1
|
Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol 2023; 13:1195803. [PMID: 37284501 PMCID: PMC10239779 DOI: 10.3389/fcimb.2023.1195803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Biofilms are complex structures with an intricate relationship between the resident microorganisms, the extracellular matrix, and the surrounding environment. Interest in biofilms is growing exponentially given its ubiquity in so diverse fields such as healthcare, environmental and industry. Molecular techniques (e.g., next-generation sequencing, RNA-seq) have been used to study biofilm properties. However, these techniques disrupt the spatial structure of biofilms; therefore, they do not allow to observe the location/position of biofilm components (e.g., cells, genes, metabolites), which is particularly relevant to explore and study the interactions and functions of microorganisms. Fluorescence in situ hybridization (FISH) has been arguably the most widely used method for an in situ analysis of spatial distribution of biofilms. In this review, an overview on different FISH variants already applied on biofilm studies (e.g., CLASI-FISH, BONCAT-FISH, HiPR-FISH, seq-FISH) will be explored. In combination with confocal laser scanning microscopy, these variants emerged as a powerful approach to visualize, quantify and locate microorganisms, genes, and metabolites inside biofilms. Finally, we discuss new possible research directions for the development of robust and accurate FISH-based approaches that will allow to dig deeper into the biofilm structure and function.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Miranda
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
3
|
Engelberts JP, Abdul Wahab MA, Maldonado M, Rix L, Marangon E, Robbins SJ, Wagner M, Webster NS. Microbes from Mum: symbiont transmission in the tropical reef sponge Ianthella basta. ISME COMMUNICATIONS 2022; 2:90. [PMID: 37938734 PMCID: PMC9723589 DOI: 10.1038/s43705-022-00173-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 05/28/2023]
Abstract
Most marine sponge species harbour distinct communities of microorganisms which contribute to various aspects of their host's health and physiology. In addition to their key roles in nutrient transformations and chemical defence, these symbiotic microbes can shape sponge phenotype by mediating important developmental stages and influencing the environmental tolerance of the host. However, the characterisation of each microbial taxon throughout a sponge's life cycle remains challenging, with several sponge species hosting up to 3000 distinct microbial species. Ianthella basta, an abundant broadcast spawning species in the Indo-Pacific, is an emerging model for sponge symbiosis research as it harbours only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium. Here, we successfully spawned Ianthella basta, characterised its mode of reproduction, and used 16S rRNA gene amplicon sequencing, fluorescence in situ hybridisation, and transmission electron microscopy to characterise the microbial community throughout its life cycle. We confirmed I. basta as being gonochoric and showed that the three dominant symbionts, which together make up >90% of the microbiome according to 16S rRNA gene abundance, are vertically transmitted from mother to offspring by a unique method involving encapsulation in the peri-oocytic space, suggesting an obligate relationship between these microbes and their host.
Collapse
Affiliation(s)
- J Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | | | - Manuel Maldonado
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Emma Marangon
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| |
Collapse
|
4
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
5
|
Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150682. [PMID: 34600998 DOI: 10.1016/j.scitotenv.2021.150682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
6
|
Shi H, Grodner B, De Vlaminck I. Recent advances in tools to map the microbiome. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100289. [PMID: 34151052 PMCID: PMC8208594 DOI: 10.1016/j.cobme.2021.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbes thrive in diverse habitats. They often form ecological niches with rich species diversity and complex spatial structure. These communities drive biogeochemical cycles in the environment and modulate host health in the human body. Much has been learned about the makeup of human and environmental microbiota via metagenomic DNA sequencing, but information on spatial interactions between microbes and between microbes and their environment remains scarce. Here, we review recent advances in tools to map the biogeography of microbiomes. We discuss methods to spatially map microbial genes, transcripts, and metabolites. We also examine future directions for microbiome mapping technologies that will allow improved understanding of both microbiome structure and function. Finally, we reflect on the impact of these methods in Biomedical Engineering.
Collapse
Affiliation(s)
- Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Abstract
FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.
Collapse
Affiliation(s)
- Nuno M Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Wakade VS, Shende P. Strategic advancements and multimodal applications of biofilm therapy. Expert Opin Biol Ther 2020; 21:395-412. [PMID: 32933329 DOI: 10.1080/14712598.2020.1822319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Biofilm is a layer of mucilage consisting of bacterial species like Escherichia coli and Streptococcus aureus adhering to the solid cell surface. Biofilm is an important and novel approach in a delivery system consisting of six elements that includes extracellular DNA, enzymes, proteins, bacteria, exopolysaccharides and water channels. The biofilm formation is based on two mechanisms: extra polymeric substance and quorum sensing. The microbes present in biofilm prevent direct interaction between the cell surface and foreign materials, like allergens, or toxic gases, like carbon-monoxide and chlorofluorocarbon, entering the body. AREAS COVERED The authors focus on the novel applications of biofilms such as adhesives, tissue engineering, targeted delivery system, probiotics, nutrients delivery, etc. Moreover, the information of the factors for biofilm formation, techniques useful in biofilm formation, and clinical studies are also covered in this article. EXPERT OPINION Many people believe that biofilms have a negative impact on human health, but the expert opinion states that biofilm is a futuristic approach useful in therapeutics for the treatment of tumors and cancer. Biofilms can be combined with novel delivery systems such as nanoparticles, microparticles, etc. for better therapeutic action.
Collapse
Affiliation(s)
- Varun S Wakade
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), India
| |
Collapse
|
9
|
Aistleitner K, Sieper T, Stürz I, Jeske R, Tritscheller S, Mantel S, Tscherne A, Zange S, Stoecker K, Wölfel R. NOTIFy (non-toxic lyophilized field)-FISH for the identification of biological agents by Fluorescence in situ Hybridization. PLoS One 2020; 15:e0230057. [PMID: 32142548 PMCID: PMC7059943 DOI: 10.1371/journal.pone.0230057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/20/2020] [Indexed: 12/02/2022] Open
Abstract
The rapid and reliable diagnostics of highly pathogenic bacteria under restricted field conditions poses one of the major challenges to medical biodefense, especially since false positive or false negative reports might have far-reaching consequences. Fluorescence in situ hybridization (FISH) has the potential to represent a powerful microscopy-based addition to the existing molecular-based diagnostic toolbox. In this study, we developed a set of FISH-probes for the fast, matrix independent and simultaneous detection of thirteen highly pathogenic bacteria in different environmental and clinical sample matrices. Furthermore, we substituted formamide, a routinely used chemical that is toxic and volatile, by non-toxic urea. This will facilitate the application of FISH under resource limited field laboratory conditions. We demonstrate that hybridizations performed with urea show the same specificity and comparable signal intensities for the FISH-probes used in this study. To further simplify the use of FISH in the field, we lyophilized the reagents needed for FISH. The signal intensities obtained with these lyophilized reagents are comparable to freshly prepared reagents even after storage for a month at room temperature. Finally, we show that by the use of non-toxic lyophilized field (NOTIFy)-FISH, specific detection of microorganisms with simple and easily transportable equipment is possible in the field.
Collapse
Affiliation(s)
| | - Tina Sieper
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Inga Stürz
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Rimma Jeske
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Sonja Mantel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Kilian Stoecker
- Bundeswehr Institute of Microbiology, Munich, Germany
- * E-mail:
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| |
Collapse
|
10
|
Lukumbuzya M, Schmid M, Pjevac P, Daims H. A Multicolor Fluorescence in situ Hybridization Approach Using an Extended Set of Fluorophores to Visualize Microorganisms. Front Microbiol 2019; 10:1383. [PMID: 31275291 PMCID: PMC6593226 DOI: 10.3389/fmicb.2019.01383] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/03/2019] [Indexed: 01/21/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a key method for the detection of (uncultured) microorganisms in environmental and medical samples. A major limitation of standard FISH protocols, however, is the small number of phylogenetically distinct target organisms that can be detected simultaneously. In this study, we introduce a multicolor FISH approach that uses eight fluorophores with distinct spectral properties, which can unambiguously be distinguished by confocal laser scanning microscopy combined with white light laser technology. Hybridization of rRNA-targeted DNA oligonucleotide probes, which were mono-labeled with these fluorophores, to Escherichia coli cultures confirmed that the fluorophores did not affect probe melting behavior. Application of the new multicolor FISH method enabled the differentiation of seven (potentially up to eight) phylogenetically distinct microbial populations in an artificial community of mixed pure cultures (five bacteria, one archaeon, and one yeast strain) and in activated sludge from a full-scale wastewater treatment plant. In contrast to previously published multicolor FISH approaches, this method does not rely on combinatorial labeling of the same microorganisms with different fluorophores, which is prone to biases. Furthermore, images acquired by this method do not require elaborate post-processing prior to analysis. We also demonstrate that the newly developed multicolor FISH method is compatible with an improved cell fixation protocol for FISH targeting Gram-negative bacterial populations. This fixation approach uses agarose embedding during formaldehyde fixation to better preserve the three-dimensional structure of spatially complex samples such as biofilms and activated sludge flocs. The new multicolor FISH approach should be highly suitable for studying structural and functional aspects of microbial communities in virtually all types of samples that can be analyzed by conventional FISH methods.
Collapse
Affiliation(s)
- Michael Lukumbuzya
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Markus Schmid
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.,The Comammox Research Platform, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, Coutinho FH, Rodriguez-Valera F. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol 2018; 20:3757-3771. [PMID: 30117250 DOI: 10.1111/1462-2920.14377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
We present two genomes of widespread freshwater picocyanobacteria isolated by extinction dilution from a Spanish oligotrophic reservoir. Based on microscopy and genomic properties, both picocyanobacteria were tentatively designated Synechococcus lacustris Tous, formerly described as a metagenome assembled genome (MAG) from the same habitat, and Cyanobium usitatum Tous, described here for the first time. Both strains were purified in unicyanobacterial cultures, and their genomes were sequenced. They are broadly distributed in freshwater systems; the first seems to be a specialist on temperate reservoirs (Tous, Amadorio, Dexter, Lake Lanier, Sparkling), and the second appears to also be abundant in cold environments including ice-covered lakes such as Lake Baikal, Lake Erie or the brackish Baltic Sea. Having complete genomes provided access to the flexible genome that does not assemble in MAGs. We found several genomic islands in both genomes, within which there were genes for nitrogen acquisition, transporters for a wide set of compounds and biosynthesis of phycobilisomes in both strains. Some of these regions of low coverage in metagenomes also included antimicrobial compounds, transposases and phage defence systems, including a novel type III CRISPR-Cas phage defence system that was only detected in Synechococcus lacustris Tous.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | | | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
12
|
Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens 2018; 3:1069-1086. [PMID: 29756447 DOI: 10.1021/acssensors.8b00239] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hamed Jafari
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
13
|
Moss CE, Robson A, Fikrig E, Narasimhan S. Visualization of Microbiota in Tick Guts by Whole-mount In Situ Hybridization. J Vis Exp 2018. [PMID: 29912204 DOI: 10.3791/57758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Infectious diseases transmitted by arthropod vectors continue to pose a significant threat to human health worldwide. The pathogens causing these diseases, do not exist in isolation when they colonize the vector; rather, they likely engage in interactions with resident microorganisms in the gut lumen. The vector microbiota has been demonstrated to play an important role in pathogen transmission for several vector-borne diseases. Whether resident bacteria in the gut of the Ixodes scapularis tick, the vector of several human pathogens including Borrelia burgdorferi, influence tick transmission of pathogens is not determined. We require methods for characterizing the composition of the bacteria associated with the tick gut to facilitate a better understanding of potential interspecies interactions in the tick gut. Using whole-mount in situ hybridization to visualize RNA transcripts associated with particular bacterial species allows for the collection of qualitative data regarding the abundance and distribution of the microbiota in intact tissue. This technique can be used to examine changes in the gut microbiota milieu over the course of tick feeding and can also be applied to analyze expression of tick genes. Staining of whole tick guts yield information about the gross spatial distribution of target RNA in the tissue without the need for three-dimensional reconstruction and is less affected by environmental contamination, which often confounds the sequencing-based methods frequently used to study complex microbial communities. Overall, this technique is a valuable tool that can be used to better understand vector-pathogen-microbiota interactions and their role in disease transmission.
Collapse
Affiliation(s)
- Caitlin E Moss
- Department of Microbial Pathogenesis, Yale University School of Medicine
| | - Andrew Robson
- Program in Vertebrate Developmental Biology, Departments of Pediatrics and Genetics, Yale University School of Medicine
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine
| | | |
Collapse
|
14
|
Olsen I. Organization of supragingival plaque at the micron scale. J Oral Microbiol 2018; 10:1438722. [PMID: 29503704 PMCID: PMC5827724 DOI: 10.1080/20002297.2018.1438722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/01/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Costa AM, Mergulhão FJ, Briandet R, Azevedo NF. It is all about location: how to pinpoint microorganisms and their functions in multispecies biofilms. Future Microbiol 2017; 12:987-999. [PMID: 28745517 DOI: 10.2217/fmb-2017-0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multispecies biofilms represent the dominant mode of life for the vast majority of microorganisms. Bacterial spatial localization in such biostructures governs ecological interactions between different populations and triggers the overall community functions. Here, we discuss the pros and cons of fluorescence-based techniques used to decipher bacterial species patterns in biofilms at single cell level, including fluorescence in situ hybridization and the use of genetically modified bacteria that express fluorescent proteins, reporting the significant improvements of those techniques. The development of tools for spatial and temporal study of multispecies biofilms will allow live imaging and spatial localization of cells in naturally occurring biofilms coupled with metabolic information, increasing insight of microbial community and the relation between its structure and functions.
Collapse
Affiliation(s)
- Angela M Costa
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.,INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Filipe J Mergulhão
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Braubach P, Lippmann T, Raoult D, Lagier JC, Anagnostopoulos I, Zender S, Länger FP, Kreipe HH, Kühnel MP, Jonigk D. Fluorescence In Situ Hybridization for Diagnosis of Whipple's Disease in Formalin-Fixed Paraffin-Embedded Tissue. Front Med (Lausanne) 2017; 4:87. [PMID: 28691008 PMCID: PMC5479881 DOI: 10.3389/fmed.2017.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Whipple’s disease (WD) is a rare chronic systemic infection with a wide range of clinical symptoms, routinely diagnosed in biopsies from the small intestine and other tissues by periodic acid–Schiff (PAS) diastase staining and immunohistological analysis with specific antibodies. The aim of our study was to improve the pathological diagnosis of WD. Therefore, we analyzed the potential of fluorescence in situ hybridization (FISH) for diagnosing WD, using a Tropheryma (T.) whipplei-specific probe. 19 formalin-fixed paraffin-embedded (FFPE) duodenal biopsy specimens of 12 patients with treated (6/12) and untreated (6/12) WD were retrospectively examined using PAS diastase staining, immunohistochemistry, and FISH. 20 biopsy specimens with normal intestinal mucosa, Helicobacter pylori, or mycobacterial infection, respectively, served as controls. We successfully detected T. whipplei in tissue biopsies with a sensitivity of 83% in untreated (5/6) and 40% in treated (4/10) cases of WD. In our study, we show that FISH-based diagnosis of individual vital T. whipplei in FFPE specimens is feasible and can be considered as ancillary diagnostic tool for the diagnosis of WD in FFPE material. We show that FISH not only detect active WD but also be helpful as an indicator for the efficiency of antibiotic treatment and for detection of recurrence of disease when the signal of PAS diastase and immunohistochemistry lags behind the recurrence of disease, especially if the clinical course of the patient and antimicrobial treatment is considered.
Collapse
Affiliation(s)
- Peter Braubach
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany
| | - Torsten Lippmann
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany
| | - Didier Raoult
- Aix Marseille University, CNRS, IRD, INSERM, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Jean-Christophe Lagier
- Aix Marseille University, CNRS, IRD, INSERM, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | | | - Steffen Zender
- Department of Gastroenterology, Hepatology, and Endocrinology, Centre for Internal Medicine, Hannover Medical School (MHH), Hanover, Germany
| | | | | | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany
| |
Collapse
|
17
|
Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado AB, Ghai R, Picazo A, Camacho A, Rodriguez-Valera F. Novel Synechococcus Genomes Reconstructed from Freshwater Reservoirs. Front Microbiol 2017; 8:1151. [PMID: 28680419 PMCID: PMC5478717 DOI: 10.3389/fmicb.2017.01151] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022] Open
Abstract
Freshwater picocyanobacteria including Synechococcus remain poorly studied at the genomic level, compared to their marine representatives. Here, using a metagenomic assembly approach we discovered two novel Synechococcus sp. genomes from two freshwater reservoirs Tous and Lake Lanier, both sharing 96% average nucleotide identity and displaying high abundance levels in these two lakes located at similar altitudes and temperate latitudes. These new genomes have the smallest estimated size (2.2 Mb) and average intergenic spacer length (20 bp) of any previously sequenced freshwater Synechococcus, which may contribute to their success in oligotrophic freshwater systems. Fluorescent in situ hybridization confirmed that Synechococcus sp. Tous comprises small cells (0.987 ± 0.139 μm length, 0.723 ± 0.119 μm width) that amount to 90% of the picocyanobacteria in Tous. They appear together in a phylogenomic tree with Synechococcus sp. RCC307 strain, the main representative of sub-cluster 5.3 that has itself one of the smallest marine Synechococcus genomes. We detected a type II phycobilisome (PBS) gene cluster in both genomes, which suggests that they belong to a phycoerythrin-rich pink low-light ecotype. The decrease of acidic proteins and the higher content of basic transporters and membrane proteins in the novel Synechococcus genomes, compared to marine representatives, support their freshwater specialization. A sulfate Cys transporter which is absent in marine but has been identified in many freshwater cyanobacteria was also detected in Synechococcus sp. Tous. The RuBisCo subunits from this microbe are phylogenetically close to the freshwater amoeba Paulinella chromatophora symbiont, hinting to a freshwater origin of the carboxysome operon of this protist. The novel genomes enlarge the known diversity of freshwater Synechococcus and improve the overall knowledge of the relationships among members of this genus at large.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech RepublicČeské Budějovice, Czechia
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| |
Collapse
|
18
|
Rohde A, Hammerl JA, Al Dahouk S. Detection of foodborne bacterial zoonoses by fluorescence in situ hybridization. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Lam RHW, Cui X, Guo W, Thorsen T. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics. LAB ON A CHIP 2016; 16:1652-62. [PMID: 27045372 DOI: 10.1039/c6lc00072j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels.
Collapse
Affiliation(s)
- Raymond H W Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong. and Centre for Robotics and Automation, City University of Hong Kong, Hong Kong and Centre for Biosystems, Neuroscience and Nanotechnology, City University of Hong Kong, Hong Kong
| | - Xin Cui
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Weijin Guo
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Todd Thorsen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, USA.
| |
Collapse
|
20
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
21
|
Greuter D, Loy A, Horn M, Rattei T. probeBase--an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res 2016; 44:D586-9. [PMID: 26586809 PMCID: PMC4702872 DOI: 10.1093/nar/gkv1232] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022] Open
Abstract
probeBase http://www.probebase.net is a manually maintained and curated database of rRNA-targeted oligonucleotide probes and primers. Contextual information and multiple options for evaluating in silico hybridization performance against the most recent rRNA sequence databases are provided for each oligonucleotide entry, which makes probeBase an important and frequently used resource for microbiology research and diagnostics. Here we present a major update of probeBase, which was last featured in the NAR Database Issue 2007. This update describes a complete remodeling of the database architecture and environment to accommodate computationally efficient access. Improved search functions, sequence match tools and data output now extend the opportunities for finding suitable hierarchical probe sets that target an organism or taxon at different taxonomic levels. To facilitate the identification of complementary probe sets for organisms represented by short rRNA sequence reads generated by amplicon sequencing or metagenomic analysis with next generation sequencing technologies such as Illumina and IonTorrent, we introduce a novel tool that recovers surrogate near full-length rRNA sequences for short query sequences and finds matching oligonucleotides in probeBase.
Collapse
Affiliation(s)
- Daniel Greuter
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| | - Matthias Horn
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| |
Collapse
|
22
|
Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchs BM. MiL-FISH: Multilabeled Oligonucleotides for Fluorescence In Situ Hybridization Improve Visualization of Bacterial Cells. Appl Environ Microbiol 2016; 82:62-70. [PMID: 26475101 PMCID: PMC4702640 DOI: 10.1128/aem.02776-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/04/2015] [Indexed: 01/29/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Mario P Schimak
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Bremen, Germany Energy Bioengineering and Geomicrobiology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Silke Wetzel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
23
|
A flow cytometric approach to quantify biofilms. Folia Microbiol (Praha) 2015; 60:335-42. [PMID: 25948317 DOI: 10.1007/s12223-015-0400-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/29/2015] [Indexed: 12/29/2022]
Abstract
Since biofilms are important in many clinical, industrial, and environmental settings, reliable methods to quantify these sessile microbial populations are crucial. Most of the currently available techniques do not allow the enumeration of the viable cell fraction within the biofilm and are often time consuming. This paper proposes flow cytometry (FCM) using the single-stain viability dye TO-PRO(®)-3 iodide as a fast and precise alternative. Mature biofilms of Candida albicans and Escherichia coli were used to optimize biofilm removal and dissociation, as a single-cell suspension is needed for accurate FCM enumeration. To assess the feasibility of FCM quantification of biofilms, E. coli and C. albicans biofilms were analyzed using FCM and crystal violet staining at different time points. A combination of scraping and rinsing proved to be the most efficient technique for biofilm removal. Sonicating for 10 min eliminated the remaining aggregates, resulting in a single-cell suspension. Repeated FCM measurements of biofilm samples revealed a good intraday precision of approximately 5 %. FCM quantification and the crystal violet assay yielded similar biofilm growth curves for both microorganisms, confirming the applicability of our technique. These results show that FCM using TO-PRO(®)-3 iodide as a single-stain viability dye is a valid fast alternative for the quantification of viable cells in a biofilm.
Collapse
|
24
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
25
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014; 16:2568-90. [PMID: 24571640 PMCID: PMC4122687 DOI: 10.1111/1462-2920.12436] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/01/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014. [PMID: 24571640 DOI: 10.1111/1462‐2920.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
27
|
Toebe K. Whole cell hybridisation for monitoring harmful marine microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6816-6823. [PMID: 23835584 DOI: 10.1007/s11356-012-1416-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/09/2012] [Indexed: 06/02/2023]
Abstract
Fluorescence in situ hybridisation (FISH) is a powerful molecular biological tool to detect and enumerate harmful microorganism in the marine environment. Different FISH methods are available, and especially in combination with automated counting techniques, the potential for a routine monitoring of harmful marine microalgae is attainable. Various oligonucleotide probes are developed for detecting harmful microalgae. However, FISH-based methods are not yet regularly included in monitoring programmes tracking the presence of harmful marine microalgae. A limitation factor of the FISH technique is the currently available number of suited fluorochromes attached to the FISH probes to detect various harmful species in one environmental sample at a time. However, coupled automated techniques, like flow cytometry or solid-phase cytometry, can facilitate the analysis of numerous field samples and help to overcome this drawback. A great benefit of FISH in contrast to other molecular biological detection methods for harmful marine microalgae is the direct visualisation of the hybridised target cells, which are not permitted in cell free formats, like DNA depending analysis methods. Therefore, an additional validation of the FISH-generated results is simultaneously given.
Collapse
Affiliation(s)
- Kerstin Toebe
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany,
| |
Collapse
|
28
|
Jahns AC, Oprica C, Vassilaki I, Golovleva I, Palmer RH, Alexeyev OA. Simultaneous visualization of Propionibacterium acnes and Propionibacterium granulosum with immunofluorescence and fluorescence in situ hybridization. Anaerobe 2013; 23:48-54. [DOI: 10.1016/j.anaerobe.2013.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/11/2013] [Accepted: 07/16/2013] [Indexed: 12/20/2022]
|
29
|
New methods for analysis of spatial distribution and coaggregation of microbial populations in complex biofilms. Appl Environ Microbiol 2013; 79:5978-87. [PMID: 23892743 DOI: 10.1128/aem.01727-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In biofilms, microbial activities form gradients of substrates and electron acceptors, creating a complex landscape of microhabitats, often resulting in structured localization of the microbial populations present. To understand the dynamic interplay between and within these populations, quantitative measurements and statistical analysis of their localization patterns within the biofilms are necessary, and adequate automated tools for such analyses are needed. We have designed and applied new methods for fluorescence in situ hybridization (FISH) and digital image analysis of directionally dependent (anisotropic) multispecies biofilms. A sequential-FISH approach allowed multiple populations to be detected in a biofilm sample. This was combined with an automated tool for vertical-distribution analysis by generating in silico biofilm slices and the recently developed Inflate algorithm for coaggregation analysis of microbial populations in anisotropic biofilms. As a proof of principle, we show distinct stratification patterns of the ammonia oxidizers Nitrosomonas oligotropha subclusters I and II and the nitrite oxidizer Nitrospira sublineage I in three different types of wastewater biofilms, suggesting niche differentiation between the N. oligotropha subclusters, which could explain their coexistence in the same biofilms. Coaggregation analysis showed that N. oligotropha subcluster II aggregated closer to Nitrospira than did N. oligotropha subcluster I in a pilot plant nitrifying trickling filter (NTF) and a moving-bed biofilm reactor (MBBR), but not in a full-scale NTF, indicating important ecophysiological differences between these phylogenetically closely related subclusters. By using high-resolution quantitative methods applicable to any multispecies biofilm in general, the ecological interactions of these complex ecosystems can be understood in more detail.
Collapse
|
30
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|