1
|
Karasev ES, Hosid SL, Aksenova TS, Onishchuk OP, Kurchak ON, Dzyubenko NI, Andronov EE, Provorov NA. Impacts of Natural Selection on Evolution of Core and Symbiotically Specialized ( sym) Genes in the Polytypic Species Neorhizobium galegae. Int J Mol Sci 2023; 24:16696. [PMID: 38069024 PMCID: PMC10706768 DOI: 10.3390/ijms242316696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nodule bacteria (rhizobia) represent a suitable model to address a range of fundamental genetic problems, including the impacts of natural selection on the evolution of symbiotic microorganisms. Rhizobia possess multipartite genomes in which symbiotically specialized (sym) genes differ from core genes in their natural histories. Diversification of sym genes is responsible for rhizobia microevolution, which depends on host-induced natural selection. By contrast, diversification of core genes is responsible for rhizobia speciation, which occurs under the impacts of still unknown selective factors. In this paper, we demonstrate that in goat's rue rhizobia (Neorhizobium galegae) populations collected at North Caucasus, representing two host-specific biovars orientalis and officianalis (N2-fixing symbionts of Galega orientalis and G. officinalis), the evolutionary mechanisms are different for core and sym genes. In both N. galegae biovars, core genes are more polymorphic than sym genes. In bv. orientalis, the evolution of core genes occurs under the impacts of driving selection (dN/dS > 1), while the evolution of sym genes is close to neutral (dN/dS ≈ 1). In bv. officinalis, the evolution of core genes is neutral, while for sym genes, it is dependent on purifying selection (dN/dS < 1). A marked phylogenetic congruence of core and sym genes revealed using ANI analysis may be due to a low intensity of gene transfer within and between N. galegae biovars. Polymorphism in both gene groups and the impacts of driving selection on core gene evolution are more pronounced in bv. orientalis than in bv. officianalis, reflecting the diversities of their respective host plant species. In bv. orientalis, a highly significant (P0 < 0.001) positive correlation is revealed between the p-distance and dN/dS values for core genes, while in bv. officinalis, this correlation is of low significance (0.05 < P0 < 0.10). For sym genes, the correlation between p-distance and dN/dS values is negative in bv. officinalis but is not revealed in bv. orientalis. These data, along with the functional annotation of core genes implemented using Gene Ontology tools, suggest that the evolution of bv. officinalis is based mostly on adaptation for in planta niches while in bv. orientalis, evolution presumably depends on adaptation for soil niches. New insights into the tradeoff between natural selection and genetic diversity are presented, suggesting that gene nucleotide polymorphism may be extended by driving selection only in ecologically versatile organisms capable of supporting a broad spectrum of gene alleles in their gene pools.
Collapse
Affiliation(s)
- Evgeny S. Karasev
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
| | - Sergey L. Hosid
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
| | - Tatiana S. Aksenova
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
| | - Olga P. Onishchuk
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
| | - Oksana N. Kurchak
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
| | - Nikolay I. Dzyubenko
- All-Russia Research Institute of Plant Genetic Resources, 190031 St. Petersburg, Russia;
| | - Evgeny E. Andronov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| | - Nikolay A. Provorov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (E.S.K.); (S.L.H.); (T.S.A.); (O.P.O.); (O.N.K.); (N.A.P.)
| |
Collapse
|
2
|
Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium ( Ensifer) meliloti WSM1022. Microorganisms 2021; 9:microorganisms9122428. [PMID: 34946030 PMCID: PMC8706082 DOI: 10.3390/microorganisms9122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.
Collapse
|
3
|
Rodríguez-Esperón MC, Eastman G, Sandes L, Garabato F, Eastman I, Iriarte A, Fabiano E, Sotelo-Silveira JR, Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512. Environ Microbiol 2021; 24:240-264. [PMID: 34811861 DOI: 10.1111/1462-2920.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Cupriavidus necator UYPR2.512 is a rhizobial strain that belongs to the Beta-subclass of proteobacteria, able to establish successful symbiosis with Mimosoid legumes. The initial steps of rhizobium-legumes symbioses involve the reciprocal recognition by chemical signals, being luteolin one of the molecules involved. However, there is a lack of information on the effect of luteolin in beta-rhizobia. In this work, we used long-read sequencing to complete the genome of UYPR2.512 providing evidence for the existence of four closed circular replicons. We used an RNA-Seq approach to analyse the response of UYPR2.512 to luteolin. One hundred and forty-five genes were differentially expressed, with similar numbers of downregulated and upregulated genes. Most repressed genes were mapped to the main chromosome, while the upregulated genes were overrepresented among pCne512e, containing the symbiotic genes. Induced genes included the nod operon and genes implicated in exopolysaccharides and flagellar biosynthesis. We identified many genes involved in iron, copper and other heavy metals metabolism. Among repressed genes, we identified genes involved in basal carbon and nitrogen metabolism. Our results suggest that in response to luteolin, C. necator strain UYPR2.512 reshapes its metabolism in order to be prepared for the forthcoming symbiotic interaction.
Collapse
Affiliation(s)
- M C Rodríguez-Esperón
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - G Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - L Sandes
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - F Garabato
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - I Eastman
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - E Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - J R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - R Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
4
|
Mogro EG, Ambrosis NM, Lozano MJ. Easy identification of insertion sequence mobilization events in related bacterial strains with ISCompare. G3 (BETHESDA, MD.) 2021; 11:6303613. [PMID: 34849821 PMCID: PMC8496243 DOI: 10.1093/g3journal/jkab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
Bacterial genomes are composed of core and accessory genomes. The first is composed of housekeeping and essential genes, while the second is highly enriched in mobile genetic elements, including transposable elements (TEs). Insertion sequences (ISs), the smallest TEs, have an important role in genome evolution, and contribute to bacterial genome plasticity and adaptability. ISs can spread in a genome, presenting different locations in nearly related strains, and producing phenotypic variations. Few tools are available which can identify differentially located ISs (DLISs) on assembled genomes. Here, we introduce ISCompare, a new program to profile IS mobilization events in related bacterial strains using complete or draft genome assemblies. ISCompare was validated using artificial genomes with simulated random IS insertions and real sequences, achieving the same or better results than other available tools, with the advantage that ISCompare can analyze multiple ISs at the same time and outputs a list of candidate DLISs. ISCompare provides an easy and straightforward approach to look for differentially located ISs on bacterial genomes.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Nicolás M Ambrosis
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Mauricio J Lozano
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
5
|
Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Sci Rep 2021; 11:8674. [PMID: 33883620 PMCID: PMC8060271 DOI: 10.1038/s41598-021-88051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Phaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.
Collapse
Affiliation(s)
- Evdoxia Efstathiadou
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Anastasia P Tampakaki
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece.
| |
Collapse
|
6
|
Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P, González V. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol 2016; 18:2660-76. [PMID: 27312778 DOI: 10.1111/1462-2920.13415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 11/28/2022]
Abstract
Cultivated common beans are the primary protein source for millions of people around the world who subsist on low-input agriculture, enabled by the symbiotic N2 -fixation these legumes perform in association with rhizobia. Within a single agricultural plot, multiple Rhizobium species can nodulate bean roots, but it is unclear how genetically isolated these species remain in sympatry. To better understand this issue, we sequenced and compared the genomes of 33 strains isolated from the rhizosphere and root nodules of a particular bean variety grown in the same agricultural plot. We found that the Rhizobium species we observed coexist with low genetic recombination across their core genomes. Accessory plasmids thought to be necessary for the saprophytic lifestyle in soil show similar levels of genetic isolation, but with higher rates of recombination than the chromosomes. However, the symbiotic plasmids are extremely similar, with high rates of recombination and do not appear to have co-evolved with the chromosome or accessory plasmids. Therefore, while Rhizobium species are genetically isolated units within the microbial community, a common symbiotic plasmid allows all Rhizobium species to engage in symbiosis with the same host in a single agricultural plot.
Collapse
Affiliation(s)
- Olga M Pérez Carrascal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
7
|
Lacroix B, Citovsky V. A Functional Bacterium-to-Plant DNA Transfer Machinery of Rhizobium etli. PLoS Pathog 2016; 12:e1005502. [PMID: 26968003 PMCID: PMC4788154 DOI: 10.1371/journal.ppat.1005502] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Different strains and species of the soil phytopathogen Agrobacterium possess the ability to transfer and integrate a segment of DNA (T-DNA) into the genome of their eukaryotic hosts, which is mainly mediated by a set of virulence (vir) genes located on the bacterial Ti-plasmid that also contains the T-DNA. To date, Agrobacterium is considered to be unique in its capacity to mediate genetic transformation of eukaryotes. However, close homologs of the vir genes are encoded by the p42a plasmid of Rhizobium etli; this microorganism is related to Agrobacterium, but known only as a symbiotic bacterium that forms nitrogen-fixing nodules in several species of beans. Here, we show that R. etli can mediate functional DNA transfer and stable genetic transformation of plant cells, when provided with a plasmid containing a T-DNA segment. Thus, R. etli represents another bacterial species, besides Agrobacterium, that encodes a protein machinery for DNA transfer to eukaryotic cells and their subsequent genetic modification.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
8
|
Rouhrazi K, Khodakaramian G, Velázquez E. Phylogenetic diversity of rhizobial species and symbiovars nodulatingPhaseolus vulgarisin Iran. FEMS Microbiol Lett 2016; 363:fnw024. [DOI: 10.1093/femsle/fnw024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 11/12/2022] Open
|
9
|
Iida T, Itakura M, Anda M, Sugawara M, Isawa T, Okubo T, Sato S, Chiba-Kakizaki K, Minamisawa K. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia. Appl Environ Microbiol 2015; 81:4143-54. [PMID: 25862225 PMCID: PMC4524158 DOI: 10.1128/aem.00741-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation.
Collapse
Affiliation(s)
- Takayuki Iida
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mizue Anda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Tsuyoshi Isawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
10
|
Complete Genome Sequence of the RmInt1 Group II Intronless Sinorhizobium meliloti Strain RMO17. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01001-14. [PMID: 25301650 PMCID: PMC4192382 DOI: 10.1128/genomea.01001-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the complete genome sequence of the RmInt1 group II intronless Sinorhizobium meliloti strain RMO17 isolated from Medicago orbicularis nodules from Spanish soil. The genome consists of 6.73 Mb distributed between a single chromosome and two megaplasmids (the chromid pSymB and pSymA).
Collapse
|
11
|
Rogel MA, Bustos P, Santamaría RI, González V, Romero D, Cevallos MÁ, Lozano L, Castro-Mondragón J, Martínez-Romero J, Ormeño-Orrillo E, Martínez-Romero E. Genomic basis of symbiovar mimosae in Rhizobium etli. BMC Genomics 2014; 15:575. [PMID: 25005495 PMCID: PMC4125696 DOI: 10.1186/1471-2164-15-575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 07/01/2014] [Indexed: 11/25/2022] Open
Abstract
Background Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees. Results We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved. Conclusions The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Elucidation of insertion elements carried on plasmids and in vitro construction of shuttle vectors from the toxic cyanobacterium Planktothrix. Appl Environ Microbiol 2014; 80:4887-97. [PMID: 24907328 DOI: 10.1128/aem.01188-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6Kγ origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes.
Collapse
|
13
|
Díaz-Alcántara CA, Ramírez-Bahena MH, Mulas D, García-Fraile P, Gómez-Moriano A, Peix A, Velázquez E, González-Andrés F. Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst Appl Microbiol 2014; 37:149-56. [DOI: 10.1016/j.syapm.2013.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/15/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|
14
|
Guo HJ, Wang ET, Zhang XX, Li QQ, Zhang YM, Tian CF, Chen WX. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max. Appl Environ Microbiol 2014; 80:1245-55. [PMID: 24317084 PMCID: PMC3911071 DOI: 10.1128/aem.03037-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/30/2013] [Indexed: 01/09/2023] Open
Abstract
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.
Collapse
Affiliation(s)
- Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico D.F., Mexico
| | - Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Torres Tejerizo G, Rogel MA, Mora J, Martínez-Romero E. Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 2014; 14:6. [PMID: 24397311 PMCID: PMC3898782 DOI: 10.1186/1471-2180-14-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/29/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Rhizobium grahamii belongs to a new phylogenetic group of rhizobia together with Rhizobium mesoamericanum and other species. R. grahamii has a broad-host-range that includes Leucaena leucocephala and Phaseolus vulgaris, although it is a poor competitor for P. vulgaris nodulation in the presence of Rhizobium etli or Rhizobium phaseoli strains. This work analyzed the genome sequence and transfer properties of R. grahamii plasmids. RESULTS Genome sequence was obtained from R. grahamii CCGE502 type strain isolated from Dalea leporina in Mexico. The CCGE502 genome comprises one chromosome and two extrachromosomal replicons (ERs), pRgrCCGE502a and pRgrCCGE502b. Additionally, a plasmid integrated in the CCGE502 chromosome was found. The genomic comparison of ERs from this group showed that gene content is more variable than average nucleotide identity (ANI). Well conserved nod and nif genes were found in R. grahamii and R. mesoamericanum with some differences. R. phaseoli Ch24-10 genes expressed in bacterial cells in roots were found to be conserved in pRgrCCGE502b. Regarding conjugative transfer we were unable to transfer the R. grahamii CCGE502 symbiotic plasmid and its megaplasmid to other rhizobial hosts but we could transfer the symbiotic plasmid to Agrobacterium tumefaciens with transfer dependent on homoserine lactones. CONCLUSION Variable degrees of nucleotide identity and gene content conservation were found among the different R. grahamii CCGE502 replicons in comparison to R. mesoamericanum genomes. The extrachromosomal replicons from R. grahamii were more similar to those found in phylogenetically related Rhizobium species. However, limited similarities of R. grahamii CCGE502 symbiotic plasmid and megaplasmid were observed in other more distant Rhizobium species. The set of conserved genes in R. grahamii comprises some of those that are highly expressed in R. phaseoli on plant roots, suggesting that they play an important role in root colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av, Universidad s/n, Col, Chamilpa, C,P, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
16
|
Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol 2013; 80:446-54. [PMID: 24185856 DOI: 10.1128/aem.02256-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ≈ 45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species.
Collapse
|
17
|
Hernández-Salmerón JE, Valencia-Cantero E, Santoyo G. Genome-wide analysis of long, exact DNA repeats in rhizobia. Genes Genomics 2013. [DOI: 10.1007/s13258-012-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wang X, Wu L, Zhou P, Zhu S, An W, Chen Y, Zhao L. Analysis of synonymous codon usage patterns in the genus Rhizobium. World J Microbiol Biotechnol 2013; 29:2015-24. [PMID: 23653263 DOI: 10.1007/s11274-013-1364-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.
Collapse
Affiliation(s)
- Xinxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
19
|
Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:735. [PMID: 23270491 PMCID: PMC3557214 DOI: 10.1186/1471-2164-13-735] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/15/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. RESULTS Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. CONCLUSIONS Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pâmela Menna
- Embrapa Soja, C. P. 231, Londrina, Paraná, 86001-970, Brazil
| | - Luiz Gonzaga P Almeida
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Manuel Megías
- Universidad de Sevilla, Apdo Postal 874, Sevilla, 41080, Spain
| | | | | |
Collapse
|
20
|
Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M. The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel) 2012; 3:138-66. [PMID: 24704847 PMCID: PMC3899959 DOI: 10.3390/genes3010138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/16/2022] Open
Abstract
The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome.
Collapse
Affiliation(s)
- Michael Black
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | | | - Matthew Bellgard
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
21
|
Acosta JL, Eguiarte LE, Santamaría RI, Bustos P, Vinuesa P, Martínez-Romero E, Dávila G, González V. Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination. BMC Evol Biol 2011; 11:305. [PMID: 22004448 PMCID: PMC3215678 DOI: 10.1186/1471-2148-11-305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Background Most of the DNA variations found in bacterial species are in the form of single nucleotide polymorphisms (SNPs), but there is some debate regarding how much of this variation comes from mutation versus recombination. The nitrogen-fixing symbiotic bacteria Rhizobium etli is highly variable in both genomic structure and gene content. However, no previous report has provided a detailed genomic analysis of this variation at nucleotide level or the role of recombination in generating diversity in this bacterium. Here, we compared draft genomic sequences versus complete genomic sequences to obtain reliable measures of genetic diversity and then estimated the role of recombination in the generation of genomic diversity among Rhizobium etli. Results We identified high levels of DNA polymorphism in R. etli, and found that there was an average divergence of 4% to 6% among the tested strain pairs. DNA recombination events were estimated to affect 3% to 10% of the genomic sample analyzed. In most instances, the nucleotide diversity (π) was greater in DNA segments with recombinant events than in non-recombinant segments. However, this degree of recombination was not sufficiently large to disrupt the congruence of the phylogenetic trees, and further evaluation of recombination in strains quartets indicated that the recombination levels in this species are proportionally low. Conclusion Our data suggest that R. etli is a species composed of separated lineages with low homologous recombination among the strains. Horizontal gene transfer, particularly via the symbiotic plasmid characteristic of this species, seems to play an important role in diversity but the lineages maintain their evolutionary cohesiveness.
Collapse
Affiliation(s)
- José L Acosta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad N/C Col. Chamilpa, Apdo. Postal 565-A, Cuernavaca 62210, México.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Genome sequence of Rhizobium etli CNPAF512, a nitrogen-fixing symbiont isolated from bean root nodules in Brazil. J Bacteriol 2011; 193:3158-9. [PMID: 21515775 DOI: 10.1128/jb.00310-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli is a Gram-negative soil-dwelling alphaproteobacterium that carries out symbiotic biological nitrogen fixation in close association with legume hosts. R. etli strains exhibit high sequence divergence and are geographically structured, with a potentially dramatic influence on the outcome of symbiosis. Here, we present the genome sequence of R. etli CNPAF512, a Brazilian isolate from bean nodules. We anticipate that the availability of genome sequences of R. etli strains from distinctly different areas will provide valuable new insights into the geographic mosaic of the R. etli pangenome and the evolutionary dynamics that shape it.
Collapse
|
23
|
Lin S, Haas S, Zemojtel T, Xiao P, Vingron M, Li R. Genome-wide comparison of cyanobacterial transposable elements, potential genetic diversity indicators. Gene 2011; 473:139-49. [DOI: 10.1016/j.gene.2010.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/13/2010] [Accepted: 11/26/2010] [Indexed: 01/27/2023]
|