw materials producing one thermostable xylanase and the high value-added SXOS as well as microbial inoculants to compost by batch fermentation.
Collapse
|
25
|
Moroz OV, Sobala LF, Blagova E, Coyle T, Peng W, Mørkeberg Krogh KBR, Stubbs KA, Wilson KS, Davies GJ. Structure of a Talaromyces pinophilus GH62 arabinofuranosidase in complex with AraDNJ at 1.25 Å resolution. Acta Crystallogr F Struct Biol Commun 2018; 74:490-495. [PMID: 30084398 PMCID: PMC6096477 DOI: 10.1107/s2053230x18000250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
The enzymatic hydrolysis of complex plant biomass is a major societal goal of the 21st century in order to deliver renewable energy from nonpetroleum and nonfood sources. One of the major problems in many industrial processes, including the production of second-generation biofuels from lignocellulose, is the presence of `hemicelluloses' such as xylans which block access to the cellulosic biomass. Xylans, with a polymeric β-1,4-xylose backbone, are frequently decorated with acetyl, glucuronyl and arabinofuranosyl `side-chain' substituents, all of which need to be removed for complete degradation of the xylan. As such, there is interest in side-chain-cleaving enzymes and their action on polymeric substrates. Here, the 1.25 Å resolution structure of the Talaromyces pinophilus arabinofuranosidase in complex with the inhibitor AraDNJ, which binds with a Kd of 24 ± 0.4 µM, is reported. Positively charged iminosugars are generally considered to be potent inhibitors of retaining glycosidases by virtue of their ability to interact with both acid/base and nucleophilic carboxylates. Here, AraDNJ shows good inhibition of an inverting enzyme, allowing further insight into the structural basis for arabinoxylan recognition and degradation.
Collapse
Affiliation(s)
- Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Lukasz F. Sobala
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Travis Coyle
- School of Molecular Sciences, The University of Western Australia (M313), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Wei Peng
- Fungal Diversity, Novozymes A/S, China Headquarters, 14 Xinxi Road, Shangdi Zone, Haidian District, Beijing 100085, People’s Republic of China
| | | | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia (M313), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| |
Collapse
|
26
|
Identification and characterization of GH62 bacterial α-l-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched l-arabinofuranoses in wheat arabinoxylan. Enzyme Microb Technol 2018; 112:22-28. [DOI: 10.1016/j.enzmictec.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 01/27/2018] [Indexed: 11/21/2022]
|
27
|
A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Hu Y, Yan X, Zhang H, Liu J, Luo F, Cui Y, Wang W, Zhou Y. Cloning and expression of a novel α-1,3-arabinofuranosidase from Penicillium oxalicum sp. 68. AMB Express 2018; 8:51. [PMID: 29611040 PMCID: PMC5880795 DOI: 10.1186/s13568-018-0577-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 01/11/2023] Open
Abstract
The discovery and creation of biocatalysts for plant biomass conversion are essential for industrial demand and scientific research of the plant cell wall. α-1,2 and α-1,3-L-arabinofuranosidases are debranching enzymes that catalyzing hydrolytic release of α-L-arabinofuranosyl residues in plant cell wall. Gene database analyses shows that GH62 family only contains specific α-L-arabinofuranosidases that play an important role in the degradation and structure of the plant cell wall. At present, there are only 22 enzymes in this group has been characterized. In this study, we cloned a novel α-1,3-arabinofuranosidase gene (poabf62a) belonging to glycoside hydrolase family 62 from Penicillium oxalicum sp. 68 and expressed it in Pichia pastoris. The molecular mass of recombinant PoAbf62A was estimated to be 32.9 kDa. Using p-nitrophenyl-α-l-arabinofuranoside (pNPαAbf) as substrate, purified PoAbf62A exhibited an optimal pH of 4.5 and temperature of 35 °C. Results of methylation and 13C NMR analyses showed that PoAbf62A was exclusively α-1,3-arabinofuranosidase, specific for cleavage of α-1,3-arabinofuranosyl residues, and with the absence of activity towards α-1,2-arabinofuranose and α-1,5-arabinofuranose. Therefore, PoAbf62A exhibits high activity on sugar beet arabinan and wheat arabinoxylan, because their branched side chain are decorated with α-1,3-arabinofuranose. On the other hand, there is a lack of activity with linear-α-L-1,5-arabinan and xylan that only contained α-L-1,5-arabinofuranose or β-1,4-xylose. The α-1,3-arabinofuranosidase activity identified here provides a new biocatalytic tool to degrade hemicellulose and analyze the structure of plant cell walls.
Collapse
|
29
|
Ravn J, Glitsø V, Pettersson D, Ducatelle R, Van Immerseel F, Pedersen N. Combined endo -β-1,4-xylanase and α- l -arabinofuranosidase increases butyrate concentration during broiler cecal fermentation of maize glucurono-arabinoxylan. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2017.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
GH62 arabinofuranosidases: Structure, function and applications. Biotechnol Adv 2017; 35:792-804. [DOI: 10.1016/j.biotechadv.2017.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 01/03/2023]
|
31
|
Wang W, Andric N, Sarch C, Silva BT, Tenkanen M, Master ER. Constructing arabinofuranosidases for dual arabinoxylan debranching activity. Biotechnol Bioeng 2017; 115:41-49. [PMID: 28868788 DOI: 10.1002/bit.26445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/08/2022]
Abstract
Enzymatic conversion of arabinoxylan requires α-L-arabinofuranosidases able to remove α-L-arabinofuranosyl residues (α-L-Araf) from both mono- and double-substituted D-xylopyranosyl residues (Xylp) in xylan (i.e., AXH-m and AXH-d activity). Herein, SthAbf62A (a family GH62 α-L-arabinofuranosidase with AXH-m activity) and BadAbf43A (a family GH43 α-L-arabinofuranosidase with AXH-d3 activity), were fused to create SthAbf62A_BadAbf43A and BadAbf43A_SthAbf62A. Both fusion enzymes displayed dual AXH-m,d and synergistic activity toward native, highly branched wheat arabinoxylan (WAX). When using a customized arabinoxylan substrate comprising mainly α-(1 → 3)-L-Araf and α-(1 → 2)-L-Araf substituents attached to disubstituted Xylp (d-2,3-WAX), the specific activity of the fusion enzymes was twice that of enzymes added as separate proteins. Moreover, the SthAbf62A_BadAbf43A fusion removed 83% of all α-L-Araf from WAX after a 20 hr treatment. 1 H NMR analyses further revealed differences in SthAbf62A_BadAbf43 rate of removal of specific α-L-Araf substituents from WAX, where 9.4 times higher activity was observed toward d-α-(1 → 3)-L-Araf compared to m-α-(1 → 3)-L-Araf positions.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nikola Andric
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Cody Sarch
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bruno T Silva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
32
|
Contesini FJ, Liberato MV, Rubio MV, Calzado F, Zubieta MP, Riaño-Pachón DM, Squina FM, Bracht F, Skaf MS, Damasio AR. Structural and functional characterization of a highly secreted α-l-arabinofuranosidase (GH62) from Aspergillus nidulans grown on sugarcane bagasse. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1758-1769. [PMID: 28890404 DOI: 10.1016/j.bbapap.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/30/2022]
Abstract
Carbohydrate-Active Enzymes are key enzymes for biomass-to-bioproducts conversion. α-l-Arabinofuranosidases that belong to the Glycoside Hydrolase family 62 (GH62) have important applications in biofuel production from plant biomass by hydrolyzing arabinoxylans, found in both the primary and secondary cell walls of plants. In this work, we identified a GH62 α-l-arabinofuranosidase (AnAbf62Awt) that was highly secreted when Aspergillus nidulans was cultivated on sugarcane bagasse. The gene AN7908 was cloned and transformed in A. nidulans for homologous production of AnAbf62Awt, and we confirmed that the enzyme is N-glycosylated at asparagine 83 by mass spectrometry analysis. The enzyme was also expressed in Escherichia coli and the studies of circular dichroism showed that the melting temperature and structural profile of AnAbf62Awt and the non-glycosylated enzyme from E. coli (AnAbf62Adeglyc) were highly similar. In addition, the designed glycomutant AnAbf62AN83Q presented similar patterns of secretion and activity to the AnAbf62Awt, indicating that the N-glycan does not influence the properties of this enzyme. The crystallographic structure of AnAbf62Adeglyc was obtained and the 1.7Å resolution model showed a five-bladed β-propeller fold, which is conserved in family GH62. Mutants AnAbf62AY312F and AnAbf62AY312S showed that Y312 was an important substrate-binding residue. Molecular dynamics simulations indicated that the loop containing Y312 could access different conformations separated by moderately low energy barriers. One of these conformations, comprising a local minimum, is responsible for placing Y312 in the vicinity of the arabinose glycosidic bond, and thus, may be important for catalytic efficiency.
Collapse
Affiliation(s)
- Fabiano Jares Contesini
- Institute of Biology, University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Caixa Postal 6192, 13083-970, Brazil
| | - Marcelo Vizoná Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Caixa Postal 6192, 13083-970, Brazil
| | - Marcelo Ventura Rubio
- Institute of Biology, University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil
| | - Felipe Calzado
- Institute of Biology, University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil
| | | | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Caixa Postal 6192, 13083-970, Brazil; Laboratory of Regulatory Systems Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, CEP: 05508-000, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, (UNISO), Sorocaba, SP, CEP 18023-000, Brazil
| | - Fabricio Bracht
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP CEP: 13084-862, Brazil
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP CEP: 13084-862, Brazil
| | - André Ricardo Damasio
- Institute of Biology, University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil.
| |
Collapse
|
33
|
Littunen K, Mai-Gisondi G, Seppälä J, Master ER. Enzymatically Debranched Xylans in Graft Copolymerization. Biomacromolecules 2017; 18:1634-1641. [DOI: 10.1021/acs.biomac.7b00229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Emma R. Master
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
34
|
Basotra N, Kaur B, Di Falco M, Tsang A, Chadha BS. Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. BIORESOURCE TECHNOLOGY 2016; 222:413-421. [PMID: 27744242 DOI: 10.1016/j.biortech.2016.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 05/25/2023]
Abstract
Mycothermus thermophilus (Syn. Scytalidium thermophilum/Humicola insolens), a thermophilic fungus, is being reported to produce appreciable titers of cellulases and hemicellulases during shake flask culturing on cellulose/wheat-bran/rice straw based production medium. The sequential and differential expression profile of endoglucanases, β-glucosidases, cellobiohydrolases and xylanases using zymography was studied. Mass spectrometry analysis of secretome (Q-TOF LC/MS) revealed a total of 240 proteins with 92 CAZymes of which 62 glycosyl hydrolases belonging to 30 different families were present. Cellobiohydrolase I (17.42%), β glucosidase (8.69%), endoglucanase (6.2%), xylanase (4.16%) and AA9 (3.95%) were the major proteins in the secretome. In addition, carbohydrate esterases, polysaccharide lyases, auxiliary activity and a variety of carbohydrate binding modules (CBM) were identified using genomic database of the culture indicating to an elaborate genetic potential of this strain for hydrolysis of lignocellulosics. The cellulases from the strain hydrolyzed alkali treated rice straw and bagasse into fermentable sugars efficiently.
Collapse
Affiliation(s)
- Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | | |
Collapse
|
35
|
Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv 2016; 34:1260-1274. [PMID: 27620948 DOI: 10.1016/j.biotechadv.2016.09.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
Abstract
Significant progress over the past few years has been achieved in the enzymology of microbial degradation and saccharification of plant xylan, after cellulose being the most abundant natural renewable polysaccharide. Several new types of xylan depolymerizing and debranching enzymes have been described in microorganisms. Despite the increasing variety of known glycoside hydrolases and carbohydrate esterases, some xylan structures still appear quite recalcitrant. This review focuses on the mode of action of different types of depolymerizing endoxylanases and their cooperation with β-xylosidase and accessory enzymes in breakdown of complex highly branched xylan structures. Emphasis is placed on the enzymatic hydrolysis of alkali-extracted deesterified polysaccharide as well as acetylated xylan isolated from plant cell walls under non-alkaline conditions. It is also shown how the combination of selected endoxylanases and debranching enzymes can determine the nature of prebiotic xylooligosaccharides or lead to complete hydrolysis of the polysaccharide. The article also highlights the possibility for discovery of novel xylanolytic enzymes, construction of multifunctional chimeric enzymes and xylanosomes in parallel with increasing knowledge on the fine structure of the polysaccharide.
Collapse
|
36
|
Structure of the Catalytic Domain of α-l-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure–Function Relationships in Glycoside Hydrolase Family 62. Appl Biochem Biotechnol 2016; 181:511-525. [DOI: 10.1007/s12010-016-2227-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
37
|
Koutaniemi S, Tenkanen M. Action of three GH51 and one GH54 α-arabinofuranosidases on internally and terminally located arabinofuranosyl branches. J Biotechnol 2016; 229:22-30. [DOI: 10.1016/j.jbiotec.2016.04.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/13/2023]
|
38
|
Wilkens C, Andersen S, Petersen BO, Li A, Busse-Wicher M, Birch J, Cockburn D, Nakai H, Christensen HEM, Kragelund BB, Dupree P, McCleary B, Hindsgaul O, Hachem MA, Svensson B. An efficient arabinoxylan-debranching α-l-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Appl Microbiol Biotechnol 2016; 100:6265-6277. [DOI: 10.1007/s00253-016-7417-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/07/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
39
|
Pérez R, Eyzaguirre J. Aspergillus fumigatus Produces Two Arabinofuranosidases From Glycosyl Hydrolase Family 62: Comparative Properties of the Recombinant Enzymes. Appl Biochem Biotechnol 2016; 179:143-54. [DOI: 10.1007/s12010-016-1984-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
40
|
Wilkens C, Cockburn D, Andersen S, Ole Petersen B, Ruzanski C, A. Field R, Hindsgaul O, Nakai H, McCleary B, M. Smith A, Abou Hachem M, Svensson B. Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Susan Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Bent Ole Petersen
- Carbohydrate Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10
| | | | | | - Ole Hindsgaul
- Carbohydrate Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | | | | | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| |
Collapse
|