1
|
Isola D, Lee HJ, Chung YJ, Zucconi L, Pelosi C. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. J Fungi (Basel) 2024; 10:366. [PMID: 38786721 PMCID: PMC11122135 DOI: 10.3390/jof10050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Wooden Cultural Heritage (WCH) represents a significant portion of the world's historical and artistic heritage, consisting of immovable and movable artefacts. Despite the expertise developed since ancient times to enhance its durability, wooden artefacts are inevitably prone to degradation. Fungi play a pivotal role in the deterioration of WCH in terrestrial ecosystems, accelerating its decay and leading to alterations in color and strength. Reviewing the literature of the last 25 years, we aimed to provide a comprehensive overview of fungal diversity affecting WCH, the biochemical processes involved in wood decay, and the diagnostic tools available for fungal identification and damage evaluation. Climatic conditions influence the occurrence of fungal species in threatened WCH, characterized by a prevalence of wood-rot fungi (e.g., Serpula lacrymans, Coniophora puteana) in architectural heritage in temperate and continental climates and Ascomycota in indoor and harsh environments. More efforts are needed to address the knowledge fragmentation concerning biodiversity, the biology of the fungi involved, and succession in the degradative process, which is frequently centered solely on the main actors. Multidisciplinary collaboration among engineers, restorers, and life sciences scientists is vital for tackling the challenges posed by climate change with increased awareness. Traditional microbiology and culture collections are fundamental in laying solid foundations for a more comprehensive interpretation of big data.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Hyun-Ju Lee
- Institute of Preventive Conservation for Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Yong-Jae Chung
- Department of Heritage Conservation and Restoration, Graduate School of Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Claudia Pelosi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| |
Collapse
|
2
|
Pradeep Kumar V, Sridhar M, Ashis Kumar S, Bhatta R. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi. Microbiol Spectr 2023; 11:e0141923. [PMID: 37655898 PMCID: PMC10581151 DOI: 10.1128/spectrum.01419-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Indigenous white-rot fungal isolates Schizophyllum commune, Phanerochaete chrysosporium, Ganoderma racenaceum, and Lentinus squarrosulus, demonstrating the ability to depolymerize lignin of the crop residues, were studied for their potential to produce ligninolytic enzymes using modified production media under conditions of limiting and excess nitrogen for higher enzymatic expressions. Secretome-rich media on the investigation confirmed the successful production of lignin-depolymerizing enzymes, viz. laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. Production of laccases and peroxidases was statistically significant in nitrogen-limiting media with and without the substrate, across all white-rot fungal cultures at 95% confidence interval. Nitrogen-limiting media with the substrate on analysis extracellularly expressed 99.27 U of laccase and 68.48 U of manganese peroxidase in Schizophyllum commune, while 195.14 U of lignin peroxidase was produced by Phanerochaete chrysosporium. Lentinus squarrosulus expressed 455.34 U of laccase and 357.13 U of versatile peroxidase with 250.09 U of laccase and 206.95 U of manganese peroxidase produced by Ganoderma racenaceum for every milliliter of the media used. Nitrogen-limiting media triggered the production of laccase during the initial stages of growth while the expression of peroxidases was predominant at a later stage. Also, this media evinced increased enzymatic yields with low biomass content compared to nitrogen-excess conditions. The extant study confirmed the positive influence of nitrogen-limiting media in the efficient production of ligninolytic enzymes and their suggestive degradation potential for environmental pollutants, making these enzymes a safe, clean alternative to the use of chemicals and the media to be effective for large-scale production of ligninolytic enzymes. IMPORTANCE Lignin on account of its high abundance, complex polymeric structure, and biochemical properties is identified as a promising candidate in renewable energy and bioproduct manufacturing. However, depolymerization of lignin remains a major challenge in lignin utilization, entailing the employment of harsh treatments representing not only an environmental concern but also a waste of economic potential. Developing an alternative green technology to minimize this impact is imperative. Methods using enzymes to depolymerize lignin are the focus of recent studies. Current research work emphasized the efficient expression of the major lignin-depolymerizing enzymes: laccases, lignin peroxidases, manganese peroxidases, and versatile peroxidases from native isolates of white-rot fungus for several biotechnological applications as well as treatment of crop residues for use as ruminant feed in improving productivity. The importance of nitrogen in augmenting the expression of lignin-depolymerizing enzymes and providing a media recipe for the cost-effective production of ligninolytic enzymes is highlighted.
Collapse
Affiliation(s)
- Vidya Pradeep Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Manpal Sridhar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Samanta Ashis Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Raghavendra Bhatta
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
4
|
Singh AK, Bilal M, Jesionowski T, Iqbal HM. Deployment of oxidoreductases for sustainable biocatalytic degradation of selected endocrine-disrupting chemicals. SUSTAINABLE CHEMISTRY AND PHARMACY 2023; 31:100934. [DOI: 10.1016/j.scp.2022.100934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
5
|
Hu H, Li Y, Li Y, Sun Y, Li Y. Carbamoyl Manganese Complexes for Epoxidation of Alkenes and Cycloaddition of Epoxides to Carbon Dioxide. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Assessment of Different Spent Mushroom Substrates to Bioremediate Soils Contaminated with Petroleum Hydrocarbons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bioremediation techniques are being developed as substitutes for physical–chemical methodologies that are expensive and not sustainable. For example, using the agricultural waste spent mushroom substrate (SMS) which contains valuable microbiota for soil bioremediation. In this work, SMSs of four cultivated fungal species, Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, and Agaricus bisporus were evaluated for the bioremediation of soils contaminated by petroleum hydrocarbons (TPHs). The bioremediation test was carried out by mixing the four different SMSs with the TPH-contaminated soil in comparison with an unamended soil control to assess its natural attenuation. To determine the most efficient bioremediation strategy, hydrolase, dehydrogenase, and ligninolytic activities, ergosterol content, and percentage of TPHs degradation (total and by chains) were determined at the end of the assay at 40 days. The application of SMS significantly improved the degradation of TPHs with respect to the control. The most effective spent mushroom substrate to degrade TPHs was A. bisporus, followed by L. edodes and P. ostreatus. Similar results were obtained for the removal of aliphatic and aromatic hydrocarbons. The results showed the effectiveness of SMS to remove aliphatic and aromatic hydrocarbons from C10 to C35. This work demonstrates an alternative to valorizing an abundant agricultural waste as SMS to bioremediate contaminated soils.
Collapse
|
7
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
8
|
Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv 2022; 57:107936. [PMID: 35276253 DOI: 10.1016/j.biotechadv.2022.107936] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
Abstract
Microbial enzymes catalyze various reactions inside and outside living cells. Among the widely studied enzymes, fungal enzymes have been used for some of the most diverse purposes, especially in bioremediation, biosynthesis, and many nature-inspired commercial applications. To improve their stability and catalytic ability, fungal enzymes are often immobilized on assorted materials, conventional as well as nanoscale. Recent advances in fungal enzyme immobilization provide effective and sustainable approaches to achieve improved environmental and commercial outcomes. This review aims to provide a comprehensive overview of commonly studied fungal enzymes and immobilization technologies. It also summarizes recent advances involving immobilized fungal enzymes for the degradation or assembly of compounds used in the manufacture of products, such as detergents, food additives, and fossil fuel alternatives. Furthermore, challenges and future directions are highlighted to offer new perspectives on improving existing technologies and addressing unexplored fields of applications.
Collapse
Affiliation(s)
- Yifan Gao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Kshitjia Shah
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Ivy Kwok
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
9
|
Barber-Zucker S, Mindel V, Garcia-Ruiz E, Weinstein JJ, Alcalde M, Fleishman SJ. Stable and Functionally Diverse Versatile Peroxidases Designed Directly from Sequences. J Am Chem Soc 2022; 144:3564-3571. [PMID: 35179866 PMCID: PMC8895400 DOI: 10.1021/jacs.1c12433] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/19/2022]
Abstract
White-rot fungi secrete a repertoire of high-redox potential oxidoreductases to efficiently decompose lignin. Of these enzymes, versatile peroxidases (VPs) are the most promiscuous biocatalysts. VPs are attractive enzymes for research and industrial use but their recombinant production is extremely challenging. To date, only a single VP has been structurally characterized and optimized for recombinant functional expression, stability, and activity. Computational enzyme optimization methods can be applied to many enzymes in parallel but they require accurate structures. Here, we demonstrate that model structures computed by deep-learning-based ab initio structure prediction methods are reliable starting points for one-shot PROSS stability-design calculations. Four designed VPs encoding as many as 43 mutations relative to the wildtype enzymes are functionally expressed in yeast, whereas their wildtype parents are not. Three of these designs exhibit substantial and useful diversity in their reactivity profiles and tolerance to environmental conditions. The reliability of the new generation of structure predictors and design methods increases the scale and scope of computational enzyme optimization, enabling efficient discovery and exploitation of the functional diversity in natural enzyme families directly from genomic databases.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Vladimir Mindel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Eva Garcia-Ruiz
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Cantoblanco, Madrid 28094, Spain
| | - Jonathan J. Weinstein
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Cantoblanco, Madrid 28094, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
10
|
Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Streptomyces thermocarboxydus Combining Catalytic Properties of Manganese Peroxidase and Laccase. Toxins (Basel) 2021; 13:toxins13090602. [PMID: 34564606 PMCID: PMC8473283 DOI: 10.3390/toxins13090602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Ligninolytic enzymes, including laccase, manganese peroxidase, and dye-decolorizing peroxidase (DyP), have attracted much attention in the degradation of mycotoxins. Among these enzymes, the possible degradation pathway of mycotoxins catalyzed by DyP is not yet clear. Herein, a DyP-encoding gene, StDyP, from Streptomyces thermocarboxydus 41291 was identified, cloned, and expressed in Escherichia coli BL21/pG-Tf2. The recombinant StDyP was capable of catalyzing the oxidation of the peroxidase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), phenolic lignin compounds 2,6-dimethylphenol, and guaiacol, non-phenolic lignin compound veratryl alcohol, Mn2+, as well as anthraquinone dye reactive blue 19. Moreover, StDyP was able to slightly degrade zearalenone (ZEN). Most importantly, we found that StDyP combined the catalytic properties of manganese peroxidase and laccase, and could significantly accelerate the enzymatic degradation of ZEN in the presence of their corresponding substrates Mn2+ and 1-hydroxybenzotriazole. Furthermore, the biological toxicities of the main degradation products 15-OH-ZEN and 13-OH-ZEN-quinone might be remarkably removed. These findings suggested that DyP might be a promising candidate for the efficient degradation of mycotoxins in food and feed.
Collapse
|
11
|
Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mushroom ligninolytic enzymes are attractive biocatalysts that can degrade lignin through oxido-reduction. Laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase are the main enzymes that depolymerize highly complex lignin structures containing aromatic or aliphatic moieties and oxidize the subunits of monolignol associated with oxidizing agents. Among these enzymes, mushroom laccases are secreted glycoproteins, belonging to a polyphenol oxidase family, which have a powerful oxidizing capability that catalyzes the modification of lignin using synthetic or natural mediators by radical mechanisms via lignin bond cleavage. The high redox potential laccase within mediators can catalyze the oxidation of a wide range of substrates and the polymerization of lignin derivatives for value-added chemicals and materials. The chemoenzymatic process using mushroom laccases has been applied effectively for lignin utilization and the degradation of recalcitrant chemicals as an eco-friendly technology. Laccase-mediated grafting has also been employed to modify lignin and other polymers to obtain novel functional groups able to conjugate small and macro-biomolecules. In this review, the biochemical features of mushroom ligninolytic enzymes and their potential applications in catalytic reactions involving lignin and its derivatives to obtain value-added chemicals and novel materials in lignin valorization are discussed.
Collapse
|
12
|
Recent Advances in Enzymes for the Bioremediation of Pollutants. Biochem Res Int 2021; 2021:5599204. [PMID: 34401207 PMCID: PMC8364428 DOI: 10.1155/2021/5599204] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, pollution of the environment is a huge problem for humans and other organisms' health. Conventional methods of pollutant removal like membrane filtration or ion exchange are not efficient enough to lower the number of pollutants to standard levels. Biological methods, because of their higher efficiency and biocompatibility, are preferred for the remediation of pollutants. These cost-effective and environment-friendly methods of reducing pollutants are called bioremediation. In bioremediation methods, enzymes play the most crucial role. Enzymes can remedy different types of organic and inorganic pollutants, including PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury. Different enzymes isolated from various species have been used for the bioremediation of pollutants. Discovering new enzymes and new subtypes with specific physicochemical characteristics would be a promising way to find more efficient and cost-effective tools for the remediation of pollutants.
Collapse
|
13
|
Qin X, Su X, Tu T, Zhang J, Wang X, Wang Y, Wang Y, Bai Y, Yao B, Luo H, Huang H. Enzymatic Degradation of Multiple Major Mycotoxins by Dye-Decolorizing Peroxidase from Bacillus subtilis. Toxins (Basel) 2021; 13:toxins13060429. [PMID: 34205294 PMCID: PMC8235724 DOI: 10.3390/toxins13060429] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
The co-occurrence of multiple mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), widely exists in cereal-based animal feed and food. At present, most reported mycotoxins degrading enzymes target only a certain type of mycotoxins. Therefore, it is of great significance for mining enzymes involved in the simultaneous degradation of different types of mycotoxins. In this study, a dye-decolorizing peroxidase-encoding gene BsDyP from Bacillus subtilis SCK6 was cloned and expressed in Escherichia coli BL21/pG-Tf2. The purified recombinant BsDyP was capable of oxidizing various substrates, including lignin phenolic model compounds 2,6-dimethylphenol and guaiacol, the substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), anthraquinone dye reactive blue 19 and azo dye reactive black 5, as well as Mn2+. In addition, BsDyP could efficiently degrade different types of mycotoxins, including AFB1, ZEN and DON, in presence of Mn2+. More important, the toxicities of their corresponding enzymatic degradation products AFB1-diol, 15-OH-ZEN and C15H18O8 were significantly lower than AFB1, ZEN and DON. In summary, these results proved that BsDyP was a promising candidate for the simultaneous degradation of multiple mycotoxins in animal feed and food.
Collapse
|
14
|
Production of fungal enzymes in Macaúba coconut and enzymatic degradation of textile dye. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Evaluation of Versatile Peroxidase’s Activity and Conformation in the Presence of a Hydrated Urea Based Deep Eutectic Solvent. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00881-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Sekan AS, Myronycheva OS, Karlsson O, Gryganskyi AP, Blume Y. Green potential of Pleurotus spp. in biotechnology. PeerJ 2019; 7:e6664. [PMID: 30967974 PMCID: PMC6446892 DOI: 10.7717/peerj.6664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The genus Pleurotus is most exploitable xylotrophic fungi, with valuable biotechnological, medical, and nutritional properties. The relevant features of the representatives of this genus to provide attractive low-cost industrial tools have been reported in numerous studies to resolve the pressure of ecological issues. Additionally, a number of Pleurotus species are highly adaptive, do not require any special conditions for growth, and possess specific resistance to contaminating diseases and pests. The unique properties of Pleurotus species widely used in many environmental technologies, such as organic solid waste recycling, chemical pollutant degradation, and bioethanol production. METHODOLOGY The literature study encompasses peer-reviewed journals identified by systematic searches of electronic databases such as Google Scholar, NCBI, Springer, ResearchGate, ScienceDirect, and ISI Web of Knowledge. The search scheme was divided into several steps, as described below. RESULTS In this review, we describe studies examining the biotechnological feasibility of Pleurotus spp. to elucidate the importance of this genus for use in green technology. Here, we review areas of application of the genus Pleurotus as a prospective biotechnological tool. CONCLUSION The incomplete description of some fungal biochemical pathways emphasises the future research goals for this fungal culture.
Collapse
Affiliation(s)
- Alona S. Sekan
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena S. Myronycheva
- Division of Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Lulea University of Technology, Skelleftea, Sweden
| | - Olov Karlsson
- Division of Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Lulea University of Technology, Skelleftea, Sweden
| | | | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Mamashli F, Badraghi J, Delavari B, Lanjanian H, Sabbaghian M, Hosseini M, Saboury AA. Improvement of versatile peroxidase activity and stability by a cholinium-based ionic liquid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Wang X, Yao B, Su X. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Int J Mol Sci 2018; 19:ijms19113373. [PMID: 30373305 PMCID: PMC6274955 DOI: 10.3390/ijms19113373] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
The major enzymes involved in lignin degradation are laccase, class II peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase) and dye peroxidase, which use an oxidative or peroxidative mechanism to deconstruct the complex and recalcitrant lignin. Laccase and manganese peroxidase directly oxidize phenolic lignin components, while lignin peroxidase and versatile peroxidase can act on the more recalcitrant non-phenolic lignin compounds. Mediators or co-oxidants not only increase the catalytic ability of these enzymes, but also largely expand their substrate scope to those with higher redox potential or more complicated structures. Neither laccase nor the peroxidases are stringently selective of substrates. The promiscuous nature in substrate preference can be employed in detoxification of a range of organics.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Kohler AC, Simmons BA, Sale KL. Structure-based Engineering of a Plant-Fungal Hybrid Peroxidase for Enhanced Temperature and pH Tolerance. Cell Chem Biol 2018; 25:974-983.e3. [DOI: 10.1016/j.chembiol.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/07/2018] [Accepted: 04/13/2018] [Indexed: 11/24/2022]
|
20
|
A development and an improvement of selectable markers in Pleurotus ostreatus transformation. J Microbiol Methods 2017; 134:27-29. [DOI: 10.1016/j.mimet.2017.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/08/2017] [Accepted: 01/08/2017] [Indexed: 11/20/2022]
|