1
|
Tokuda M, Shintani M. Microbial evolution through horizontal gene transfer by mobile genetic elements. Microb Biotechnol 2024; 17:e14408. [PMID: 38226780 PMCID: PMC10832538 DOI: 10.1111/1751-7915.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.
Collapse
Affiliation(s)
- Maho Tokuda
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
| | - Masaki Shintani
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
- Research Institute of Green Science and TechnologyShizuoka UniversityHamamatsuJapan
- Japan Collection of MicroorganismsRIKEN BioResource Research CenterIbarakiJapan
- Graduate School of Integrated Science and TechnologyShizuoka UniversityHamamatsuJapan
| |
Collapse
|
2
|
Xiao Z, Qu Z, Liu N, Wang J, Zhao J, Liu J, Wang L, Huang X, Zhang Q, Gao Y, Wang J, Yu Z, Guan J, Liu H. Molecular epidemiological characteristics and genetic evolutionary relationships of methicillin-resistant Staphylococcus aureus of different avian origins in Qingdao, China, using whole-genome sequencing. J Vet Res 2023; 67:169-177. [PMID: 38143828 PMCID: PMC10740325 DOI: 10.2478/jvetres-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/12/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction To understand the prevalence of avian methicillin-resistant Staphylococcus aureus (MRSA) and the current status of drug resistance in Qingdao, a comprehensive molecular epidemiological investigation and analysis of evolutionary relationships of MRSA isolates from broiler and layer chickens and waterfowl was conducted. Material and Methods One hundred and two avian MRSA strains were identified by multi-locus sequence typing, staphylococcal protein A (spa) and staphylococcal cassette chromosome mec (SCCmec) typing, and whole-genome sequencing. Results The sequence type (ST) 9-t899-SCCmec IVb type represented the highest proportion of avian-derived MRSA strains (71.57%), with ST398 type strains occasionally observed in broilers and waterfowl. The poultry-derived MRSA strains were all resistant to eight or more antimicrobials. Avian-derived MRSA strains carried 20 resistance genes, 109 virulence genes and 10 plasmids. Strains carrying the cfr oxazolidinone resistance gene were occasionally seen in broiler- and layer-derived MRSA. Single nucleotide polymorphism (SNP) core genome evolution and locus difference analysis showed that the closest strains were all of ST9-t899 type (to which also affiliated the highest number of strains) and this type occurred on all three kinds of poultry farm, but the SNP difference loci between strains of the same type ranged from 0 to 1472. Conclusion The dominant type of MRSA from different poultry sources in Qingdao is ST9-t899-SCCmec IVb, which is commonly resistant to a variety of antimicrobial drugs and carries a variety of resistance genes and a large number of virulence genes. Sequence type 9-t899 type is widely spread among the three kinds of poultry investigated, but there are differences in affiliations.
Collapse
Affiliation(s)
- Zhen Xiao
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Zhina Qu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Na Liu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Juan Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Jianmei Zhao
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Junhui Liu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Lin Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Xiumei Huang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Qingqing Zhang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Yubin Gao
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Junwei Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Zhiyong Yu
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| | - Jiajia Guan
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| |
Collapse
|
3
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
4
|
Hu J, Chen L, Li G, Pan Y, Lu Y, Chen J, Xiong W, Zeng Z. Prevalence and genetic characteristics of fosB-positive Staphylococcus aureus in duck farms in Guangdong, China in 2020. J Antimicrob Chemother 2023; 78:802-809. [PMID: 36691844 DOI: 10.1093/jac/dkad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To investigate the epidemiology of fosB-positive Staphylococcus aureus in waterfowl farms in the Pearl River tributaries in Guangdong Province, China in 2020. METHODS A total of 63 S. aureus were recovered from 315 samples collected from six duck farms and one goose farm. PFGE, WGS and analysis were performed on 19 fosB-positive S. aureus. RESULTS The fosfomycin resistance rate of the strains was as high as 52.4% (33/63), and 30.1% (19/63) of the strains carried fosB. Resistance gene prediction results showed that duck farm environment-derived strains contained the oxazolidinone drug resistance gene optrA. All fosB-positive S. aureus were MRSA and most of them were MDR, mainly ST9-t899 and ST164-t899. PFGE showed that fosB-positive S. aureus from humans and ducks could be clustered into the same clade. In addition, core-genome SNP analysis showed that clonal transmission of S. aureus occurred between humans and water. Pan-genome analysis showed that S. aureus had an open pangenome. The fosB gene was located on 2610-2615 bp plasmids, which all contained a broad host-range plasmid replication protein family 13. Small plasmids carrying the fosB gene could be found in different multilocus STs of S. aureus. CONCLUSIONS This study indicated that duck farms in Guangdong, China could be an important reservoir of fosB-positive S. aureus. The spread of drug-resistant bacteria in waterfowl farms requires further monitoring.
Collapse
Affiliation(s)
- Jianxin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Jin Chen
- National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Pennone V, Prieto M, Álvarez-Ordóñez A, Cobo-Diaz JF. Antimicrobial Resistance Genes Analysis of Publicly Available Staphylococcus aureus Genomes. Antibiotics (Basel) 2022; 11:1632. [PMID: 36421276 PMCID: PMC9686812 DOI: 10.3390/antibiotics11111632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is a pathogen that can cause severe illness and express resistance to multiple antimicrobial agents. It is part of the ESKAPE organisms and it has been included by the Centers for Disease Control and Prevention (CDC) of USA in the list of serious threats to humans. Many antimicrobial mechanisms have been identified, and, in particular, antimicrobial resistance genes (ARGs) can be determined by whole genome sequencing. Mobile genetic elements (MGEs) can determine the spread of these ARGs between strains and species and can be identified with bioinformatic analyses. The scope of this work was to analyse publicly available genomes of S. aureus to characterise the occurrence of ARGs present in chromosomes and plasmids in relation to their geographical distribution, isolation sources, clonal complexes, and changes over time. The results showed that from a total of 29,679 S. aureus genomes, 24,765 chromosomes containing 73 different ARGs, and 21,006 plasmidic contigs containing 47 different ARGs were identified. The most abundant ARG in chromosomes was mecA (84%), while blaZ was the most abundant in plasmidic contigs (30%), although it was also abundant in chromosomes (42%). A total of 13 clonal complexes were assigned and differences in ARGs and CC distribution were highlighted among continents. Temporal changes during the past 20 years (from 2001 to 2020) showed that, in plasmids, MRSA and macrolide resistance occurrence decreased, while the occurrence of ARGs associated with aminoglycosides resistance increased. Despite the lack of metadata information in around half of the genomes analysed, the results obtained enable an in-depth analysis of the distribution of ARGs and MGEs throughout different categories to be undertaken through the design and implementation of a relatively simple pipeline, which can be also applied in future works with other pathogens, for surveillance and screening purposes.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Department of Food and Drug, Università degli Studi di Parma, 43121 Parma, Italy
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
- Institute of Food Science and Technology, Universidad de León, 24071 León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
- Institute of Food Science and Technology, Universidad de León, 24071 León, Spain
| | - José F. Cobo-Diaz
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
| |
Collapse
|
6
|
Ribeiro M, Sousa M, Borges V, Gomes JP, Duarte S, Isidro J, Vieira L, Torres C, Santos H, Capelo JL, Poeta P, Igrejas G. Bioinformatics study of expression from genomes of epidemiologically related MRSA CC398 isolates from human and wild animal samples. J Proteomics 2022; 268:104714. [PMID: 36058542 DOI: 10.1016/j.jprot.2022.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
One of the most important livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) genetic lineages is the clonal complex (CC) 398, which can cause typical S. aureus-associated infections in people. In this work, whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics were applied to study the genetic characteristics of three MRSA CC398 isolates recovered from humans (strains C5621 and C9017), and from an animal (strain OR418). Of the three strains, C9017 presented the broadest resistance genotype, including resistance to fluroquinolone, clindamycin, tiamulin, macrolide and aminoglycoside antimicrobial classes. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains. For example, the immunoglobulin-binding protein Sbi was more abundant in OR418. Considering that Sbi is a multifunctional immune evasion factor in S. aureus, the results point to OR418 strain having high zoonotic potential. Overall, multiomics biomarker signatures can assume an important role to advance precision medicine in the years to come. SIGNIFICANCE: MRSA is one of the most representative drug-resistant pathogens and its dissemination is increasing due to MRSA capability of establishing new reservoirs. LA-MRSA is considered an emerging problem worldwide and CC398 is one of the most important genetic lineages. In this study, three MRSA CC398 isolates recovered from humans and from a wild animal were analyzed through whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics in order to gather systems-wide omics data and better understand the genetic characteristics of this lineage to identify distinctive markers and genomic features of relevance to public health. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal
| | - Margarida Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Sílvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisbon, Portugal; Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Carmen Torres
- Biochemistry and Molecular Biology Unit, Faculty of Science and Technology, University of La Rioja, 26006 Logroño, Spain
| | - Hugo Santos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - José Luís Capelo
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Patrícia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal; Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5000-801, Portugal; CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal.
| |
Collapse
|
7
|
Mikhaylova Y, Shelenkov A, Chernyshkov A, Tyumentseva M, Saenko S, Egorova A, Manzeniuk I, Akimkin V. Whole-Genome Analysis of Staphylococcus aureus Isolates from Ready-to-Eat Food in Russia. Foods 2022; 11:foods11172574. [PMID: 36076759 PMCID: PMC9455289 DOI: 10.3390/foods11172574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
This study provides a thorough investigation of a diverse set of antimicrobial resistant (AMR) Staphylococcus aureus isolates collected from a broad range of ready-to-eat (RTE) food in various geographic regions of Russia ranging from Pskov to Kamchatka. Thirty-five isolates were characterized using the whole genome sequencing (WGS) analysis in terms of clonal structure, the presence of resistance and virulence determinants, as well as plasmid replicon sequences and CRISPR/Cas systems. To the best of our knowledge, this is the first WGS-based surveillance of Russian RTE food-associated S. aureus isolates. The isolates belonged to fifteen different multilocus sequence typing (MLST)-based types with a predominant being the ones of clonal complex (CC) 22. The isolates studied can pose a threat to public health since about 40% of the isolates carried at least one enterotoxin gene, and 70% of methicillin-resistant (MRSA) isolates carried a tsst1 gene encoding a toxin that may cause severe acute disease. In addition, plasmid analysis revealed some important characteristics, e.g., Rep5 and Rep20 plasmid replicons were a “signature” of MRSA CC22. By analyzing the isolates belonging to the same/single strain based on cgMLST analysis, we were able to identify the differences in their accessory genomes marking their dynamics and plasticity. This data is very important since S. aureus isolates studied and RTE food, in general, represent an important route of transmission and dissemination of multiple pathogenic determinants. We believe that the results obtained will facilitate performing epidemiological surveillance and developing protection measures against this important pathogen in community settings.
Collapse
|
8
|
Muneeb KH, Sudha S, Sivaraman GK, Ojha R, Mendem SK, Murugesan D, Raisen CL, Shome B, Holmes M. Whole-genome sequence analysis of Staphylococcus aureus from retail fish acknowledged the incidence of highly virulent ST672-MRSA-IVa/t1309, an emerging Indian clone, in Assam, India. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:412-421. [PMID: 34796671 DOI: 10.1111/1758-2229.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The epidemiology and toxigenicity of MRSA in the fishery environment are poorly understood. In this study, methicillin-resistant Staphylococcus aureus (MRSA) (n = 1) and methicillin-susceptible S. aureus (MSSA) (n = 2) from retail fish were subjected to comprehensive genome analysis. Here, we report the occurrence of ST672-MRSA-IV/t1309 and ST5-MSSA/t105 for the first time from India in the fishery environment. The resistome of the isolates was in concordance with their phenotypic resistance pattern. Phenotypically, the resistance profile of MSSA isolates (n = 2) was AMP-CLI-ERY-NOR-PEN. For MRSA (n = 1), it was AMP-CFZ-CLI-ERY-NOR-OXA-PEN. The antibiotic efflux genes and mutations in the antibiotic target accounted for fluoroquinolone resistance whereas methicillin resistance was conferred through possession of a mecA gene. Similarly, all three isolates carried a similar array of virulence factors. The conjugative plasmid inc18 and rep family 10 plasmids were found in two of the three isolates. This study documents the MRSA carrying SCCmec IVa elements which are the markers of community-associated MRSA (CA-MRSA). Through the possession of SCCmec IV elements, which are smaller than other types of SCCmec, MRSA can contribute to the rapid dissemination of antimicrobial resistance and virulence factors. In short, our findings highlighted that the presence of ST672-MRSA in fishery environments may pose a risk to human health.
Collapse
Affiliation(s)
- K H Muneeb
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, 682 029, India
- Department of Biotechnology, Faculty of Sciences, Cochin University of Science and Technology, Kochi, India
| | - S Sudha
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, 682 029, India
| | - G K Sivaraman
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, 682 029, India
| | - Rakshit Ojha
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Suresh Kumar Mendem
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Devi Murugesan
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - C L Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Bibek Shome
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Mark Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Aytan-Aktug D, Clausen PTLC, Szarvas J, Munk P, Otani S, Nguyen M, Davis JJ, Lund O, Aarestrup FM. PlasmidHostFinder: Prediction of Plasmid Hosts Using Random Forest. mSystems 2022; 7:e0118021. [PMID: 35382558 PMCID: PMC9040769 DOI: 10.1128/msystems.01180-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Plasmids play a major role facilitating the spread of antimicrobial resistance between bacteria. Understanding the host range and dissemination trajectories of plasmids is critical for surveillance and prevention of antimicrobial resistance. Identification of plasmid host ranges could be improved using automated pattern detection methods compared to homology-based methods due to the diversity and genetic plasticity of plasmids. In this study, we developed a method for predicting the host range of plasmids using machine learning-specifically, random forests. We trained the models with 8,519 plasmids from 359 different bacterial species per taxonomic level; the models achieved Matthews correlation coefficients of 0.662 and 0.867 at the species and order levels, respectively. Our results suggest that despite the diverse nature and genetic plasticity of plasmids, our random forest model can accurately distinguish between plasmid hosts. This tool is available online through the Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/services/PlasmidHostFinder/). IMPORTANCE Antimicrobial resistance is a global health threat to humans and animals, causing high mortality and morbidity while effectively ending decades of success in fighting against bacterial infections. Plasmids confer extra genetic capabilities to the host organisms through accessory genes that can encode antimicrobial resistance and virulence. In addition to lateral inheritance, plasmids can be transferred horizontally between bacterial taxa. Therefore, detection of the host range of plasmids is crucial for understanding and predicting the dissemination trajectories of extrachromosomal genes and bacterial evolution as well as taking effective countermeasures against antimicrobial resistance.
Collapse
Affiliation(s)
- Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Judit Szarvas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marcus Nguyen
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - James J. Davis
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, Illinois, USA
- Northwestern Argonne Institute for Science and Engineering, Evanston, Illinois, USA
| | - Ole Lund
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Ward-specific clustering of methicillin-resistant Staphylococcus aureus spa-type t037 and t045 in two hospitals in South Africa: 2013 to 2017. PLoS One 2021; 16:e0253883. [PMID: 34185791 PMCID: PMC8241065 DOI: 10.1371/journal.pone.0253883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) is a highly clonal pathogen causing infections in various settings. The aim of this study was to determine if healthcare-associated (HA) MRSA isolates with the same spa-type originating from two geographically distinct hospitals in South Africa were genetically related based on PFGE. Furthermore, a small subset of MRSA isolates were characterised with WGS and then compared to PFGE to determine if PFGE is still a reliable method to define outbreaks and/or transmission chains. Methods Staphylococcus aureus isolated from blood cultures (BC) were submitted to the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM) as part of a laboratory-based surveillance programme (GERMS-SA). The identified HA-MRSA isolates underwent molecular characterisation [Staphylococcal Chromosome Cassette (SCC) mec and spa-typing]. Pulsed-field gel electrophoresis (PFGE) was performed on selected isolates with the same spa-type. Twenty-one MRSA isolates were selected for whole-genome sequencing (WGS) based on spa-type, PFGE clustering, time and place of isolation. Results Eighteen percent (n = 95/529) and 33% (n = 234/710) of isolates collected, from two public tertiary academic hospitals in the Gauteng (GAU) and the Western Cape (WC) provinces, were identified as MRSA, respectively. The most dominant clone in the GAU hospital was t037-III-MRSA (43.2%; n = 41/95). The most dominant clones in the WC hospital was t037-III-MRSA (23.9%, n = 56/234) and t045-I-MRSA (23.5%, n = 55/234). The GAU-t037-III-MRSA cases and WC-t045-I-MRSA cases occurred in the paediatric patient population, whereas the WC-t037-III-MRSA cases occurred in the adult patient population. A novel spa-type (t19935) was detected in the GAU hospital. PFGE showed that the GAU- and WC-t037-III-MRSA isolates were genetically indistinguishable, as well as most of the WC-t045-I-MRSA isolates. The Vienna/Hungarian/Brazilian clone and British EMRSA-3 clone were in circulation and a low frequency of single nucleotide polymorphisms (SNP) (≤20) differences was observed among isolates with the same spa-type. Conclusion The low number of SNP differences is suggestive of uninterrupted strain transmission and the persistence of t037-III-MRSA and t045-I-MRSA from 2013 to 2017 in the two studied hospitals. Alternative infection prevention and control strategies should be considered to supplement control efforts.
Collapse
|
11
|
Mora-Hernández Y, Vera Murguía E, Stinenbosch J, Hernández Jauregui P, van Dijl JM, Buist G. Molecular typing and antimicrobial resistance profiling of 33 mastitis-related Staphylococcus aureus isolates from cows in the Comarca Lagunera region of Mexico. Sci Rep 2021; 11:6912. [PMID: 33767356 PMCID: PMC7994548 DOI: 10.1038/s41598-021-86453-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/10/2021] [Indexed: 11/26/2022] Open
Abstract
Mastitis in cows is a major cause of economic losses and it is commonly associated with Staphylococcus aureus. Little is known about the S. aureus lineages causing mastitis in Mexican cattle. The aim of this study was to type S. aureus isolates causing mastitis in cows from the Comarca Lagunera region in Mexico in 2015-2016. Multi-locus variable number tandem repeat fingerprinting (MLVF) of 33 S. aureus isolates obtained from 210 milk samples revealed the MLVF clusters A (n = 1), B (n = 26), C (n = 5) and D (n = 1). Spa-typing showed that clusters A and B represent the spa-type t224, cluster C includes spa-types t3196 and t416, and cluster D represents spa-type t114. The different spa-types were mirrored by the masses of protein A bands as detected by Western blotting. Antimicrobial susceptibility testing showed that one isolate was susceptible to all antimicrobials tested, whereas all other strains were resistant only to benzylpenicillin. These findings show that only four S. aureus lineages, susceptible to most antimicrobials, were responsible for causing mastitis at the time of sampling. Lastly, many isolates carried the same small plasmid, designated pSAM1. The high prevalence of pSAM1 amongst the antimicrobial-susceptible isolates suggests an association with bovine colonization or mastitis rather than antimicrobial resistance.
Collapse
Affiliation(s)
- Y Mora-Hernández
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - E Vera Murguía
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - J Stinenbosch
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - G Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
12
|
Gómez P, Ruiz-Ripa L, Fernández-Fernández R, Gharsa H, Ben Slama K, Höfle U, Zarazaga M, Holmes MA, Torres C. Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC-Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins. Front Microbiol 2021; 12:655994. [PMID: 33841383 PMCID: PMC8027229 DOI: 10.3389/fmicb.2021.655994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023] Open
Abstract
Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF'. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3' region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin.
Collapse
Affiliation(s)
- Paula Gómez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Laura Ruiz-Ripa
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ursula Höfle
- Health and Biotechnology SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
13
|
Abstract
Plasmids have largely contributed to the spread of antimicrobial resistance genes among Staphylococcus strains. Knowledge about the fitness cost that plasmids confer on clinical staphylococcal isolates and the coevolutionary dynamics that drive plasmid maintenance is still scarce. In this study, we aimed to analyze the initial fitness cost of plasmids in the bacterial pathogen Staphylococcus aureus and the plasmid-host adaptations that occur over time. For that, we first designed a CRISPR (clustered regularly interspaced palindromic repeats)-based tool that enables the removal of native S. aureus plasmids and then transferred three different plasmids isolated from clinical S. aureus strains to the same-background clinical cured strain. One of the plasmids, pUR2940, obtained from a livestock-associated methicillin-resistant S. aureus (LA-MRSA) ST398 strain, imposed a significant fitness cost on both its native and the new host. Experimental evolution in a nonselective medium resulted in a high rate pUR2940 loss and selected for clones with an alleviated fitness cost in which compensatory adaptation occurred via deletion of a 12.8-kb plasmid fragment, contained between two ISSau10 insertion sequences and harboring several antimicrobial resistance genes. Overall, our results describe the relevance of plasmid-borne insertion sequences in plasmid rearrangement and maintenance and suggest the potential benefits of reducing the use of antibiotics both in animal and clinical settings for the loss of clinical multidrug resistance plasmids.
Collapse
|
14
|
Abstract
Plasmids identification and classification is an essential parameter in current bacterial typing. The most widely used PCR-based methods are the PCR-based replicon typing (PBRT) and the degenerate primer MOB typing (DPMT). PBRT targets the replicons on the plasmids and DPMT targets the relaxase genes. A finer resolution of phylogenetic relatedness can be obtained by plasmid multiLocus sequence typing available for the major plasmid types occurring in Enterobacteriaceae.
Collapse
|
15
|
Isolation and Visualization of Plasmids from Gram-Positive Bacteria of Interest in Public Health. Methods Mol Biol 2021. [PMID: 31584152 DOI: 10.1007/978-1-4939-9877-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
This chapter describes the methods to extract and characterize plasmids of Gram-positive bacterial species of interest in public health (biomedicine, veterinary, and food safety) as Staphylococcus, Streptococcus, Enterococcus, Listeria, and Clostridium and lactic acid bacteria. References for detailed plasmid classification are given in order to provide a comprehensive landscape in the interpretation of their plasmidomes.
Collapse
|
16
|
Silva JG, Araujo WJ, Leite EL, Dias LM, Vasconcelos PC, Silva NMV, Oliveira RP, Sena MJ, Oliveira CJB, Mota RA. First report of a livestock-associated methicillin-resistant Staphylococcus aureus ST126 harbouring the mecC variant in Brazil. Transbound Emerg Dis 2020; 68:1019-1025. [PMID: 32762020 DOI: 10.1111/tbed.13771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a versatile and highly adaptable pathogen associated with a wide range of infectious diseases in humans and animals. In the last decades, concern has increased worldwide due to the emergence and spread of methicillin-resistant S. aureus (MRSA) strains shortly after this drug became a therapeutic option. In this study, we report the genomic features of the first mecC-mediated, β-lactam resistant MRSA strain associated with livestock in Brazil and in the American continent. Three clonally related phenotypic MRSA isolates originated from a dairy herd were confirmed by polymerase chain reaction as mecC-harbouring MRSA isolates. Whole-genome sequencing was performed by Illumina Miseq platform. Downstream analyses showed that the strain was identified as the sequence type 126 (ST126) and spa type t605. In silico analysis revealed a mecC homolog gene in the orfX region associated with different penicillin-binding proteins. Moreover, genes encoding for efflux pump systems (arlR, mepR, LmrS, norA and mgrA), and antibiotic inactivation enzymes (blaZ and FosB) were also detected. Virulence analyses revealed that the strain harbours genes encoding for exoenzymes (aur, splA, splB and splE), toxin (hlgA, hlgB, hlgC, lukD and lukE) and enterotoxin (sea). The epidemiologic and genomic information provided by this study will support further epidemiological and evolutionary investigations to understand the origin and dissemination of mecC-MRSA among animals and its impact on public health.
Collapse
Affiliation(s)
- José Givanildo Silva
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Wydemberg José Araujo
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Elma Lima Leite
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Larissa Maranhão Dias
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Priscylla Carvalho Vasconcelos
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Núbia Michelle Vieira Silva
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Raylson Pereira Oliveira
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria José Sena
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Celso José Bruno Oliveira
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Rinaldo Aparecido Mota
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
17
|
Sousa M, Silva N, Borges V, P Gomes J, Vieira L, Caniça M, Torres C, Igrejas G, Poeta P. MRSA CC398 recovered from wild boar harboring new SCCmec type IV J3 variant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137845. [PMID: 32199375 DOI: 10.1016/j.scitotenv.2020.137845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
A methicillin-resistant Staphylococcus aureus CC398 was recovered from a wild female boar (Sus scrofa) in the north of Portugal, in 2013 (Sousa et al. 2017). Whole genome sequencing (WGS) revealed this strain carries a new variant of a mecA-containing staphylococcal chromosomal gene cassette (SCCmec) type IV with an uncommon J3 region. WGS studies can facilitate surveillance and provide more detailed characterization of bacterial clones circulating in the wild, reinforcing the need for a one health perspective to better understand and control antimicrobial resistance.
Collapse
Affiliation(s)
- Margarida Sousa
- MicroART - Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary and Animal Science Research Center (CECAV), UTAD, Vila Real, Portugal; Functional Genomics and Proteomics Unit, UTAD, Vila Real, Portugal; National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR-HAI), National Institute of Health Dr. Ricardo Jorge (NIH), Lisbon, Portugal; Department of Food and Agriculture, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Nuno Silva
- Moredun Research Institute (MRI), Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - João P Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR-HAI), National Institute of Health Dr. Ricardo Jorge (NIH), Lisbon, Portugal; Centre for the Study of Animal Sciences (CECA/ICETA), University of Oporto, Oporto, Portugal
| | - Carmen Torres
- Department of Food and Agriculture, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, UTAD, Vila Real, Portugal; Department of Genetics and Biotechnology, UTAD, Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Caparica, Portugal
| | - Patrícia Poeta
- MicroART - Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Caparica, Portugal.
| |
Collapse
|
18
|
Acman M, van Dorp L, Santini JM, Balloux F. Large-scale network analysis captures biological features of bacterial plasmids. Nat Commun 2020; 11:2452. [PMID: 32415210 PMCID: PMC7229196 DOI: 10.1038/s41467-020-16282-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/23/2020] [Indexed: 11/30/2022] Open
Abstract
Many bacteria can exchange genetic material through horizontal gene transfer (HGT) mediated by plasmids and plasmid-borne transposable elements. Here, we study the population structure and dynamics of over 10,000 bacterial plasmids, by quantifying their genetic similarities and reconstructing a network based on their shared k-mer content. We use a community detection algorithm to assign plasmids into cliques, which correlate with plasmid gene content, bacterial host range, GC content, and existing classifications based on replicon and mobility (MOB) types. Further analysis of plasmid population structure allows us to uncover candidates for yet undescribed replicon genes, and to identify transposable elements as the main drivers of HGT at broad phylogenetic scales. Our work illustrates the potential of network-based analyses of the bacterial 'mobilome' and opens up the prospect of a natural, exhaustive classification framework for bacterial plasmids.
Collapse
Affiliation(s)
- Mislav Acman
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Rios R, Reyes J, Carvajal LP, Rincon S, Panesso D, Echeverri AM, Dinh A, Kolokotronis SO, Narechania A, Tran TT, Munita JM, Murray BE, Planet PJ, Arias CA, Diaz L. Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium (VREfm) in Latin America: Revisiting The Global VRE Population Structure. Sci Rep 2020; 10:5636. [PMID: 32221315 PMCID: PMC7101424 DOI: 10.1038/s41598-020-62371-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Little is known about the population structure of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America (LATAM). Here, we provide a complete genomic characterization of 55 representative Latin American VREfm recovered from 1998-2015 in 5 countries. The LATAM VREfm population is structured into two main clinical clades without geographical clustering. Using the LATAM genomes, we reconstructed the global population of VREfm by including 285 genomes from 36 countries spanning from 1946 to 2017. In contrast to previous studies, our results show an early branching of animal related isolates and a further split of clinical isolates into two sub-clades within clade A. The overall phylogenomic structure of clade A was highly dependent on recombination (54% of the genome) and the split between clades A and B was estimated to have occurred more than 2,765 years ago. Furthermore, our molecular clock calculations suggest the branching of animal isolates and clinical clades occurred ~502 years ago whereas the split within the clinical clade occurred ~302 years ago (previous studies showed a more recent split between clinical an animal branches around ~74 years ago). By including isolates from Latin America, we present novel insights into the population structure of VREfm and revisit the evolution of these pathogens.
Collapse
Affiliation(s)
- Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lina P Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Diana Panesso
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Aura M Echeverri
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - An Dinh
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Sergios-Orestis Kolokotronis
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.,Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Truc T Tran
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Jose M Munita
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Barbara E Murray
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cesar A Arias
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia. .,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA. .,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.
| |
Collapse
|
20
|
Neyaz L, Rajagopal N, Wells H, Fakhr MK. Molecular Characterization of Staphylococcus aureus Plasmids Associated With Strains Isolated From Various Retail Meats. Front Microbiol 2020; 11:223. [PMID: 32140145 PMCID: PMC7042431 DOI: 10.3389/fmicb.2020.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is considered one of the most important foodborne bacterial pathogens causing food poisoning and related illnesses. S. aureus strains harbor plasmids encoding genes for virulence and antimicrobial resistance, but few studies have investigated S. aureus plasmids, especially megaplasmids, in isolates from retail meats. Furthermore, knowledge about the distribution of genes encoding replication (rep) initiation proteins in food isolates is lacking. In this study, the prevalence of plasmids in S. aureus strains isolated from retail meats purchased in Oklahoma was investigated; furthermore, we evaluated associations between rep families, selected virulence and antimicrobial resistance genes, and food source origin. Two hundred and twenty-two S. aureus isolates from chicken (n = 55), beef liver (n = 43), pork (n = 42), chicken liver (n = 29), beef (n = 24), turkey (n = 22), and chicken gizzards (n = 7) were subjected to plasmid screening with alkaline lysis and PFGE to detect small-to-medium sized and large plasmids, respectively. The S. aureus isolates contained variable sizes of plasmids, and PFGE was superior to alkaline lysis in detecting large megaplasmids. A total of 26 rep families were identified by PCR, and the most dominant rep families were rep10 and rep7 in 164 isolates (89%), rep21 in 124 isolates (56%), and rep12 in 99 isolates (45%). Relationships between selected rep genes, antimicrobial resistance and virulence genes, and meat sources were detected. In conclusion, S. aureus strains isolated from retail meats harbor plasmids with various sizes and there is an association between rep genes on these plasmids and the meat source or the antimicrobial resistance of the strains harboring them.
Collapse
Affiliation(s)
- Leena Neyaz
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Nisha Rajagopal
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Harrington Wells
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
21
|
PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol Biol 2020; 2075:285-294. [PMID: 31584170 DOI: 10.1007/978-1-4939-9877-7_20] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
PlasmidFinder and in silico plasmid multiLocus sequence typing (pMLST) are two easy-to-use web tools for detection and characterization of plasmid sequences in whole-genome sequencing (WGS) data from Enterobacteriaceae. These tools have been adopted worldwide and facilitate plasmid detection and typing based on draft genomes of multi-drug-resistant Enterobacteriaceae. The PlasmidFinder database currently includes 133 unique plasmid replicon sequences. It was built starting with 126 sequences devised on fully sequenced plasmids available at the NCBI nucleotide database in 2014 and has been continuously updated to include novel replicons detected in more recently sequenced plasmids associated with the family Enterobacteriaceae. PlasmidFinder is usable for replicon sequence analysis of raw as well as assembled sequencing data. For pMLST analysis, a weekly updated database was generated from www.pubmlst.org and integrated into a web tool called in silico pMLST.
Collapse
|
22
|
Ragupathi NKD, Bakthavatchalam YD, Mathur P, Pragasam AK, Walia K, Ohri VC, Veeraraghavan B. Plasmid profiles among some ESKAPE pathogens in a tertiary care centre in south India. Indian J Med Res 2019; 149:222-231. [PMID: 31219087 PMCID: PMC6563733 DOI: 10.4103/ijmr.ijmr_2098_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background & objectives Plasmid has led to increase in resistant bacterial pathogens through the exchange of antimicrobial resistance (AMR) genetic determinants through horizontal gene transfer. Baseline data on the occurrence of plasmids carrying AMR genes are lacking in India. This study was aimed to identify the plasmids associated with AMR genetic determinants in ESKAPE pathogens. Methods A total of 112 ESKAPE isolates including Escherichia coli (n=37), Klebsiella pneumoniae (n=48, including 7 pan-drug susceptible isolates), Acinetobacter baumannii (n=8), Pseudomonas aeruginosa (n=1) and Staphylococcus aureus (n=18) were analyzed in the study. Isolates were screened for antimicrobial susceptibility and whole genome sequencing of isolates was performed using Ion Torrent (PGM) sequencer. Downstream data analysis was done using PATRIC, ResFinder, PlasmidFinder and MLSTFinder databases. All 88 whole genome sequences (WGS) were deposited at GenBank. Results Most of the study isolates showed resistant phenotypes. As analyzed from WGS, the isolates included both known and unknown sequence types. The plasmid analysis revealed the presence of single or multiple plasmids in the isolates. Plasmid types such as IncHI1B(pNDM-MAR), IncFII(pRSB107), IncFIB(Mar), IncFIB(pQil), IncFIA, IncFII(K), IncR, ColKP3 and ColpVC were present in K. pneumoniae. In E. coli, IncFIA, IncFII, IncFIB, Col(BS512), IncL1, IncX3 and IncH were present along with other types. S. aureus harboured seven different plasmid groups pMW2 (rep 5), pSAS1 (rep 7), pDLK1 (rep 10), pUB110 (rep US12), Saa6159 (rep 16), pKH12 (rep 21) and pSA1308 (rep 21). The overall incidence of IncF type plasmids was 56.5 per cent followed by Col type plasmids 18.3 per cent and IncX 5.3 per cent. Other plasmid types identified were <5 per cent. Interpretation & conclusions Results from the study may serve as a baseline data for the occurrence of AMR genes and plasmids in India. Information on the association between phenotypic and genotypic expression of AMR was deciphered from the data. Further studies on the mechanism of antibiotic resistance dissemination are essential for enhancing clinical lifetime of antibiotics.
Collapse
Affiliation(s)
| | | | - Purva Mathur
- Department of Clinical Microbiology, All India Institute of Medical Science, New Delhi, India
| | | | - Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - V C Ohri
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
23
|
Gull M, El-Baz S. Introductory Chapter: Preface to Plasmids. Plasmid 2019. [DOI: 10.5772/intechopen.78673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Bukowski M, Piwowarczyk R, Madry A, Zagorski-Przybylo R, Hydzik M, Wladyka B. Prevalence of Antibiotic and Heavy Metal Resistance Determinants and Virulence-Related Genetic Elements in Plasmids of Staphylococcus aureus. Front Microbiol 2019; 10:805. [PMID: 31068910 PMCID: PMC6491766 DOI: 10.3389/fmicb.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
The use of antibiotics on a mass scale, particularly in farming, and their release into the environment has led to a rapid emergence of resistant bacteria. Once emerged, resistance determinants are spread by horizontal gene transfer among strains of the same as well as disparate bacterial species. Their accumulation in free-living as well as livestock and community-associated strains results in the widespread multiple-drug resistance among clinically relevant species posing an increasingly pressing problem in healthcare. One of these clinically relevant species is Staphylococcus aureus, a common cause of hospital and community outbreaks. Among the rich diversity of mobile genetic elements regularly occurring in S. aureus such as phages, pathogenicity islands, and staphylococcal cassette chromosomes, plasmids are the major mean for dissemination of resistance determinants and virulence factors. Unfortunately, a vast number of whole-genome sequencing projects does not aim for complete sequence determination, which results in a disproportionately low number of known complete plasmid sequences. To address this problem we determined complete plasmid sequences derived from 18 poultry S. aureus strains and analyzed the prevalence of antibiotic and heavy metal resistance determinants, genes of virulence factors, as well as genetic elements relevant for their maintenance. Some of the plasmids have been reported before and are being found in clinical isolates of strains typical for humans or human ones of livestock origin. This shows that livestock-associated staphylococci are a significant reservoir of resistance determinants and virulence factors. Nevertheless, nearly half of the plasmids were unknown to date. In this group we found a potentially mobilizable plasmid pPA3 being a unique example of accumulation of resistance determinants and virulence factors likely stabilized by a presence of a toxin–antitoxin system.
Collapse
Affiliation(s)
- Michal Bukowski
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafal Piwowarczyk
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Madry
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafal Zagorski-Przybylo
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
25
|
Abstract
Strains of Staphylococcus aureus, and to a lesser extent other staphylococcal species, are a significant cause of morbidity and mortality. An important factor in the notoriety of these organisms stems from their frequent resistance to many antimicrobial agents used for chemotherapy. This review catalogues the variety of mobile genetic elements that have been identified in staphylococci, with a primary focus on those associated with the recruitment and spread of antimicrobial resistance genes. These include plasmids, transposable elements such as insertion sequences and transposons, and integrative elements including ICE and SCC elements. In concert, these diverse entities facilitate the intra- and inter-cellular gene mobility that enables horizontal genetic exchange, and have also been found to play additional roles in modulating gene expression and genome rearrangement.
Collapse
|
26
|
Read TD, Petit RA, Yin Z, Montgomery T, McNulty MC, David MZ. USA300 Staphylococcus aureus persists on multiple body sites following an infection. BMC Microbiol 2018; 18:206. [PMID: 30518317 PMCID: PMC6282268 DOI: 10.1186/s12866-018-1336-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND USA300 methicillin-resistant Staphylococcus aureus (MRSA) is a community- and hospital-acquired pathogen that frequently causes infections but also can survive on the human body asymptomatically as a part of the normal microbiota. We devised a comparative genomic strategy to track colonizing USA300 at different body sites after an initial infection. We sampled ST8 S. aureus from subjects at the site of a first known MRSA infection. Within 60 days of this infection and again 12 months later, each subject was tested for asymptomatic colonization in the nose, throat and perirectal region. 93 S. aureus strains underwent whole genome shotgun sequencing. RESULTS Among 28 subjects at the initial sampling time, we isolated S. aureus from the nose, throat and perirectal sites from 15, 11 and 15 of them, respectively. Twelve months later we isolated S. aureus from 9 subjects, with 6, 3 and 3 strains from the nose, throat and perirectal area, respectively. Genome sequencing revealed that 23 patients (ages 0-66 years) carried USA300 intra-subject lineages (ISLs), defined as having an index infection isolate and closely related colonizing strains. Pairwise distance between strains in different ISLs was 48 to 162 single nucleotide polymorphisms (SNPs) across the core regions of the chromosome, whereas within the same ISL it was 0 to 26 SNPs. Strains in ISLs from the same subject differed in plasmid and prophage content, and contained deletions that removed the mecA-containing SCCmec and ACME regions. Five strains contained frameshift mutations in agr toxin-regulating genes. Persistence of an ISL was not associated with clinical or demographic subject characteristics. We inferred that colonization with the ISL occurred about 18 weeks before the first assessment of asymptomatic colonization. CONCLUSIONS Clonal lineages of USA300 may continue to colonize people at one or more anatomic sites up to a year after an initial infection and experience loss of the SCCmec, loss and gain of other mobile genetic elements, and mutations in the agr operon.
Collapse
Affiliation(s)
- Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Robert A. Petit
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Zachary Yin
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago, Chicago, IL USA
| | - Tuyaa Montgomery
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago, Chicago, IL USA
| | - Moira C. McNulty
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL USA
| | - Michael Z. David
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
27
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1216] [Impact Index Per Article: 202.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018; 99:89-98. [PMID: 30253132 DOI: 10.1016/j.plasmid.2018.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci.
Collapse
|
29
|
New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(48) on the Novel Plasmid pJW2311 in Staphylococcus xylosus. Antimicrob Agents Chemother 2017; 61:AAC.00066-17. [PMID: 28438941 DOI: 10.1128/aac.00066-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/14/2017] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing of Staphylococcus xylosus strain JW2311 from bovine mastitis milk identified the novel 49.3-kb macrolide-lincosamide-streptogramin B (MLSB) resistance plasmid pJW2311. It contained the macrolide resistance gene mph(C), the macrolide-streptogramin B resistance gene msr(A), and the new MLSB resistance gene erm(48) and could be transformed into Staphylococcus aureus by electroporation. Functionality of erm(48) was demonstrated by cloning and expression in S. aureus.
Collapse
|
30
|
Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Walker AS, Phan H, Sheppard AE. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Front Microbiol 2017; 8:182. [PMID: 28232822 PMCID: PMC5299020 DOI: 10.3389/fmicb.2017.00182] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of 'accessory genes,' such as antibiotic resistance genes, as well as 'backbone' loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made.
Collapse
Affiliation(s)
- Alex Orlek
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
| | - Muna F. Anjum
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
- Department of Bacteriology, Animal and Plant Health AgencyAddlestone, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health EnglandLondon, UK
| | - Matthew J. Ellington
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health EnglandLondon, UK
| | - Tim Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health EnglandLondon, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Hang Phan
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Anna E. Sheppard
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| |
Collapse
|
31
|
Emergence of ileS2-Carrying, Multidrug-Resistant Plasmids in Staphylococcus lugdunensis. Antimicrob Agents Chemother 2016; 60:6411-4. [PMID: 27503649 DOI: 10.1128/aac.00948-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
Of 137 Staphylococcus lugdunensis isolates collected from two nephrology centers in Hong Kong, 10 (7.3%) and 3 (2.2%) isolates had high-level and low-level mupirocin resistance, respectively. Isolates with high-level resistance contained the plasmid-mediated ileS2 gene, while isolates with low-level resistance contained the mutation V588F within the chromosomal ileS gene. All but one of the ileS2-positive isolates belong to the predominating clone HKU1. Plasmids carrying the ileS2 gene were mosaic and also cocarry multiple other resistance determinants.
Collapse
|
32
|
Zovčáková M, Španová A, Pantůček R, Doškař J, Rittich B. Efficient non-enzymatic cleavage of Staphylococcus aureus plasmid DNAs mediated by neodymium ions. Anal Biochem 2016; 507:66-70. [PMID: 27237372 DOI: 10.1016/j.ab.2016.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/10/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus plasmids are the main factor in the spreading of antibacterial resistance among bacterial strains that has emerged on a worldwide scale. Plasmids recovered from 12 clinical and food isolates of S. aureus were treated with 10 mM free lanthanide Nd(3+) ions (non-enzymatic cleavage agent) in Hepes buffer (pH 7.5) at 70 °C. Topological forms of plasmids-closed circular (ccc), open circular (oc), and linear (lin)-produced by cleavage at different times were separated using pulsed-field agarose gel electrophoresis. The method is proposed to detect and differentiate several plasmids in the same bacterial strain according to their size.
Collapse
Affiliation(s)
- Monika Zovčáková
- Faculty of Chemistry, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Alena Španová
- Faculty of Chemistry, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-611 37 Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-611 37 Brno, Czech Republic
| | - Bohuslav Rittich
- Faculty of Chemistry, Brno University of Technology, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
33
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
34
|
Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242. [PMID: 25873913 PMCID: PMC4379921 DOI: 10.3389/fmicb.2015.00242] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plasmids are important "vehicles" for the communication of genetic information between bacteria. The exchange of plasmids transmits pathogenically and environmentally relevant traits to the host bacteria, promoting their rapid evolution and adaptation to various environments. Over the past six decades, a large number of plasmids have been identified and isolated from different microbes. With the revolution of sequencing technology, more than 4600 complete sequences of plasmids found in bacteria, archaea, and eukaryotes have been determined. The classification of a wide variety of plasmids is not only important to understand their features, host ranges, and microbial evolution but is also necessary to effectively use them as genetic tools for microbial engineering. This review summarizes the current situation of the classification of fully sequenced plasmids based on their host taxonomy and their features of replication and conjugative transfer. The majority of the fully sequenced plasmids are found in bacteria in the Proteobacteria, Firmicutes, Spirochaetes, Actinobacteria, Cyanobacteria and Euryarcheota phyla, and key features of each phylum are included. Recent advances in the identification of novel types of plasmids and plasmid transfer by culture-independent methods using samples from natural environments are also discussed.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan ; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Zoe K Sanchez
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| |
Collapse
|
35
|
Garcillán-Barcia MP, de la Cruz F. Ordering the bestiary of genetic elements transmissible by conjugation. Mob Genet Elements 2014; 3:e24263. [PMID: 23734300 PMCID: PMC3661145 DOI: 10.4161/mge.24263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic reconstruction of three highly conserved proteins involved in bacterial conjugation (relaxase, coupling protein and a type IV secretion system ATPase) allowed the classification of transmissible elements in relaxase MOB families and mating pair formation MPF groups. These evolutionary studies point to the existence of a limited number of module combinations in transmissible elements, preferentially associated with specific genetic or environmental backgrounds. A practical protocol based on the MOB classification was implemented to detect and assort transmissible plasmids and integrative elements from γ-Proteobacteria. It was called “Degenerate Primer MOB Typing” or DPMT. It resulted in a powerful technique that discovers not only backbones related to previously classified elements (typically by PCR-based replicon typing or PBRT), but also distant new members sharing a common evolutionary ancestor. The DPMT method, conjointly with PBRT, promises to be useful to gain information on plasmid backbones and helpful to investigate the dissemination routes of transmissible elements in microbial ecosystems.
Collapse
Affiliation(s)
- Maria Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC); Universidad de Cantabria-CSIC-SODERCAN; Santander, Cantabria Spain
| | | |
Collapse
|
36
|
Rossi F, Diaz L, Wollam A, Panesso D, Zhou Y, Rincon S, Narechania A, Xing G, Di Gioia TSR, Doi A, Tran TT, Reyes J, Munita JM, Carvajal LP, Hernandez-Roldan A, Brandão D, van der Heijden IM, Murray BE, Planet PJ, Weinstock GM, Arias CA. Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med 2014; 370:1524-31. [PMID: 24738669 PMCID: PMC4112484 DOI: 10.1056/nejmoa1303359] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the case of a patient from Brazil with a bloodstream infection caused by a strain of methicillin-resistant Staphylococcus aureus (MRSA) that was susceptible to vancomycin (designated BR-VSSA) but that acquired the vanA gene cluster during antibiotic therapy and became resistant to vancomycin (designated BR-VRSA). Both strains belong to the sequence type (ST) 8 community-associated genetic lineage that carries the staphylococcal chromosomal cassette mec (SCCmec) type IVa and the S. aureus protein A gene (spa) type t292 and are phylogenetically related to MRSA lineage USA300. A conjugative plasmid of 55,706 bp (pBRZ01) carrying the vanA cluster was identified and readily transferred to other staphylococci. The pBRZ01 plasmid harbors DNA sequences that are typical of the plasmid-associated replication genes rep24 or rep21 described in community-associated MRSA strains from Australia (pWBG745). The presence and dissemination of community-associated MRSA containing vanA could become a serious public health concern.
Collapse
Affiliation(s)
- Flávia Rossi
- From the Department of Pathology, Division of Microbiology of the Central Laboratory (LIM 03) and Department of Infectious Disease (LIM 54), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo (F.R., T.S.R.D.G., A.D., D.B., I.M.H.); Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota (L.D., D.P., S.R., J.R., L.P.C., C.A.A.), and Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Cali (A.H.-R.) - both in Colombia; Clinica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile (J.M.M.); the Department of Internal Medicine, Division of Infectious Diseases (L.D., D.P., T.T.T., J.R., J.M.M., A.H.-R., B.E.M, C.A.A.), and the Department of Microbiology and Molecular Genetics (B.E.M., C.A.A.), University of Texas Medical School at Houston, and the University of Houston College of Pharmacy (T.T.T.) - both in Houston; the Genome Institute, Washington University at St. Louis, St. Louis (A.W., Y.Z., G.M.W.); and Sackler Institute for Comparative Genomics, American Museum of Natural History (A.N., P.J.P.), and Division of Pediatric Infectious Diseases, Columbia University (G.X., P.J.P.) - both in New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol 2014; 170:1-9. [PMID: 24589430 DOI: 10.1016/j.vetmic.2014.01.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance.
Collapse
Affiliation(s)
- Lourdes Garcia-Migura
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lorenzo Fraile
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Universidad de Lleida, Departamento de Producción Animal, Lleida, Spain
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
38
|
Strommenger B, Bartels MD, Kurt K, Layer F, Rohde SM, Boye K, Westh H, Witte W, De Lencastre H, Nübel U. Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance. J Antimicrob Chemother 2013; 69:616-22. [PMID: 24150844 DOI: 10.1093/jac/dkt413] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To elucidate the evolutionary history of Staphylococcus aureus clonal complex (CC) 8, which encompasses several globally distributed epidemic lineages, including hospital-associated methicillin-resistant S. aureus (MRSA) and the highly prevalent community-associated MRSA clone USA300. METHODS We reconstructed the phylogeny of S. aureus CC8 by mutation discovery at 112 genetic housekeeping loci from each of 174 isolates, sampled on five continents between 1957 and 2008. The distribution of antimicrobial resistance traits and of diverse mobile genetic elements was investigated in relation to the isolates' phylogeny. RESULTS Our analyses revealed the existence of nine phylogenetic clades within CC8. We identified at least eight independent events of methicillin resistance acquisition in CC8 and dated the origin of a methicillin-resistant progenitor of the notorious USA300 clone to the mid-1970s. Of the S. aureus isolates in our collection, 88% carried plasmidic rep gene sequences, with up to five different rep genes in individual isolates and a total of eight rep families. Mapping the plasmid content onto the isolates' phylogeny illustrated the stable carriage over decades of some plasmids and the more volatile nature of others. Strikingly, we observed trends of increasing antibiotic resistance during the evolution of several lineages, including USA300. CONCLUSIONS We propose a model for the evolution of S. aureus CC8, involving a split into at least nine phylogenetic lineages and a subsequent series of acquisitions and losses of mobile genetic elements that carry diverse virulence and antimicrobial resistance traits. The evolution of MRSA USA300 towards resistance to additional antibiotic classes is of major concern.
Collapse
Affiliation(s)
- Birgit Strommenger
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|