1
|
Comparative transcriptomics reveals unique pine wood decay strategies in the Sparassis latifolia. Sci Rep 2022; 12:19875. [PMID: 36400936 PMCID: PMC9674834 DOI: 10.1038/s41598-022-24171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Sparassis latifolia is a valuable edible mushroom, growing on fresh pine wood sawdust substrate. However, the mechanistic bases are poorly understood. The gene expression profiles of S. latifolia were analyzed from submerged cultures with fresh pine wood sawdust substrate for different time (0 h, 1 h, 6 h, 1 day, 5 days, and 10 days, respectively). The total number of differentially expressed genes (DEGs) identified under pine sawdust inducing was 2,659 compared to 0 h (CK). And 1,073, 520, 385, 424, and 257 DEGs were identified at the five time points, respectively. There were 34 genes in common at all inoculated time points, including FAD/NAD(P)-binding domain-containing protein, glucose methanol choline (GMC) oxidoreductase, flavin-containing monooxygenase, and taurine catabolism dioxygenase. Weighted gene co-expression analysis (WGCNA) was then used to compare the molecular characteristics among the groups and identified that the blue module had the highest correlation with the time induced by pine wood sawdust. There were 102 DEGs out of 125 genes in the blue model, which were most enriched in nitronate monooxygenase activity, dioxygenase activity, and oxidation-reduction process GO terms (p < 0.05), and peroxisome in KEGG pathway. This may provide clues into mechanisms that S. latifolia can grow on fresh pine wood sawdust substrate.
Collapse
|
2
|
Min B, Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Blanchette RA, Master E, Cullen D, Hibbett DS, Grigoriev IV. RNA-editing in Basidiomycota, revisited. ISME COMMUNICATIONS 2021; 1:70. [PMID: 37938697 PMCID: PMC9723688 DOI: 10.1038/s43705-021-00037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Baojun Wu
- Biology Department, Clark University, Worcester, MA, USA
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, WI, USA
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Christina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
3
|
Csarman F, Obermann T, Zanjko MC, Man P, Halada P, Seiboth B, Ludwig R. Functional expression and characterization of two laccases from the brown rot Fomitopsis pinicola. Enzyme Microb Technol 2021; 148:109801. [PMID: 34116754 DOI: 10.1016/j.enzmictec.2021.109801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Laccase is predominantly found in lignin degrading filamentous white rot fungi, where it is involved in the oxidative degradation of this recalcitrant heteropolymer. In brown rot fungi it is much less prevalent: laccases from only a few brown rots have been detected and only two have been characterized. This study tries to understand the role of this ligninolytic enzyme in brown rots by investigating the catalytic properties of laccases secreted by Fomitopsis pinicola FP58527 SS1. When grown on either poplar or spruce wood blocks, several laccases were detected in the secretome. Two of them (FpLcc1 and FpLcc2) were heterologously produced using Trichoderma reesei QM9414 Δxyr1 as expression host and purified to homogeneity by consecutive steps of hydrophobic interaction, anion exchange and size exclusion chromatography. With the substrates 2,2-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS), 2,6-dimethoxyphenol (2,6-DMP) and guaiacol both laccases showed similar, low pH-optima below 3 for ABTS and 2,6-DMP and at pH 3.5 for guaiacol which is at the acidic end of laccases isolated from white rot fungi. The determined KM values were low while kcat values measured at acidic conditions were comparable to those reported for other laccases from white rot fungi. While both enzymes showed a moderate decrease in activity in the presence of oxalic and citric acid FpLcc2 was activated by acetic acid up to 3.7 times. This activation effect is much more pronounced at pH 5.0 compared to pH 3.0 and could already be observed at a concentration of 1 mM acetic acid.
Collapse
Affiliation(s)
- Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Tobias Obermann
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Mihael Colar Zanjko
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Petr Man
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Petr Halada
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Hage H, Miyauchi S, Virágh M, Drula E, Min B, Chaduli D, Navarro D, Favel A, Norest M, Lesage-Meessen L, Bálint B, Merényi Z, de Eugenio L, Morin E, Martínez AT, Baldrian P, Štursová M, Martínez MJ, Novotny C, Magnuson JK, Spatafora JW, Maurice S, Pangilinan J, Andreopoulos W, LaButti K, Hundley H, Na H, Kuo A, Barry K, Lipzen A, Henrissat B, Riley R, Ahrendt S, Nagy LG, Grigoriev IV, Martin F, Rosso MN. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol 2021; 23:5716-5732. [PMID: 33538380 PMCID: PMC8596683 DOI: 10.1111/1462-2920.15423] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Because they comprise some of the most efficient wood‐decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin‐like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.
Collapse
Affiliation(s)
- Hayat Hage
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Shingo Miyauchi
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Köln, Germany
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Elodie Drula
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, USC1408, AFMB, Marseille, 13009, France
| | - Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Delphine Chaduli
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - David Navarro
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Anne Favel
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Manon Norest
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Laurence Lesage-Meessen
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Cenek Novotny
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic.,University of Ostrava, Ostrava, 701 03, Czech Republic
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joey W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, 0316, Norway
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Willian Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary.,Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| |
Collapse
|
5
|
Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. PLoS One 2020; 15:e0243984. [PMID: 33315957 PMCID: PMC7735643 DOI: 10.1371/journal.pone.0243984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Comparison to the gene expression on glucose, 1,129 genes were upregulated on cellulose and 1,516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included glycoside hyrolase family 12 (GH12), GH131, carbohydrate esterase family 1 (CE1), auxiliary activities family 3 subfamily 1 (AA3_1), AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these gene products in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.
Collapse
|
6
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
7
|
Mali T, Mäki M, Hellén H, Heinonsalo J, Bäck J, Lundell T. Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns. FEMS Microbiol Ecol 2020; 95:5554004. [PMID: 31494677 PMCID: PMC6736282 DOI: 10.1093/femsec/fiz135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Effect of three wood-decaying fungi on decomposition of spruce wood was studied in solid-state cultivation conditions for a period of three months. Two white rot species (Trichaptum abietinum and Phlebia radiata) were challenged by a brown rot species (Fomitopsis pinicola) in varying combinations. Wood decomposition patterns as determined by mass loss, carbon to nitrogen ratio, accumulation of dissolved sugars and release of volatile organic compounds (VOCs) were observed to depend on both fungal combinations and growth time. Similar dependence of fungal species combination, either white or brown rot dominated, was observed for secreted enzyme activities on spruce wood. Fenton chemistry suggesting reduction of Fe3+ to Fe2+ was detected in the presence of F. pinicola, even in co-cultures, together with substantial degradation of wood carbohydrates and accumulation of oxalic acid. Significant correlation was perceived with two enzyme activity patterns (oxidoreductases produced by white rot fungi; hydrolytic enzymes produced by the brown rot fungus) and wood degradation efficiency. Moreover, emission of four signature VOCs clearly grouped the fungal combinations. Our results indicate that fungal decay type, either brown or white rot, determines the loss of wood mass and decomposition of polysaccharides as well as the pattern of VOCs released upon fungal growth on spruce wood.
Collapse
Affiliation(s)
- Tuulia Mali
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland
| | - Mari Mäki
- Department of Forest Sciences, University of Helsinki, Viikki Campus, P.O.Box 27, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland
| | - Jussi Heinonsalo
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland.,Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland
| | - Jaana Bäck
- Department of Forest Sciences, University of Helsinki, Viikki Campus, P.O.Box 27, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
8
|
Teichert I. Fungal RNA editing: who, when, and why? Appl Microbiol Biotechnol 2020; 104:5689-5695. [PMID: 32382933 PMCID: PMC7306014 DOI: 10.1007/s00253-020-10631-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Abstract RNA editing occurs in all kingdoms of life and in various RNA species. The editing of nuclear protein-coding transcripts has long been known in metazoans, but was only recently detected in fungi. In contrast to many metazoan species, fungal editing sites occur mostly in coding regions, and therefore, fungal editing can change protein sequences and lead to modified or new functions of proteins. Indeed, mRNA editing is thought to be generally adaptive on fungi. Although RNA editing has been detected in both, Ascomycota and Basidiomycota, there seem to be considerable differences between these two classes of fungi concerning the types, the timing, and the purpose of editing. This review summarizes the characteristics of RNA editing in fungi and compares them to metazoan species and bacteria. In particular, it will review cellular processes affected by editing and speculate on the purpose of editing for fungal biology with a focus on the filamentous ascomycetes. Key Points • Fungi show various types of mRNA editing in nuclear transcripts. • Fungal editing leads to proteome diversification. • Filamentous ascomycetes may require editing for sexual sporulation. • Wood-degrading basidiomycetes may use editing for adaptation to different substrates.
Collapse
Affiliation(s)
- Ines Teichert
- General and Molecular Botany, Ruhr-University Bochum, 44780, Bochum, Germany. .,Arbeitskreis für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Brischke C, Alfredsen G. Wood-water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biotechnol 2020; 104:3781-3795. [PMID: 32144473 PMCID: PMC8326242 DOI: 10.1007/s00253-020-10479-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Wood in service is sequestering carbon, but it is principally prone to deterioration where different fungi metabolize wood, and carbon dioxide is released back to the atmosphere. A key prerequisite for fungal degradation of wood is the presence of moisture. Conversely, keeping wood dry is the most effective way to protect wood from wood degradation and for long-term binding of carbon. Wood is porous and hygroscopic; it can take up water in liquid and gaseous form, and water is released from wood through evaporation following a given water vapour pressure gradient. During the last decades, the perception of wood-water relationships changed significantly and so did the view on moisture-affected properties of wood. Among the latter is its susceptibility to fungal decay. This paper reviews findings related to wood-water relationships and their role for fungal wood decomposition. These are complex interrelationships not yet fully understood, and current knowledge gaps are therefore identified. Studies with chemically and thermally modified wood are included as examples of fungal wood substrates with altered moisture properties. Quantification and localization of capillary and cell wall water - especially in the over-hygroscopic range - is considered crucial for determining minimum moisture thresholds (MMThr) of wood-decay fungi. The limitations of the various methods and experimental set-ups to investigate wood-water relationships and their role for fungal decay are manifold. Hence, combining techniques from wood science, mycology, biotechnology and advanced analytics is expected to provide new insights and eventually a breakthrough in understanding the intricate balance between fungal decay and wood-water relations. KEY POINTS: • Susceptibility to wood-decay fungi is closely linked to their physiological needs. • Content, state and distribution of moisture in wood are keys for fungal activity. • Quantification and localization of capillary and cell wall water in wood is needed. • New methodological approaches are expected to provide new insights.
Collapse
Affiliation(s)
- Christian Brischke
- Department of Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Buesgenweg 4, D-37077, Goettingen, Germany.
| | - Gry Alfredsen
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forest and Forest Resources, Wood Technology, Høgskoleveien 8, 1433, Ås, Norway
| |
Collapse
|
10
|
Aspects Determining the Dominance of Fomitopsis pinicola in the Colonization of Deadwood and the Role of the Pathogenicity Factor Oxalate. FORESTS 2020. [DOI: 10.3390/f11030290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon and mineral cycling in sustainable forest systems depends on a microbiome of basidiomycetes, ascomycetes, litter-degrading saprobes, ectomycorrhizal, and mycoparasitic fungi that constitute a deadwood degrading consortium. The brown rot basidiomycete Fomitopsis pinicola (Swartz: Fr.) P. Karsten (Fp), as an oxalate-producing facultative pathogen, is an early colonizer of wounded trees and fresh deadwood. It replaces basidiomycetous white rot fungi and non-basidiomycetous fungal phyla in the presence of its volatilome, but poorly in its absence. With the goal of determining its dominance over the most competitive basidiomycetes and its role in fungal successions within the forest microbiome in general, Fp was exposed to the white rot fungus Kuehneromyces mutabilis (Schaeff.: Fr.) Singer & Smith (Km) in aseptic dual culture established on fertilized 100 mm-long wood dust columns in glass tubes with the inclusion of their volatilomes. For the mycelia approaching from the opposite ends of the wood dust columns, the energy-generating systems of laccase and manganese peroxidase (MnP), the virulence factor oxalate, and the exhalation of terpenes were determined by spectrophotometry, High Pressure Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS). Km mycelia perceived the approaching Fp over 20 mm of non-colonized wood dust, reduced the laccase activity to 25%, and raised MnP to 275%–500% by gaining energy and presumably by controlling oxalate, H2O2, and the dropping substrate pH caused by Fp. On mycelial contact, Km stopped Fp, secured its substrate sector with 4 mm of an impermeable barrier region during an eruption of antimicrobial bisabolenes, and dropped from the invasion mode of substrate colonization into the steady state mode of low metabolic and defensive activity. The approaching Fp raised the oxalate production throughout to >20 g kg−1 to inactivate laccase and caused, with pH 1.4–1.7, lethal conditions in its substrate sector whose physiological effects on Km could be reproduced with acidity conditions incited by HCl. After a mean lag phase of 11 days, Fp persisting in a state of high metabolic activity overgrew and digested the debilitated Km thallus and terminated the production of oxalate. It is concluded that the factors contributing to the competitive advantage of F. pinicola in the colonization of wounded trees and pre-infected deadwood are the drastic long-term acidification of the timber substrate, its own insensitivity to extremely low pH conditions, its efficient control of the volatile mono- and sesquiterpenes of timber and microbial origin, and the action of a undefined blend of terpenes and allelopathic substances.
Collapse
|
11
|
Mäkelä MR, Hildén K, Kowalczyk JE, Hatakka A. Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Liu J, Wang D, Su Y, Lang K, Duan R, Wu Y, Ma F, Huang S. FairBase: a comprehensive database of fungal A-to-I RNA editing. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5334633. [PMID: 30788499 PMCID: PMC6379597 DOI: 10.1093/database/baz018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 01/27/2023]
Abstract
Frequent A-to-I RNA editing has recently been identified in fungi despite the absence of recognizable homologues of metazoan ADARs ("Adenosine Deaminases Acting on RNA"). In particular, there is emerging evidence showing that A-to-I editing is involved in sexual reproduction of filamentous fungi. Here, we report on the creation of FairBase - a fungal A-to-I RNA editing database that provides a platform for deep exploration of fungal RNA editing to relevant academic communities. This database includes a comprehensive collection of A-to-I editing sites in six filamentous fungal species, together with extensive annotations for each editing site. In FairBase, users can conveniently search editing sites and obtain editing levels for each editing site in various RNA-seq samples. In addition, the pathways involving RNA editing are built in FairBase to help users understand the functions of RNA editing. Furthermore, each fungal species has a genome browser (JBrowse) that allows users to explore A-to-I editing in a genomic context. FairBase is the first fungal RNA editing database.
Collapse
Affiliation(s)
- Jinding Liu
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China.,Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - Dongbo Wang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China
| | - Yinna Su
- Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China.,Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - Kun Lang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China
| | - Rongjing Duan
- Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China.,Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - YuFeng Wu
- Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - Fei Ma
- College of Life Science, Nanjing Normal University, Nanjing, China.,Laboratory for Comparative Genomics and Bioinformatics, Nanjing Normal University, Nanjing, China
| | - Shuiqing Huang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Valadares F, Gonçalves TA, Damasio A, Milagres AM, Squina FM, Segato F, Ferraz A. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme Microb Technol 2019; 130:109370. [PMID: 31421724 DOI: 10.1016/j.enzmictec.2019.109370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Secretome evaluations of lignocellulose-decay basidiomycetes can reveal new enzymes in selected fungal species that degrade specific substrates. Proteins discovered in such studies can support biorefinery development. Brown-rot (Gloeophyllum trabeum) and white-rot (Pleurotus ostreatus) fungi growing in sugarcane bagasse solid-state cultures produced 119 and 63 different extracellular proteins, respectively. Several of the identified enzymes are suitable for in vitro biomass conversion, including a range of cellulases (endoglucanases, cellobiohydrolases and β-glucosidases), hemicellulases (endoxylanases, α-arabinofuranosidases, α-glucuronidases and acetylxylan esterases) and carbohydrate-active auxiliary proteins, such as AA9 lytic polysaccharide monooxygenase, AA1 laccase and AA2 versatile peroxidase. Extracellular oxalate decarboxylase was also detected in both fungal species, exclusively in media containing sugarcane bagasse. Interestingly, intracellular AA6 quinone oxidoreductases were also exclusively produced under sugarcane bagasse induction in both fungi. These enzymes promote quinone redox cycling, which is used to produce Fenton's reagents by lignocellulose-decay fungi. Hitherto undiscovered hypothetical proteins that are predicted in lignocellulose-decay fungi genomes appeared in high relative abundance in the cultures containing sugarcane bagasse, which suggests undisclosed, new biochemical mechanisms that are used by lignocellulose-decay fungi to degrade sugarcane biomass. In general, lignocellulose-decay fungi produce a number of canonical hydrolases, as well as some newly observed enzymes, that are suitable for in vitro biomass digestion in a biorefinery context.
Collapse
Affiliation(s)
- Fernanda Valadares
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - Thiago A Gonçalves
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, 18023-000 Sorocaba, SP, Brazil; Institute of Biology, University of Campinas (UNICAMP), 13080-655, Campinas, SP, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), 13080-655, Campinas, SP, Brazil
| | - Adriane Mf Milagres
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil.
| |
Collapse
|
14
|
Evolution of substrate-specific gene expression and RNA editing in brown rot wood-decaying fungi. ISME JOURNAL 2019; 13:1391-1403. [PMID: 30718807 DOI: 10.1038/s41396-019-0359-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Fungi that decay wood have characteristic associations with certain tree species, but the mechanistic bases for these associations are poorly understood. We studied substrate-specific gene expression and RNA editing in six species of wood-decaying fungi from the 'Antrodia clade' (Polyporales, Agaricomycetes) on three different wood substrates (pine, spruce, and aspen) in submerged cultures. We identified dozens to hundreds of substrate-biased genes (i.e., genes that are significantly upregulated in one substrate relative to the other two substrates) in each species, and these biased genes are correlated with their host ranges. Evolution of substrate-biased genes is associated with gene family expansion, gain and loss of genes, and variation in cis- and trans- regulatory elements, rather than changes in protein coding sequences. We also demonstrated widespread RNA editing events in the Antrodia clade, which differ from those observed in the Ascomycota in their distribution, substitution types, and the genomic environment. Moreover, we found that substrates could affect editing positions and frequency, including editing events occurring in mRNA transcribed from wood-decay-related genes. This work shows the extent to which gene expression and RNA editing differ among species and substrates, and provides clues into mechanisms by which wood-decaying fungi may adapt to different hosts.
Collapse
|
15
|
Bian Z, Ni Y, Xu JR, Liu H. A-to-I mRNA editing in fungi: occurrence, function, and evolution. Cell Mol Life Sci 2019; 76:329-340. [PMID: 30302531 PMCID: PMC11105437 DOI: 10.1007/s00018-018-2936-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
A-to-I RNA editing is an important post-transcriptional modification that converts adenosine (A) to inosine (I) in RNA molecules via hydrolytic deamination. Although editing of mRNAs catalyzed by adenosine deaminases acting on RNA (ADARs) is an evolutionarily conserved mechanism in metazoans, organisms outside the animal kingdom lacking ADAR orthologs were thought to lack A-to-I mRNA editing. However, recent discoveries of genome-wide A-to-I mRNA editing during the sexual stage of the wheat scab fungus Fusarium graminearum, model filamentous fungus Neurospora crassa, Sordaria macrospora, and an early diverging filamentous ascomycete Pyronema confluens indicated that A-to-I mRNA editing is likely an evolutionarily conserved feature in filamentous ascomycetes. More importantly, A-to-I mRNA editing has been demonstrated to play crucial roles in different sexual developmental processes and display distinct tissue- or development-specific regulation. Contrary to that in animals, the majority of fungal RNA editing events are non-synonymous editing, which were shown to be generally advantageous and favored by positive selection. Many non-synonymous editing sites are conserved among different fungi and have potential functional and evolutionary importance. Here, we review the recent findings about the occurrence, regulation, function, and evolution of A-to-I mRNA editing in fungi.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yajia Ni
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Jurak E, Suzuki H, van Erven G, Gandier JA, Wong P, Chan K, Ho CY, Gong Y, Tillier E, Rosso MN, Kabel MA, Miyauchi S, Master ER. Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce. BMC Genomics 2018; 19:815. [PMID: 30424733 PMCID: PMC6234650 DOI: 10.1186/s12864-018-5210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The basidiomycete Phanerochaete carnosa is a white-rot species that has been mainly isolated from coniferous softwood. Given the particular recalcitrance of softwoods to bioconversion, we conducted a comparative transcriptomic analysis of P. carnosa following growth on wood powder from one softwood (spruce; Picea glauca) and one hardwood (aspen; Populus tremuloides). P. carnosa was grown on each substrate for over one month, and mycelia were harvested at five time points for total RNA sequencing. Residual wood powder was also analyzed for total sugar and lignin composition. RESULTS Following a slightly longer lag phase of growth on spruce, radial expansion of the P. carnosa colony was similar on spruce and aspen. Consistent with this observation, the pattern of gene expression by P. carnosa on each substrate converged following the initial adaptation. On both substrates, highest transcript abundances were attributed to genes predicted to encode manganese peroxidases (MnP), along with auxiliary activities from carbohydrate-active enzyme (CAZy) families AA3 and AA5. In addition, a lytic polysaccharide monooxygenase from family AA9 was steadily expressed throughout growth on both substrates. P450 sequences from clans CPY52 and CYP64 accounted for 50% or more of the most highly expressed P450s, which were also the P450 clans that were expanded in the P. carnosa genome relative to other white-rot fungi. CONCLUSIONS The inclusion of five growth points and two wood substrates was important to revealing differences in the expression profiles of specific sequences within large glycoside hydrolase families (e.g., GH5 and GH16), and permitted co-expression analyses that identified new targets for study, including non-catalytic proteins and proteins with unknown function.
Collapse
Affiliation(s)
- E Jurak
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Department of Aquatic Biotechnology and Bioproduct Engineering, Groningen, The Netherlands
| | - H Suzuki
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - G van Erven
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - J A Gandier
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - P Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K Chan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - C Y Ho
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Y Gong
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - E Tillier
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - M-N Rosso
- Aix-Marseille Université, INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - M A Kabel
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - S Miyauchi
- Laboratory of Excellence ARBRE, INRA, Nancy, Lorraine, France.,Aix-Marseille Université, INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - E R Master
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|