1
|
Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Molecules 2023; 28:5850. [PMID: 37570818 PMCID: PMC10421094 DOI: 10.3390/molecules28155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.
Collapse
Affiliation(s)
- Fenghua Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kong LH, Liu TY, Yao QS, Zhang XH, Xu WN, Qin JY. Enhancing the biosynthesis of nicotinamide mononucleotide in Lactococcus lactis by heterologous expression of FtnadE. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:450-456. [PMID: 36205212 DOI: 10.1002/jsfa.12253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide, plays an important in anti-aging and disease. Lactococcus lactis, an important probiotic lactic acid bacteria (LAB), has shown great potential for the biosynthesis of NMN, which will significantly affect the probiotic effects of the dairy products. RESULTS We used the CRISPR/nCas9 technique to knockout nadR gene of L. lactis NZ9000 to enhance the accumulation of NMN by 61%. The nadE* gene from Francisella tularensis with codon optimization was heterologous in L. lactis NZ9000ΔnadR and has a positive effect on NMN production. Combined with optimization of the concentration of substrate nicotinamide, a final intracellular NMN titer was 2289 μmol L-1 mg-1 with 10 g L-1 nicotinamide supplement, which was 5.7-fold higher than that of the control. The transcription levels of key genes (pncA, nadD and prs1) involved in NMN biosynthesis were up-regulated by more than two-fold, indicating that the increase of NMN titer was attributed to FtnadE* heterologous expression. CONCLUSION Our study provides a better understanding of the NMN biosynthesis pathway in L. lactis, and can facilitate NMN production in LAB via synthetic biology approaches. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling-Hui Kong
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Tai-Yu Liu
- Shanghai BEIONMED Technology Co., Ltd., Shanghai, China
| | - Qing-Shou Yao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Xiao-Hua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Wei-Na Xu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Jia-Yang Qin
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| |
Collapse
|
3
|
Huang Z, Li N, Yu S, Zhang W, Zhang T, Zhou J. Systematic Engineering of Escherichia coli for Efficient Production of Nicotinamide Mononucleotide From Nicotinamide. ACS Synth Biol 2022; 11:2979-2988. [PMID: 35977419 DOI: 10.1021/acssynbio.2c00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research studies on NAD+ have proven its crucial role in aging and disease. Nicotinamide mononucleotide (NMN), as the key intermediate of NAD+, plays a significant role in supplying and maintaining NAD+ levels. In the present study, a biocatalytic method for the efficient synthesis of NMN was established. First, Escherichia coli was systematically modified to make it more conducive to the biosynthesis and accumulation of NMN. Next, the performance of nicotinamide phosphoribosyltransferase from Vibrio bacteriophage KVP40 (VpNadV) was determined, which has the best catalytic activity to produce NMN from nicotinamide. The accumulation of extracellular NMN was further increased after the introduction of an NMN transporter. Fine-tuning of gene expression and copy number led to the synthesis of NMN at the yield of 2.6 g/L at the shake flask level. The introduction of a nicotinamide transporter, BcniaP, could not obviously increase the production of NMN at the shake flask level, but it decreased the production of NMN at the bioreactor level. Finally, the titer of NMN reached 16.2 g/L with a conversion ratio of 97.0% from nicotinamide, both of which are highest according to currently available reports. The fed-batch fermentation with direct supplementation of nicotinamide could facilitate the industrial-scale production of NMN compared to that achieved by the whole-cell catalysis process. These results also represent the highest reported yield of NMN synthesized from nicotinamide in E. coli.
Collapse
Affiliation(s)
- Zhongshi Huang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Oliver Huidobro M, Tica J, Wachter GKA, Isalan M. Synthetic spatial patterning in bacteria: advances based on novel diffusible signals. Microb Biotechnol 2022; 15:1685-1694. [PMID: 34843638 PMCID: PMC9151330 DOI: 10.1111/1751-7915.13979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022] Open
Abstract
Engineering multicellular patterning may help in the understanding of some fundamental laws of pattern formation and thus may contribute to the field of developmental biology. Furthermore, advanced spatial control over gene expression may revolutionize fields such as medicine, through organoid or tissue engineering. To date, foundational advances in spatial synthetic biology have often been made in prokaryotes, using artificial gene circuits. In this review, engineered patterns are classified into four levels of increasing complexity, ranging from spatial systems with no diffusible signals to systems with complex multi-diffusor interactions. This classification highlights how the field was held back by a lack of diffusible components. Consequently, we provide a summary of both previously characterized and some new potential candidate small-molecule signals that can regulate gene expression in Escherichia coli. These diffusive signals will help synthetic biologists to successfully engineer increasingly intricate, robust and tuneable spatial structures.
Collapse
Affiliation(s)
| | - Jure Tica
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Mark Isalan
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
5
|
Wan L, Wang X, Hu Y, Li Q, Zhao ZK. Gram-scale biocatalytic preparation of the non-natural cofactor nicotinamide cytosine dinucleotide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wang X, Feng Y, Guo X, Wang Q, Ning S, Li Q, Wang J, Wang L, Zhao ZK. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide. Nat Commun 2021; 12:2116. [PMID: 33837188 PMCID: PMC8035330 DOI: 10.1038/s41467-021-22357-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its reduced form are indispensable cofactors in life. Diverse NAD mimics have been developed for applications in chemical and biological sciences. Nicotinamide cytosine dinucleotide (NCD) has emerged as a non-natural cofactor to mediate redox transformations, while cells are fed with chemically synthesized NCD. Here, we create NCD synthetase (NcdS) by reprograming the substrate binding pockets of nicotinic acid mononucleotide (NaMN) adenylyltransferase to favor cytidine triphosphate and nicotinamide mononucleotide over their regular substrates ATP and NaMN, respectively. Overexpression of NcdS alone in the model host Escherichia coli facilitated intracellular production of NCD, and higher NCD levels up to 5.0 mM were achieved upon further pathway regulation. Finally, the non-natural cofactor self-sufficiency was confirmed by mediating an NCD-linked metabolic circuit to convert L-malate into D-lactate. NcdS together with NCD-linked enzymes offer unique tools and opportunities for intriguing studies in chemical biology and synthetic biology.
Collapse
Affiliation(s)
- Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Yanbin Feng
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Siyang Ning
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Qing Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Junting Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lei Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
| |
Collapse
|
7
|
King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development. Curr Opin Biotechnol 2020; 66:217-226. [PMID: 32956903 PMCID: PMC7744333 DOI: 10.1016/j.copbio.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotinamide cofactors enable oxidoreductases to catalyze a myriad of important reactions in biomanufacturing. Decades of research has focused on optimizing enzymes which utilize natural nicotinamide cofactors, namely nicotinamide adenine dinucleotide (phosphate) (NAD(P)+). Recent findings reignite the interest in engineering enzymes to utilize noncanonical cofactors, the mimetics of NAD+ (mNADs), which exhibit superior industrial properties in vitro and enable specific electron delivery in vivo. We compare recent advances in engineering natural versus noncanonical cofactor-utilizing enzymes, discuss design principles discovered, and survey emerging high-throughput platforms beyond the traditional 96-well plate-based methods. Obtaining mNAD-dependent enzymes remains challenging with a limited toolkit. To this end, we highlight design principles and technologies which can potentially be translated from engineering natural to noncanonical cofactor-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Wu S, Zhao P, Li Q, Tian P. Intensifying niacin-based biosynthesis of NAD + to enhance 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol Lett 2020; 43:223-234. [PMID: 32996029 DOI: 10.1007/s10529-020-03011-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Glycerol-based biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae involves two reactions: glycerol conversion to 3-hydroxypropionaldehyde (3-HPA) by glycerol dehydratase, and 3-HPA conversion to 3-HP by aldehyde dehydrogenase (ALDH). The ALDH catalysis consumes a lot of cofactor nicotinamide adenine dinucleotide (NAD+), which constrains 3-HP production. RESULTS Here we report that intensifying niacin-based biosynthesis of NAD+ can substantially enhance 3-HP production. We constructed tac promoter-driven NAD+ synthesis pathway in K. pneumoniae. The strain only overexpressing nicotinate phosphoribosyltransferase (PncB) showed 14.24% increase in the production of NAD+ relative to the stain harboring an empty vector. When PncB was coexpressed with PuuC (one of native ALDHs), the recombinant strain exhibited increased ALDH activity but slightly reduced 3-HP production due to plasmid burden. When 30 mg niacin l-1 (a substrate for biosynthesis of NAD+) was added into shake flask, the strain produced 0.55 g 3-HP l-1, which was 2.75 times that of the control. In a 5-L bioreactor, replenishment of niacin led to 36.43% increase of 3-HP production. CONCLUSIONS These results indicated that intensifying niacin-based biosynthesis of NAD+ boosts 3-HP production.
Collapse
Affiliation(s)
- Shimin Wu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Black WB, Aspacio D, Bever D, King E, Zhang L, Li H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microb Cell Fact 2020; 19:150. [PMID: 32718347 PMCID: PMC7384224 DOI: 10.1186/s12934-020-01415-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Noncanonical redox cofactors are emerging as important tools in cell-free biosynthesis to increase the economic viability, to enable exquisite control, and to expand the range of chemistries accessible. However, these noncanonical redox cofactors need to be biologically synthesized to achieve full integration with renewable biomanufacturing processes. RESULTS In this work, we engineered Escherichia coli cells to biosynthesize the noncanonical cofactor nicotinamide mononucleotide (NMN+), which has been efficiently used in cell-free biosynthesis. First, we developed a growth-based screening platform to identify effective NMN+ biosynthetic pathways in E. coli. Second, we explored various pathway combinations and host gene disruption to achieve an intracellular level of ~ 1.5 mM NMN+, a 130-fold increase over the cell's basal level, in the best strain, which features a previously uncharacterized nicotinamide phosphoribosyltransferase (NadV) from Ralstonia solanacearum. Last, we revealed mechanisms through which NMN+ accumulation impacts E. coli cell fitness, which sheds light on future work aiming to improve the production of this noncanonical redox cofactor. CONCLUSION These results further the understanding of effective production and integration of NMN+ into E. coli. This may enable the implementation of NMN+-directed biocatalysis without the need for exogenous cofactor supply.
Collapse
Affiliation(s)
- William B Black
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Derek Aspacio
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Danielle Bever
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Edward King
- Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Linyue Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Han Li
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States.
| |
Collapse
|
10
|
Abstract
While the bottom-up design of enzymes appears to be an intractably complex problem, a minimal approach that combines elementary, de novo-designed proteins with intrinsically reactive cofactors offers a simple means to rapidly access sophisticated catalytic mechanisms. Not only is this method proven in the reproduction of powerful oxidative chemistry of the natural peroxidase enzymes, but we show here that it extends to the efficient, abiological—and often asymmetric—formation of strained cyclopropane rings, nitrogen–carbon and carbon–carbon bonds, and the ring expansion of a simple cyclic molecule to form a precursor for NAD+, a fundamentally important biological cofactor. That the enzyme also functions in vivo paves the way for its incorporation into engineered biosynthetic pathways within living organisms. By constructing an in vivo-assembled, catalytically proficient peroxidase, C45, we have recently demonstrated the catalytic potential of simple, de novo-designed heme proteins. Here, we show that C45’s enzymatic activity extends to the efficient and stereoselective intermolecular transfer of carbenes to olefins, heterocycles, aldehydes, and amines. Not only is this a report of carbene transferase activity in a completely de novo protein, but also of enzyme-catalyzed ring expansion of aromatic heterocycles via carbene transfer by any enzyme.
Collapse
|
11
|
Black WB, Zhang L, Mak WS, Maxel S, Cui Y, King E, Fong B, Sanchez Martinez A, Siegel JB, Li H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat Chem Biol 2020; 16:87-94. [PMID: 31768035 PMCID: PMC7546441 DOI: 10.1038/s41589-019-0402-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 01/29/2023]
Abstract
Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP+). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN+). The key enzyme in the system is a computationally designed glucose dehydrogenase with a 107-fold cofactor specificity switch toward NMN+ over NADP+ based on apparent enzymatic activity. We demonstrate that this system can be used to support diverse redox chemistries in vitro with high total turnover number (~39,000), to channel reducing power in Escherichia coli whole cells specifically from glucose to a pharmaceutical intermediate, levodione, and to sustain the high metabolic flux required for the central carbon metabolism to support growth. Overall, this work demonstrates efficient use of a noncanonical cofactor in biocatalysis and metabolic pathway design.
Collapse
Affiliation(s)
- William B Black
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Wai Shun Mak
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Bonnie Fong
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Alicia Sanchez Martinez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
- Genome Center, University of California, Davis, Davis, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins. PLoS One 2019; 14:e0220318. [PMID: 31344098 PMCID: PMC6657890 DOI: 10.1371/journal.pone.0220318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope.
Collapse
|
13
|
Wang X, Wang L, Lin X, Yang X, Liu W, Zhao ZK. Visualizing Soluble Protein Mutants by Using Monomeric Red Fluorescent Protein as a Reporter for Directed Evolution. Appl Biochem Biotechnol 2018; 185:81-90. [PMID: 29082479 DOI: 10.1007/s12010-017-2640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
Directed evolution-based protein engineering usually generates large library contained insoluble mutants because of structural disturbance by mutation. To reduce the workload and costs, it is crucial to identify and eliminate those insoluble variants prior to dedicated analysis. Here, we demonstrate a method to visualize soluble protein mutants by using monomeric red fluorescent protein (mRFP) as a fusion tag. A plasmid was devised to express nicotinic acid mononucleotide adenylyltransferase (NadD) fused with a GGGS-linked mRFP tag at the C-terminus. The plasmid was subjected to site saturation mutagenesis within the nadD gene, used to transform Escherichia coli DH10B competent cells, leading to colonies with different red intensities. It was found that the fluorescence intensity of the cell culture correlated positively with the content of NadD-mRFP mutant in the supernatant. Mutation at position 132 led to a library of which most colonies lost the red phenotype, indicating that the position had a key role for proper protein folding. Similarly, mRFP enabled identification of soluble mutants of other enzymes including 1-deoxy-D-xylulose-5-phosphate reductoisomerase and phosphite dehydrogenase. These data suggested that mRFP can serve as a fusion reporter for visualizing soluble protein mutants to facilitate more efficient library screening in directed evolution.
Collapse
Affiliation(s)
- Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China
| | - Xinping Lin
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China
| | - Xiaobing Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, People's Republic of China.
| |
Collapse
|
14
|
Liu J, Li H, Zhao G, Caiyin Q, Qiao J. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 2018; 45:313-327. [PMID: 29582241 DOI: 10.1007/s10295-018-2031-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Huiling Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|