1
|
Chen Z, Lu Y, Xu Z, Wu L, Wei X, Cai Y. Evaluation of a Burkholderia ambifaria strain from plants as a novel promising probiotic in dental caries management. J Oral Microbiol 2024; 16:2420612. [PMID: 39502190 PMCID: PMC11536693 DOI: 10.1080/20002297.2024.2420612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Background Probiotics serve as a novel preventive or therapeutic approach for dental caries owing to their ability to reverse dysbiosis and restore a healthy microbiota. Here, we identified Burkholderia ambifaria AFS098024 as a probiotic candidate isolated from plants. Methods The safety of B. ambifaria was evaluated by hemolytic activity, D-lactic acid production and antibiotic susceptibility. In vitro biofilm model derived from the saliva of caries-free and caries-active donors and in vivo rat caries model were used to assess the efficacy of B. ambifaria in caries prevention and treatment. Results B. ambifaria was safe as a probiotic candidate and it could integrate with in vitro biofilm model. It significantly reduced the biomass and lactate production of biofilms from caries-active donors and disrupted biofilm structures. B. ambifaria effectively reduced the severity of carious lesions in rat molars, regardless of the inoculation sequence. Molars pretreated or treated with B. ambifaria demonstrated notably higher enamel volumes. Additionally, colonization of rat molars by B. ambifaria persisted for 6 weeks. Conclusion The B. ambifaria strain used in this study holds promise as a probiotic for inhibiting dental caries, both in vitro and in vivo.
Collapse
Affiliation(s)
- Zirang Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yangyu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijing Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Kametani M, Akitomo T, Hamada M, Usuda M, Kaneki A, Ogawa M, Ikeda S, Ito Y, Hamaguchi S, Kusaka S, Asao Y, Iwamoto Y, Mitsuhata C, Suehiro Y, Okawa R, Nakano K, Nomura R. Inhibitory Effects of Surface Pre-Reacted Glass Ionomer Filler Eluate on Streptococcus mutans in the Presence of Sucrose. Int J Mol Sci 2024; 25:9541. [PMID: 39273489 PMCID: PMC11395275 DOI: 10.3390/ijms25179541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The surface pre-reacted glass ionomer (S-PRG) filler is a type of bioactive functional glass that releases six different ions. This study examined the effects of the S-PRG filler eluate on Streptococcus mutans in the presence of sucrose. In a solution containing S. mutans, the concentrations of BO33-, Al3+, Sr2+, and F- were significantly higher in the presence of the S-PRG filler eluate than in its absence (p < 0.001). The concentrations of these ions further increased in the presence of sucrose. Additionally, the S-PRG filler eluate significantly reduced glucan formation by S. mutans (p < 0.001) and significantly increased the pH of the bacterial suspension (p < 0.001). Bioinformatic analyses revealed that the S-PRG filler eluate downregulated genes involved in purine biosynthesis (purC, purF, purL, purM, and purN) and upregulated genes involved in osmotic pressure (opuAa and opuAb). At a low pH (5.0), the S-PRG filler eluate completely inhibited the growth of S. mutans in the presence of sucrose and significantly increased the osmotic pressure of the bacterial suspension compared with the control (p < 0.001). These findings suggest that ions released from the S-PRG filler induce gene expression changes and exert an inhibitory effect on S. mutans in the presence of sucrose.
Collapse
Affiliation(s)
- Mariko Kametani
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Momoko Usuda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ami Kaneki
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masashi Ogawa
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shunya Ikeda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuya Ito
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuma Hamaguchi
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Satoru Kusaka
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuria Asao
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuko Iwamoto
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Herrera-Espejo S, Domínguez-Miranda JL, Rodríguez-Mogollo JI, Pachón J, Cordero E, Pachón-Ibáñez ME. Effects of pH on the Pathogenicity of Escherichia coli and Klebsiella pneumoniae on the Kidney: In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7925. [PMID: 39063167 PMCID: PMC11277208 DOI: 10.3390/ijms25147925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Urine pH reflects the functional integrity of the body and may influence the virulence of uropathogenic Escherichia coli and Klebsiella pneumoniae, the main causes of urinary tract infections (UTIs). This study evaluated the effects of acidic pH on the pathogenicity of uropathogenic E. coli and K. pneumoniae strains, in vitro and in vivo. Four uropathogenic E. coli and four K. pneumoniae strains were used. Biofilm formation, growth competition indices, motility, and adhesion and invasion of human renal cells were analyzed in media with acidic, neutral, and alkaline pH. A murine lower UTI model was used, with urine adjusted to acidic, neutral, or alkaline pH. At acidic pH, E. coli and K. pneumoniae exhibited higher bacterial concentrations in the kidneys and systemic symptoms, including bacteremia. Alkaline urine pH did not affect bacterial concentrations of any strain. In mice with UTIs caused by E. coli Nu14 and K. pneumoniae HUVR42 and acidic urine pH, histopathological studies of the kidneys showed acute inflammation affecting the urothelium and renal parenchyma, which are traits of acute pyelonephritis. These results indicate that acidic pH could increase the pathogenicity of E. coli and K. pneumoniae in murine models of lower UTI, promoting renal infection and acute inflammation.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | | | - Juan Ignacio Rodríguez-Mogollo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Yang X, Shao J, Zhang Y, Wang T, Ge S, Li J. Microenvironment-Driven Fenton Nanoreactor Enabled by Metal-Phenolic Encapsulation of Calcium Peroxide for Effective Control of Dental Caries. Adv Healthc Mater 2024; 13:e2303466. [PMID: 37985941 DOI: 10.1002/adhm.202303466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Caries are one of the most common oral diseases caused by pathogenic bacterial infections, which are widespread and persistently harmful to human health. Using nanoparticles to invade biofilms and produce reactive oxygen species (ROS) in situ is a promising strategy for killing bacteria and disrupting the structure of biofilms. In this work, a biofilm-targeting Fenton nanoreactor is reported that can generate ROS responsive to the cariogenic microenvironment. The nanoreactor is constructed by metal-phenolic encapsulation of calcium peroxide (CaO2) followed by modification with a biofilm targeting ligand dextran. Within the cariogenic biofilm, the Fenton nanoreactor is activated by an acidic microenvironment to be decomposed into H2O2 and iron ions, triggering a Fenton-like reaction to generate ROS that can eliminate the biofilm by breaking down extracellular polymeric substances (EPS) and killing cariogenic bacteria. Meanwhile, the depletion of excess protons in biofilm leads to a reversal of the cariogenic microenvironment. The Fenton nanoreactor can effectively inhibit the biofilm formation of Streptococcus mutans on ex vivo human teeth and is effective in preventing caries meanwhile maintaining the oral microbial diversity in rat caries infection model. This work provides a novel and efficient modality for acid microenvironment-driven ROS therapy.
Collapse
Affiliation(s)
- Xiaoru Yang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Yandi Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Ting Wang
- Department of General Debtistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| |
Collapse
|
5
|
Sheng N, Mårell L, Sitaram RT, Svensäter G, Westerlund A, Strömberg N. Human PRH1, PRH2 susceptibility and resistance and Streptococcus mutans virulence phenotypes specify different microbial profiles in caries. EBioMedicine 2024; 101:105001. [PMID: 38364699 PMCID: PMC10878843 DOI: 10.1016/j.ebiom.2024.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Lifestyle- and sucrose-dependent polymicrobial ecological shifts are a primary cause of caries in populations with high caries prevalence. In populations with low prevalence, PRH1, PRH2 susceptibility and resistance phenotypes may interact with the Streptococcus mutans adhesin cariogenicity phenotype to affect caries progression, but studies are lacking on how these factors affect the microbial profile of caries. METHODS We analysed how the residency and infection profiles of S. mutans adhesin (SpaP A/B/C and Cnm/Cbm) phenotypes and commensal streptococci and lactobacilli influenced caries progression in a prospective case-referent sample of 452 Swedish adolescents with high (P4a), moderate (P6), and low (P1) caries PRH1, PRH2 phenotypes. Isolates of S. mutans from participants were analysed for adhesin expression and glycosylation and in vitro and in situ mechanisms related to caries activity. FINDINGS Among adolescents with the resistant (P1) phenotype, infection with S. mutans high-virulence phenotypes was required for caries progression. In contrast, with highly (P4a) or moderately (P6) susceptible phenotypes, caries developed from a broader polymicrobial flora that included moderately cariogenic oral commensal streptococci and lactobacilli and S. mutans phenotypes. High virulence involved unstable residency and fluctuating SpaP ABC, B-1, or Cnm expression/glycosylation phenotypes, whereas low/moderate virulence involved SpaP A phenotypes with stable residency. Adhesin phenotypes did not display changes in individual host residency but were paired within individuals and geographic regions. INTERPRETATION These results suggest that receptor PRH1, PRH2 susceptibility and resistance and S. mutans adhesin virulence phenotypes specify different microbial profiles in caries. FUNDING Swedish Research Council and funding bodies listed in the acknowledgement section.
Collapse
Affiliation(s)
- Nongfei Sheng
- Department of Odontology/Cariology, Umeå University, 901 87, Umeå, Sweden
| | - Lena Mårell
- Department of Odontology/Cariology, Umeå University, 901 87, Umeå, Sweden
| | | | | | - Anna Westerlund
- Department of Orthodontics, Sahlgrenska Academy, University of Gothenburg, 413 90, Göteborg, Sweden
| | - Nicklas Strömberg
- Department of Odontology/Cariology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Boisen G, Prgomet Z, Enggren G, Dahl H, Mkadmi C, Davies JR. Limosilactobacillus reuteri inhibits the acid tolerance response in oral bacteria. Biofilm 2023; 6:100136. [PMID: 37408693 PMCID: PMC10319175 DOI: 10.1016/j.bioflm.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Probiotic bacteria show promising results in prevention of the biofilm-mediated disease caries, but the mechanisms are not fully understood. The acid tolerance response (ATR) allows biofilm bacteria to survive and metabolize at low pH resulting from microbial carbohydrate fermentation. We have studied the effect of probiotic strains: Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus on ATR induction in common oral bacteria. Communities of L. reuteri ATCC PTA5289 and Streptoccus gordonii, Streptococcus oralis, Streptococcus mutans or Actinomyces naeslundii in the initial stages of biofilm formation were exposed to pH 5.5 to allow ATR induction, followed by a low pH challenge. Acid tolerance was evaluated as viable cells after staining with LIVE/DEAD®BacLight™. The presence of L. reuteri ATCC PTA5289 caused a significant reduction in acid tolerance in all strains except S. oralis. When S. mutans was used as a model organism to study the effects of additional probiotic strains (L. reuteri SD2112, L. reuteri DSM17938 or L. rhamnosus GG) as well as L. reuteri ATCC PTA5289 supernatant on ATR development, neither the other probiotic strains nor supernatants showed any effect. The presence of L. reuteri ATCC PTA5289 during ATR induction led to down-regulation of three key genes involved in tolerance of acid stress (luxS, brpA and ldh) in Streptococci. These data suggest that live cells of probiotic L. reuteri ATCC PTA5289 can interfere with ATR development in common oral bacteria and specific strains of L. reuteri may thus have a role in caries prevention by inhibiting development of an acid-tolerant biofilm microbiota.
Collapse
Affiliation(s)
- Gabriella Boisen
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Zdenka Prgomet
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Gabriela Enggren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Hanna Dahl
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Cindy Mkadmi
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Julia R. Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
7
|
Nicholson JW, Sidhu SK, Czarnecka B. Fluoride exchange by glass-ionomer dental cements and its clinical effects: a review. Biomater Investig Dent 2023; 10:2244982. [PMID: 37615013 PMCID: PMC10444020 DOI: 10.1080/26415275.2023.2244982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The topic of fluoride release and uptake by glass-ionomer (glass polyalkenoate) dental cements is reviewed. The study was based on a literature search carried out using PubMed. The main key words used were glass-ionomer and fluoride, and further refinements were made by adding the keywords anti-microbial, anti-caries and remineralization. Papers were selected from the initial search, which concentrated on fundamental aspects of fluoride release, including kinetics and the influence of the cement composition, and resulting clinical performance against caries. Other relevant papers were cited where they added useful and relevant data. From these published papers, it was possible to explain the detailed mechanism of fluoride release by glass-ionomer cements and also its uptake. Fluoride release has been shown to be a two-step process. In neutral solutions, the steps can be divided into early wash-out and long-term diffusion. In acid conditions, the early wash-out remains, though with greater amounts of fluoride released, and the long-term release becomes one of slow dissolution. The effect of fluoride on the viability of oral micro-organisms has been described, and glass-ionomers have been shown to release sufficient fluoride to reduce the size and viability of adjacent populations of oral bacteria. The effect of low levels of fluoride on the remineralization of tooth tissue has been considered. Levels needed to increase remineralization are much lower than those needed to adversely affect oral bacteria, from which we conclude that glass-ionomers release sufficient fluoride to promote remineralization. Despite this, there remains uncertainty about their overall contribution to sound oral health, given the widespread use of other sources of fluoride, such as toothpastes.
Collapse
Affiliation(s)
- John W. Nicholson
- Dental Materials Unit, Bart’s and the London Institute of Dentistry, Queen Mary University of London, London, UK
- Bluefield Centre for Biomaterials, London, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Bart’s & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
8
|
Goto I, Saga S, Ichitani M, Kimijima M, Narisawa N. Investigation of Components in Roasted Green Tea That Inhibit Streptococcus mutans Biofilm Formation. Foods 2023; 12:2502. [PMID: 37444240 DOI: 10.3390/foods12132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Streptococcus mutans form oral biofilms (BFs) and cause dental caries. Roasted green tea (RGT) is prepared by roasting the tea plant, and RGT-specific polyphenols are produced during the roasting process. Catechins, polyphenols in green tea, have BF inhibitory activity against S. mutans; therefore, RGT-specific polyphenols are also expected to have this activity. However, there are few reports on the structural and functional properties of RGT. This study aimed to investigate the inhibitory activity of RGT against S. mutans BF formation and to investigate the active compounds. RGT extract fractionation and BF inhibitory assay were performed. Strong activity was confirmed in the RGT fractions that had medium-high hydrophobicity, were rich in phenolic hydroxyl groups, and lacked catechins. A peak comprising compounds with molecular weights of 918 (mw918) and 1050 (mw1050) was purified from the fraction. Since BF inhibitory activity was confirmed for this peak, these compounds were considered to be part of the active ingredients. The mw918 polyphenol was detected only in RGT and it was thought to be produced during the roasting process. The results of this research will serve as a basis for the future application of RGT as a safe and effective anti-caries agent.
Collapse
Affiliation(s)
- Iori Goto
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Shizuoka, Japan
| | - Satoshi Saga
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Shizuoka, Japan
| | - Masaki Ichitani
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Shizuoka, Japan
| | - Manami Kimijima
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Kanagawa, Japan
| | - Naoki Narisawa
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Kanagawa, Japan
| |
Collapse
|
9
|
Castillo-Ruiz M, Daille LK, Machuca P, Bittner M. Antibacterial activity of a complex bacteriocin secreted by Staphylococcus epidermidis against Porphyromonas gingivalis. Arch Oral Biol 2023; 152:105730. [PMID: 37209589 DOI: 10.1016/j.archoralbio.2023.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE To characterize the inhibitory activity of a novel bacteriocin produced by Staphylococcus epidermidis against this periodontal pathogen. DESIGN The bacteriocin activity was evaluated by the agar diffusion method over a lawn of P. gingivalis ATCC 33277. The bacteriocin was purified by Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) and Matrix Assisted Laser Desorption Ionization -Time of Flight Mass Spectrometry (MALDI-TOF-MS). In addition, the bacteriocin host specificity, production on different media cultures and susceptibility to enzymes, pH, and heat treatment were determined. RESULTS The bacteriocin BAC 14990 was selective to P. gingivalis, suggesting a narrow activity range. The production during the growth curve indicated that S. epidermidis had a continued production of this antimicrobial, showing the highest concentration in the stationary phase. The purification of BAC 14990 showed that bacteriocin had a molecular mass of 5795 Da. BAC 14990 was partially resistant to the treatment with proteinase K and papain, however, was fully susceptible to amylase treatment indicating the presence of sugar residues in the protein, suggesting a conjugated type of bacteriocin. Also, this diffusible inhibitory substance was heat and pH treatment resistant. CONCLUSIONS The results indicate the isolation of a new staphylococcal complex bacteriocin that is able to eliminate a Gram-negative bacterium. These results could contribute to the development of treatments directed against pathogens in mixed communities, as is the case with oral diseases.
Collapse
Affiliation(s)
- Mario Castillo-Ruiz
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile; Chile Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago 8370134, Chile
| | - Leslie K Daille
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| | - Pamela Machuca
- Laboratorio de Microbiología y Biotecnología Oral, Facultad de Ciencias de la Vida, Universidad Andres Bello, Echaurren 237, 8370133 Santiago, Chile
| | - Mauricio Bittner
- Laboratorio de Microbiología y Biotecnología Oral, Facultad de Ciencias de la Vida, Universidad Andres Bello, Echaurren 237, 8370133 Santiago, Chile; Facultad de Odontología, Universidad Andres Bello, Echaurren 237, Santiago 8370133, Chile.
| |
Collapse
|
10
|
Mallick S, Das S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol 2023; 107:3355-3374. [PMID: 37093306 DOI: 10.1007/s00253-023-12529-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
11
|
Zhang T, Cain AK, Semenec L, Liu L, Hosokawa Y, Inglis DW, Yalikun Y, Li M. Microfluidic Separation and Enrichment of Escherichia coli by Size Using Viscoelastic Flows. Anal Chem 2023; 95:2561-2569. [PMID: 36656064 DOI: 10.1021/acs.analchem.2c05084] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we achieve the separation and enrichment of Escherichia coli clusters from its singlets in a viscoelastic microfluidic device. E. coli, an important prokaryotic model organism and a widely used microbial factory, can aggregate in clusters, leading to biofilm development that can be detrimental to human health and industrial processes. The ability to obtain high-purity populations of E. coli clusters is of significance for biological, biomedical, and industrial applications. In this study, polystyrene particles of two different sizes, 1 and 4.8 μm, are used to mimic E. coli singlets and clusters, respectively. Experimental results show that particles migrate toward the channel center in a size-dependent manner, due to the combined effects of inertial and elastic forces; 4.8 and 1 μm particles are found to have lateral equilibrium positions closer to the channel centerline and sidewalls, respectively. The size-dependent separation performance of the microdevice is demonstrated to be affected by three main factors: channel length, the ratio of sheath to sample flow rate, and poly(ethylene oxide) (PEO) concentration. Further, the separation of E. coli singlets and clusters is achieved at the outlets, and the separation efficiency is evaluated in terms of purity and enrichment factor.
Collapse
Affiliation(s)
- Tianlong Zhang
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ling Liu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Neilands J, Svensäter G, Boisen G, Robertsson C, Wickström C, Davies JR. Formation and Analysis of Mono-species and Polymicrobial Oral Biofilms in Flow-Cell Models. Methods Mol Biol 2023; 2674:33-54. [PMID: 37258958 DOI: 10.1007/978-1-0716-3243-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The oral microbiota, which is known to include at least 600 different bacterial species, is found on the teeth and mucosal surfaces as multi-species communities or biofilms. The oral surfaces are covered with a pellicle of proteins absorbed from saliva, and biofilm formation is initiated when primary colonizers, which express surface adhesins that bind to specific salivary components, attach to the oral tissues. Further development then proceeds through co-aggregation of additional species. Over time, the composition of oral biofilms, which varies between different sites throughout the oral cavity, is determined by a combination of environmental factors such as the properties of the underlying surface, nutrient availability and oxygen levels, and bacterial interactions within the community. A complex equilibrium between biofilm communities and the host is responsible for the maintenance of a healthy biofilm phenotype (eubiosis). In the face of sustained environmental perturbation, however, biofilm homeostasis can break down giving rise to dysbiosis, which is associated with the development of oral diseases such as caries and periodontitis.In vitro models have an important part to play in increasing our understanding of the complex processes involved in biofilm development in oral health and disease, and the requirements for experimental system, microbial complexity, and analysis techniques will necessarily vary depending on the question posed. In this chapter we describe some current and well-established methods used in our laboratory for studying oral bacteria in biofilm models which can be adapted to suit the needs of individual users.
Collapse
Affiliation(s)
- Jessica Neilands
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gunnel Svensäter
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gabriella Boisen
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Carolina Robertsson
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Claes Wickström
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| |
Collapse
|
13
|
Ballén V, Cepas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022; 10:microorganisms10061103. [PMID: 35744621 PMCID: PMC9229135 DOI: 10.3390/microorganisms10061103] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is one of the species most frequently involved in biofilm-related diseases, being especially important in urinary tract infections, causing relapses or chronic infections. Compared to their planktonic analogues, biofilms confer to the bacteria the capacity to be up to 1000-fold more resistant to antibiotics and to evade the action of the host’s immune system. For this reason, biofilm-related infections are very difficult to treat. To develop new strategies against biofilms, it is important to know the mechanisms involved in their formation. In this review, the different steps of biofilm formation in E. coli, the mechanisms of tolerance to antimicrobials and new compounds and strategies to combat biofilms are discussed.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Virginio Cepas
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Carlos Ratia
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Sara M. Soto
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
14
|
Nowaczyk PM, Bajerska J, Lasik-Kurdyś M, Radziejewska-Kubzdela E, Szwengiel A, Woźniewicz M. The effect of cranberry juice and a cranberry functional beverage on the growth and metabolic activity of selected oral bacteria. BMC Oral Health 2021; 21:660. [PMID: 34930215 PMCID: PMC8686276 DOI: 10.1186/s12903-021-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oral microbiota is a significant risk indicator for oral diseases, such as dental caries and periodontal inflammation. Much attention is presently paid to the development of functional foods (e.g. beverages containing cranberry constituents, or foods containing probiotics) that may serve as adjuncts for oral disease treatments (e.g. periodontitis and caries). Cranberry fruit, due to its unique chemical composition and antimicrobial potential, is a possible ingredient of such foods. The study aimed to investigate the effects of cranberry juice (CJ) and a cranberry functional beverage (mixture of 80% v/v apple juice, 20% v/v cranberry juice, and 0.25 g/100 mL ground cinnamon; CFB) on the growth and metabolic activity of selected oral bacteria. METHODS Serial dilution pour plate method (SDPP) was used to examine the effect of CJ and CFB on the growth of Actinomyces naeslundii, Streptococcus mutans, and Lactobacillus paracasei subsp. paracasei. 48-h electrical impedance measurements (EIM) during the cultivation of A. naeslundii were applied to evaluate the utility of the method as a rapid alternative for the assessment of the antimicrobial potential of cranberry beverages. RESULTS The tested bacteria differed in their susceptibility to the antimicrobial action of CJ and CFB, with L. paracasei subsp. paracasei being least vulnerable to CFB (according to SDPP). Although CJ at a concentration of 0.5 mL/mL, showed a bactericidal effect on the growth of S. mutans, A. naeslundii was more sensitive to CJ (SDPP). Its inhibitory effect on A. naeslundii was seen even at concentrations as small as 0.03125-0.125 mL/mL (SDPP and EIM). On the other hand, S. mutans seemed to be more vulnerable to CFB than A. naeslundii (SDPP). CONCLUSIONS CFB may be considered an adjunct in the treatment of oral diseases due to its action against selected oral pathogens, and not against the presumably beneficial L. paracasei subsp. paracasei. Bioelectrical impedance measurements appear to be a quick alternative to evaluating the antimicrobial activity of fruit beverages, but their utility should be confirmed with tests on other bacteria.
Collapse
Affiliation(s)
- Paulina M Nowaczyk
- Department of Sports Dietetics, Faculty of Health Sciences, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznan, Poland
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Małgorzata Lasik-Kurdyś
- Department of Food Technology of Plant Origin, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Małgorzata Woźniewicz
- Department of Human Nutrition and Dietetics, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland.
| |
Collapse
|
15
|
Oogai Y, Nakata M. Small regulatory RNAs of oral streptococci and periodontal bacteria. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:209-216. [PMID: 34745393 PMCID: PMC8551640 DOI: 10.1016/j.jdsr.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
Small regulatory RNAs (sRNAs) belong to a family of non-coding RNAs, and many of which regulate expression of genes via interaction with mRNA. The recent popularity of high-throughput next generation sequencers have presented abundant sRNA-related data, including sRNAs of several different oral bacterial species. Some sRNA candidates have been validated in terms of their expression and interaction with target mRNAs. Since the oral cavity is an environment constantly exposed to various stimuli, such as fluctuations in temperature and pH, and osmotic pressure, as well as changes in nutrient availability, oral bacteria require rapid control of gene expression for adaptation to such diverse conditions, while regulation via interactions of sRNAs with mRNA provides advantages for rapid adaptation. This review summarizes methods effective for identification and validation of sRNAs, as well as sRNAs identified to be associated with oral bacterial species, including cariogenic and periodontal pathogens, together with their confirmed and putative target genes.
Collapse
Affiliation(s)
- Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| |
Collapse
|
16
|
3, 5-Di-tert-butylphenol combat against Streptococcus mutans by impeding acidogenicity, acidurance and biofilm formation. World J Microbiol Biotechnol 2021; 37:202. [PMID: 34668087 DOI: 10.1007/s11274-021-03165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Streptococcus mutans is a common pathogen present in the oral cavity and it causes dental caries for all aged groups of people, in particular, children. S. mutans have several virulence factors such as acidogenecity, aciduricity, adhesion and biofilm formation. These virulence factors are working together and lead to the development of caries in the tooth surface. The present study aimed to investigate the anticariogenic potential of 3, 5-di-tert-butylphenol (3, 5-DTBP) against S. mutans. 3, 5-DTBP biofilm inhibitory concentration (BIC) was found at 100 µg/ml concentration without any lethal effect on the growth. Moreover, 3, 5-DTBP significantly reduced water soluble and water insoluble glucans production, in concurrence with downregulation of gtfBC genes. Moreover, acidogenicity associated virulence factors such as lactate dehydrogenase and enolase enzymatic production was arrested upon 3, 5-DTBP treatment. In addition, 3, 5-DTBP greatly reduced acidtolerance ability through impedes of F1F0-ATPase. Gene expression analysis unveiled the downregulation of gtfB, gtfC, gtfD, vicRK, comDE, gbpB, smu0630 and relA upon 3, 5-DTBP treatment. The present study paves the way for exhibiting 3, 5-DTBP as a promising therapeutic agent to control S. mutans infections.
Collapse
|
17
|
Adeleye OA, Bamiro O, Akpotu M, Adebowale M, Daodu J, Sodeinde MA. Physicochemical Evaluation and Antibacterial Activity of Massularia acuminata Herbal Toothpaste. Turk J Pharm Sci 2021; 18:476-482. [PMID: 34496554 DOI: 10.4274/tjps.galenos.2020.42966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Oral hygiene, an integral part of the body's general well-being, should be maintained to prevent dental problems. This study was conducted to incorporate the ethanol extract of Massularia acuminata twigs in a formulation of herbal toothpaste and evaluate its antibacterial activity compared with a commercially available herbal toothpaste against two dental pathogens, namely, Staphylococcus aureus and Streptococcus mutans. Materials and Methods The content of dried M. acuminata twig was extracted using ethanol and used in the formulation of toothpaste containing 1%, 2%, 3%, 4%, and 5% M. acuminata extract. The sensory and physicochemical properties of the toothpaste were evaluated. The agar well diffusion method was used to evaluate the antibacterial susceptibility of the toothpaste against S. aureus and S. mutans. Data were analyzed using One-Way analysis of variance and Student's t-test. Results All toothpastes were smooth and sweet and smelled pleasant. They all had good retention ability on the bristles of toothbrush and had a pH range of 7.18-7.83. The toothpastes of the extracts of different concentration demonstrated antibacterial activities against the test organisms. The antibacterial activity of the formulated toothpastes increased significantly with an increase in the extract concentration. F5 that contained 5% extract showed the highest activity, with an inhibition zone of 19.30±0.17 mm and 12.60±0.52 mm against S. aureus and S. mutans, respectively, even when compared with the commercially available herbal toothpaste. Conclusion The incorporation of the M. acuminata extract in the formulation of herbal toothpaste prevented the growth of S. aureus and S. mutans. Incorporating this extract in toothpaste formulation will satisfactorily maintain oral hygiene, which is desirable to prevent dental caries and periodontal diseases.
Collapse
Affiliation(s)
- Olutayo Ademola Adeleye
- Federal University Oye-Ekiti, Department of Pharmaceutics and Pharmaceutical Technology, Ekiti State, Nigeria
| | - Oluyemisi Bamiro
- Federal University Oye-Ekiti, Department of Pharmaceutics and Pharmaceutical Technology, Ekiti State, Nigeria
| | - Mark Akpotu
- Olabisi Onabanjo University, Department of Pharmaceutical Microbiology, Ago Iwoye, Nigeria
| | - Modupe Adebowale
- Olabisi Onabanjo University, Department of Pharmacognosy, Ago Iwoye, Nigeria
| | - John Daodu
- Olabisi Onabanjo University, Department of Pharmaceutical Chemistry, Ago Iwoye, Nigeria
| | | |
Collapse
|
18
|
Robertsson C, Svensäter G, Blum Z, Jakobsson ME, Wickström C. Proteomic response in Streptococcus gordonii DL1 biofilm cells during attachment to salivary MUC5B. J Oral Microbiol 2021; 13:1967636. [PMID: 34447490 PMCID: PMC8386731 DOI: 10.1080/20002297.2021.1967636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Salivary mucin MUC5B seems to promote biodiversity in dental biofilms, and thereby oral health, for example, by inducing synergistic ‘mucolytic’ activities in a variety of microbial species that need to cooperate for the release of nutrients from the complex glycoprotein. Knowledge of how early colonizers interact with host salivary proteins is integral to better understand the maturation of putatively harmful oral biofilms and could provide key insights into biofilm physiology. Methods The early oral colonizer Streptococcus gordonii DL1 was grown planktonically and in biofilm flow cell systems with uncoated, MUC5B or low-density salivary protein (LDP) coated surfaces. Bacterial cell proteins were extracted and analyzed using a quantitative mass spectrometry-based workflow, and differentially expressed proteins were identified. Results and conclusions Overall, the proteomic profiles of S. gordonii DL1 were similar across conditions. Six novel biofilm cell proteins and three planktonic proteins absent in all biofilm cultures were identified. These differences may provide insights into mechanisms for adaptation to biofilm growth in this species. Salivary MUC5B also elicited specific responses in the biofilm cell proteome. These regulations may represent mechanisms by which this mucin could promote colonization of the commensal S. gordonii in oral biofilms.
Collapse
Affiliation(s)
- Carolina Robertsson
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Zoltan Blum
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | | | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
19
|
Hong Q, Dong X, Chen M, Sun H, Hong L, Wang Y, Yu Q. Plasma Treatment Effects on Oral Candida albicans Biofilms. DENTAL ORAL BIOLOGY AND CRANIOFACIAL RESEARCH 2021; 4:10.31487/j.dobcr.2021.02.05. [PMID: 36685750 PMCID: PMC9854346 DOI: 10.31487/j.dobcr.2021.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objective of this study is to evaluate the plasma treatment effects on oral fungal biofilms. Candida albicans biofilms were developed on the 48-well plate to serve as a model of oral fungal biofilm. The treatment of 0.2% chlorhexidine digluconate (CHX) was used as a positive control compared with plasma treatments. The efficacy of treatments was determined by 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscope (CLSM). The survival percentage of Candida albicans decreased from 52% to 27% as the plasma power increased from 6mA to 8mA and plasma exposure time extended from 2 min to 10 min. Moreover, it was found that there is a synergistic effect of the combination of plasma and CHX treatments. Scanning electron microscopy (SEM) examination indicated severe cell damages resulting from plasma treatment. In conclusion, the low-temperature plasma treatment is effective in deactivating Candida albicans biofilms and thus provides a promising alternative to disinfect oral fungal biofilms.
Collapse
Affiliation(s)
- Qing Hong
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA
| | - Xiaoqing Dong
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA
| | - Meng Chen
- Nanova, Inc., Columbia, Missouri, USA
| | - Hongmin Sun
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| | - Liang Hong
- Department of Pediatric and Community Dentistry, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yong Wang
- Center for Research on Interfacial Structure & Properties, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021; 9:microorganisms9061112. [PMID: 34063935 PMCID: PMC8223999 DOI: 10.3390/microorganisms9061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
Collapse
|
21
|
Boisen G, Davies JR, Neilands J. Acid tolerance in early colonizers of oral biofilms. BMC Microbiol 2021; 21:45. [PMID: 33583397 PMCID: PMC7883438 DOI: 10.1186/s12866-021-02089-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 02/02/2023] Open
Abstract
Background In caries, low pH drives selection and enrichment of acidogenic and aciduric bacteria in oral biofilms, and development of acid tolerance in early colonizers is thought to play a key role in this shift. Since previous studies have focussed on planktonic cells, the effect of biofilm growth as well as the role of a salivary pellicle on this process is largely unknown. We explored acid tolerance and acid tolerance response (ATR) induction in biofilm cells of both clinical and laboratory strains of three oral streptococcal species (Streptococcus gordonii, Streptococcus oralis and Streptococcus mutans) as well as two oral species of Actinomyces (A. naeslundii and A. odontolyticus) and examined the role of salivary proteins in acid tolerance development. Methods Biofilms were formed on surfaces in Ibidi® mini flow cells with or without a coating of salivary proteins and acid tolerance assessed by exposing them to a challenge known to kill non-acid tolerant cells (pH 3.5 for 30 min) followed by staining with LIVE/DEAD BacLight and confocal scanning laser microscopy. The ability to induce an ATR was assessed by exposing the biofilms to an adaptation pH (pH 5.5) for 2 hours prior to the low pH challenge. Results Biofilm formation significantly increased acid tolerance in all the clinical streptococcal strains (P < 0.05) whereas the laboratory strains varied in their response. In biofilms, S. oralis was much more acid tolerant than S. gordonii or S. mutans. A. naeslundii showed a significant increase in acid tolerance in biofilms compared to planktonic cells (P < 0.001) which was not seen for A. odontolyticus. All strains except S. oralis induced an ATR after pre-exposure to pH 5.5 (P < 0.05). The presence of a salivary pellicle enhanced both acid tolerance development and ATR induction in S. gordonii biofilms (P < 0.05) but did not affect the other bacteria to the same extent. Conclusions These findings suggest that factors such as surface contact, the presence of a salivary pellicle and sensing of environmental pH can contribute to the development of high levels of acid tolerance amongst early colonizers in oral biofilms which may be important in the initiation of caries.
Collapse
Affiliation(s)
- Gabriella Boisen
- Section for Oral Biology and Pathology, Faculty of Odontology, and Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, and Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06, Malmö, Sweden
| | - Jessica Neilands
- Section for Oral Biology and Pathology, Faculty of Odontology, and Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06, Malmö, Sweden.
| |
Collapse
|
22
|
Ishkov IP, Kaspar JR, Hagen SJ. Spatial Correlations and Distribution of Competence Gene Expression in Biofilms of Streptococcus mutans. Front Microbiol 2021; 11:627992. [PMID: 33510740 PMCID: PMC7835332 DOI: 10.3389/fmicb.2020.627992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans is an important pathogen in the human oral biofilm. It expresses virulent behaviors that are linked to its genetic competence regulon, which is controlled by comX. Expression of comX is modulated by two diffusible signaling peptides, denoted CSP and XIP, and by other environmental cues such as pH and oxidative stress. The sensitivity of S. mutans competence to environmental inputs that may vary on microscopic length scales raises the question of whether the biofilm environment creates microniches where competence and related phenotypes are concentrated, leading to spatial clustering of S. mutans virulence behaviors. We have used two-photon microscopy to characterize the spatial distribution of comX expression among individual S. mutans cells in biofilms. By analyzing correlations in comX activity, we test for spatial clustering that may suggest localized competence microenvironments. Our data indicate that both competence-signaling peptides diffuse efficiently through the biofilm. XIP elicits a population-wide response. CSP triggers a Poisson-like, spatially random comX response from a subpopulation of cells that is homogeneously dispersed. Our data indicate that competence microenvironments if they exist are small enough that the phenotypes of individual cells are not clustered or correlated to any greater extent than occurs in planktonic cultures.
Collapse
Affiliation(s)
- Ivan P Ishkov
- Department of Physics, University of Florida, Gainesville, FL, United States
| | - Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
何 晓, 张 安, 龚 涛, 李 雨. [Transcriptomic Analysis of csn2 Gene Mutant Strains of Streptococcus mutans CRISPR-Cas9 System]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:76-81. [PMID: 33474893 PMCID: PMC10408943 DOI: 10.12182/20210160505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the differences in transcriptional levels between mutant strains of csn2 gene of CRISPR-Cas9 system of Streptococcus mutans( S. mutans) and wild-type strains. METHODS The S. mutans UA159, csn2-gene-deleted strains (Δ csn2) and csn2-gene-covering strains (Δ csn2/pDL278- csn2) of S. mutans were cultivated. Total RNA was extracted, and high-throughput sequencing technology was used for transcriptome sequencing. Based on the GO analysis and the KEGG analysis of the differentially expressed genes, the biological processes involved were thoroughly examined. The qRT-PCR method was used to verify the transcriptome sequencing results. RESULTS The transcriptome results showed that, compared with UA159, there were 176 genes in Δ csn2 whose gene expression changed more than one fold ( P<0.05), of which 72 were up-regulated and 104 were down-regulated. The GO enrichment analysis and the KEGG enrichment analysis revealed that both the up-regulated and down-regulated differentially expressed genes (DEG) were involved in amino acid transport and metabolism. In addition, the biological processes that up-regulated DEGs participated in were mainly related to carbohydrate metabolism, energy production and conversion, and transcription; down-regulated DEGs were mainly related to lipid metabolism, DNA replication, recombination and repair, signal transduction mechanisms, nucleotide transport and metabolism. The functions of some DEGs were still unclear. Results of qRT-PCR verified that the expressions of leuA, leuC and leuD(genes related to the formation of branched-chain amino acids) were significantly down-regulated in Δ csn2 when compared with UA159 and Δ csn2/pDL278- csn2. CONCLUSION Through transcriptome sequencing and qRT-PCR verification, it was found that the expression of genes related to branched-chain amino acid synthesis and cell membrane permeability in Δ csn2 changed significantly.
Collapse
Affiliation(s)
- 晓雅 何
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 安琪 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 涛 龚
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 雨庆 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Syafriza D, Sutadi H, Primasari A, Siregar Y. Spectrophotometric Analysis of Streptococcus mutans Growth and Biofilm Formation in Saliva and Histatin-5 Relate to pH and Viscosity. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Liu Y, Han L, Yang H, Liu S, Huang C. Effect of apigenin on surface-associated characteristics and adherence of Streptococcus mutans. Dent Mater J 2020; 39:933-940. [PMID: 33028784 DOI: 10.4012/dmj.2019-255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apigenin is a type of flavonols that exhibits anti-caries properties. Bacterial adherence is the initial step in the forming of a stable biofilm that leads to caries. Bacterial adherence is affected by surface characteristics, including hydrophobicity and bacterial aggregation. However, the effect of apigenin on surface characteristics of cariogenic bacteria has not been reported. We aimed to examine the effects of apigenin on adherence and biofilm formation of Streptococcus mutans UA159. Hydrophobicity and bacterial aggregation, pac and gbpC gene expressions, and cytotoxicity on human dental pulp cells were also determined. Apigenin significantly inhibited the adherence and biofilm formation of S. mutans. Hydrophobicity decreased, whereas the aggregation rate was significantly increased compared with the control. Apigenin significantly suppressed pac and gbpC gene expressions. Apigenin exhibited acceptable biocompatibility on hDPCs. Thus, apigeinin may affect adherence and biofilm formation by altering the surface properties of S. mutans without obvious adverse effect on hDPCs.
Collapse
Affiliation(s)
- Yinchen Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University
| | - Lin Han
- Department of Dermatology, CR and WISCO General Hospital
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
| | - Siying Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
| |
Collapse
|
26
|
Mulder R, Maboza E, Ahmed R. Streptococcus mutans Growth and Resultant Material Surface Roughness on Modified Glass Ionomers. FRONTIERS IN ORAL HEALTH 2020; 1:613384. [PMID: 35047988 PMCID: PMC8757809 DOI: 10.3389/froh.2020.613384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
The present study investigate the optical density of Streptococcus mutans (S. mutans) at 450 nm (OD450 nm) as well as the change in surface roughness of three commercially available chitosan- and nanodiamond-modified glass ionomers. The results indicated that the optical density of S. mutans OD450 nm decreased significantly (p < 0.0001) from 0 h through 2–4 h for each of the control materials. The lowest S. mutans OD450 nm was noted for Fuji IX followed by Ketac Universal. Riva Self Cure had the largest increase in the S. mutans OD450 nm. The control materials and their chitosan/nanodiamond modifications showed significant growth at 6 h compare to the preceding time periods of 2 and 4 h. The materials Fuji IX, Fuji IX modified with 5% Nanodiamonds, Fuji IX modified with 10% Chitosan and Ketac Universal modified with 10% Chitosan performed the best with regard to the bacterial reduction. Only the chitosan modifications showed an increase in the surface roughness after 24 h of exposure to the S. mutans. The chitosan and the nanodiamond modifications provided the best disruption of the S. mutans biofilm formation.
Collapse
Affiliation(s)
- Riaan Mulder
- Restorative Dentistry, The University of the Western Cape, Cape Town, South Africa
- *Correspondence: Riaan Mulder
| | - Ernest Maboza
- Dental Research Laboratory, The University of the Western Cape, Cape Town, South Africa
| | - Rukshana Ahmed
- Restorative Dentistry, The University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
27
|
Cepas V, Soto SM. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9100719. [PMID: 33092201 PMCID: PMC7589547 DOI: 10.3390/antibiotics9100719] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Bacteria present in the human body are innocuous, providing beneficial functions, some of which are necessary for correct body function. However, other bacteria are able to colonize, invade, and cause damage to different tissues, and these are categorised as pathogens. These pathogenic bacteria possess several factors that enable them to be more virulent and cause infection. Bacteria have a great capacity to adapt to different niches and environmental conditions (presence of antibiotics, iron depletion, etc.). Antibiotic pressure has favoured the emergence and spread of antibiotic-resistant bacteria worldwide. Several studies have reported the presence of a relationship (both positive and negative, and both direct and indirect) between antimicrobial resistance and virulence among bacterial pathogens. This review studies the relationship among the most important Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) taking into account two points of view: (i) the effect the acquisition of resistance has on virulence, and (ii) co-selection of resistance and virulence. The relationship between resistance and virulence among bacteria depends on the bacterial species, the specific mechanisms of resistance and virulence, the ecological niche, and the host.
Collapse
|
28
|
Boda SK, Fischer NG, Ye Z, Aparicio C. Dual Oral Tissue Adhesive Nanofiber Membranes for pH-Responsive Delivery of Antimicrobial Peptides. Biomacromolecules 2020; 21:4945-4961. [PMID: 32961056 DOI: 10.1021/acs.biomac.0c01163] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bioadhesive membranes with controllable and reversible underwater adhesion are desirable for several biomedical applications ranging from biosensing, drug/therapeutic delivery, and tissue regeneration. Here, we present dual soft mucosal and hard bone/enamel tissue adhesive nanofiber membranes composed of chitosan and pectin derivatives for pH-controlled delivery of antimicrobial peptides (AMPs) in the oral cavity. Ex vivo testing with porcine esophagus (soft mucosal mimic) indicated a 2-fold increase in the mucoadhesion of chitosan membranes with 0.05 wt % oxidized pectin coating, while the uncoated membranes exhibited 3-4-fold stronger adhesion to hydroxyapatite discs (enamel/hard bone mimic) compared to the coated membranes. The former is attributed to a synergistic interaction of surface nanofiber topography, intermolecular hydrogen bonding, and aldehyde-amine chemistry between surface polar groups and mucosal proteins, while the latter may arise from electrostatic interactions between cationic amines (-NH3+) in chitosan and anionic phosphates (-PO43-) in hydroxyapatite. Further, the dual hard-soft oral tissue adhesive nanofiber membranes loaded with cationic amphipathic AMPs (D-GL13K and IDR-1018) elicited pH-responsive AMP delivery and antimicrobial action comparable to chlorhexidine (CHX) against oral streptococci. Concurrently, the AMP loaded membranes were cytocompatible to both soft epithelial tissue-derived human oral keratinocytes and hard calvarial murine pre-osteoblast cells. We envision these membranes to function as adhesive gingival grafts and guided bone regeneration (GBR) membranes at the hard-soft tissue interface while simultaneously protecting against oral infections.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas G Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Zhang A, Chen J, Gong T, Lu M, Tang B, Zhou X, Li Y. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol Oral Microbiol 2020; 35:211-221. [PMID: 32794605 DOI: 10.1111/omi.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
Csn2 is an important protein of the CRISPR-Cas system. The physiological function of this protein and its regulatory role in Streptococcus mutans, as the primary causative agent of human dental caries, is still unclear. In this study, we investigated whether csn2 deletion would affect S. mutans physiology and virulence gene expression. We used microscopic imaging, acid killing assays, pH drop, biofilm formation, and exopolysaccharide (EPS) production tests to determine whether csn2 deletion influenced S. mutans colony morphology, acid tolerance/production, and glucan formation abilities. Comparisons were made between quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) data from the UA159 and csn2 deletion strain to determine the impact of csn2 knockout on S. mutans gene expression. The results showed that deletion of S. mutans csn2 changed its colony morphotype and made it more sensitive to acid. The expression levels of aciduricity genes, including leuA, leuB, leuC, and leuD, were significantly down-regulated. Acid adaptation restored the aciduricity of csn2 mutant and enhanced the ability to synthesize EPS. The expression levels of EPS synthesis-related genes, including gtfC and gtfD, were significantly up-regulated after acid adaptation. In summary, deletion of S. mutans csn2 exerted multiple effects on the virulence traits of this pathogen, including acid tolerance and EPS formation, and that these alterations could partially be attributed to changes in gene expression upon loss of csn2. Understanding the function of csn2 in S. mutans might lead to novel strategies to prevent or treat imbalances in oral microbiota that may favor diseases.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Yin L, Zhu W, Chen D, Zhou Y, Lin H. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans. Microbiologyopen 2020; 9:e1096. [PMID: 32633012 PMCID: PMC7521000 DOI: 10.1002/mbo3.1096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence suggests that small noncoding RNAs (sRNAs) are involved in the complex regulatory networks governing biofilm formation. Few studies have investigated the role of sRNAs in Streptococcus mutans (S. mutans). In the present study, the association between sRNA and biofilm formation in S. mutans was explored. sRNAs that are differentially expressed in the biofilm and planktonic states of this bacterium were identified by quantitative real‐time PCR (qRT‐PCR). Confocal laser scanning microscopy was used to investigate the characteristics of biofilm formation in a standard strain of S. mutans (UA159, ATCC 700610) and ten clinical strains. Bioinformatics analyses were employed to predict and examine potential sRNA regulatory pathways. The results showed that sRNA0426 has a strong positive relationship with dynamic biofilm formation. Moreover, sRNA0426 expression was positively correlated with exopolysaccharide (EPS) production. Bioinformatics analyses showed that sRNA0426 is involved in biofilm formation such as metabolic pathways, especially carbon metabolism. Five target mRNAs (GtfB, GtfC, GtfD, ComE, and CcpA) involved in the synthesis of EPS were selected for further evaluation; the expression levels of three of these mRNAs (GtfB, GtfC, and CcpA) were positively correlated with sRNA0426 expression levels, and the expression level of one (ComE) was negatively correlated. In conclusion, the results suggested that sRNA0426 may play an important and positive role in the biofilm formation of S. mutans and provide novel insight into the S. mutans biofilm regulatory network.
Collapse
Affiliation(s)
- Luoping Yin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenhui Zhu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Dongru Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yan Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Huancai Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
31
|
Chen XK, Li XY, Ha YF, Lin JQ, Liu XM, Pang X, Lin JQ, Chen LX. Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems. Appl Environ Microbiol 2020; 86:e00268-20. [PMID: 32245756 PMCID: PMC7237784 DOI: 10.1128/aem.00268-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Acidophiles play a dominant role in driving elemental cycling in natural acid mine drainage (AMD) habitats and exhibit important application value in bioleaching and bioremediation. Acidity is an inevitable environmental stress and a key factor that affects the survival of acidophiles in their acidified natural habitats; however, the regulatory strategies applied by acidophilic bacteria to withstand low pH are unclear. We identified the significance of the ferric uptake regulator (Fur) in acidophiles adapting to acidic environments and discovered that Fur is ubiquitous as well as highly conserved in acidophilic bacteria. Mutagenesis of the fur gene of Acidithiobacillus caldus, a prototypical acidophilic sulfur-oxidizing bacterium found in AMD, revealed that Fur is required for the acid resistance of this acidophilic bacterium. Phenotypic characterization, transcriptome sequencing (RNA-seq), mutagenesis, and biochemical assays indicated that the Acidithiobacillus caldus ferric uptake regulator (AcFur) is involved in extreme acid resistance by regulating the expression of several key genes of certain cellular activities, such as iron transport, biofilm formation, sulfur metabolism, chemotaxis, and flagellar biosynthesis. Finally, a Fur-dependent acid resistance regulatory strategy in A. caldus was proposed to illustrate the ecological behavior of acidophilic bacteria under low pH. This study provides new insights into the adaptation strategies of acidophiles to AMD ecosystems and will promote the design and development of engineered biological systems for the environmental adaptation of acidophiles.IMPORTANCE This study advances our understanding of the acid tolerance mechanism of A. caldus, identifies the key fur gene responsible for acid resistance, and elucidates the correlation between fur and acid resistance, thus contributing to an understanding of the ecological behavior of acidophilic bacteria. These findings provide new insights into the acid resistance process in Acidithiobacillus species, thereby promoting the study of the environmental adaptation of acidophilic bacteria and the design of engineered biological systems.
Collapse
Affiliation(s)
- Xian-Ke Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xiao-Yan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yi-Fan Ha
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
32
|
Bottner A, He RY, Sarbu A, Nainar SMH, Dufour D, Gong SG, Lévesque CM. Streptococcus mutans isolated from children with severe-early childhood caries form higher levels of persisters. Arch Oral Biol 2019; 110:104601. [PMID: 31734540 DOI: 10.1016/j.archoralbio.2019.104601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Dental caries is the most common chronic infectious disease in children. Streptococcus mutans, the main cariogenic bacterial species, produces persisters, nongrowing dormant variants of regular cells associated with chronicity of diseases. We hypothesized that the recurrent nature of caries, particularly within populations with high-caries risk, is due partly to specific phenotypic features of S. mutans such as its ability to form persisters. We aimed to investigate the genotypic and phenotypic differences between the S. mutans from children with severe early-childhood caries (S-ECC) and those without caries. METHODS S. mutans from plaque samples of caries-free (CF) and S-ECC children were tested for their ability to adapt to a lethal pH in an acid tolerance response assay. The persister levels of S. mutans isolates was quantified in both groups. RESULTS S. mutanswas identified in all 23 S-ECC but only 6 of the 21 CF subjects. In most subjects, only one dominant S. mutans genotype was detected. No statistically significant differences in the mean survival percentage of S. mutans were observed between the two groups at a lethal pH of 3.5. However, the dominant genotype within a particular S-ECC subject exhibited a higher percentage of cell survival compared to those in the CF group. In S-ECC patients, S. mutans isolates displayed a ∼15-fold higher persistence phenotype than S. mutans isolates from CF patients. CONCLUSIONS The ability of S. mutans to produce high levels of persisters may contribute to part of an individual's ability to control caries disease activity and recurrent lesions.
Collapse
Affiliation(s)
- Aaron Bottner
- Orthodontics, Faculty of Dentistry, University of Toronto, Canada
| | - Richard Y He
- Microbiology, Faculty of Dentistry, University of Toronto, Canada
| | - Andrea Sarbu
- Microbiology, Faculty of Dentistry, University of Toronto, Canada
| | - S M Hashim Nainar
- Pediatric Dentistry, Faculty of Dentistry, University of Toronto, Canada
| | - Delphine Dufour
- Microbiology, Faculty of Dentistry, University of Toronto, Canada
| | - Siew-Ging Gong
- Orthodontics, Faculty of Dentistry, University of Toronto, Canada.
| | - Céline M Lévesque
- Pediatric Dentistry, Faculty of Dentistry, University of Toronto, Canada
| |
Collapse
|
33
|
Zhang YH, Song XN, Lin Y, Xiao Q, Du XP, Chen YH, Xiao AF. Antioxidant capacity and prebiotic effects of Gracilaria neoagaro oligosaccharides prepared by agarase hydrolysis. Int J Biol Macromol 2019; 137:177-186. [DOI: 10.1016/j.ijbiomac.2019.06.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
34
|
Solinski AE, Scharnow AM, Fraboni AJ, Wuest WM. Synthetic Simplification of Carolacton Enables Chemical Genetic Studies in Streptococcus mutans. ACS Infect Dis 2019; 5:1480-1486. [PMID: 31243986 PMCID: PMC7169375 DOI: 10.1021/acsinfecdis.9b00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the broader biological impact of carolacton, a macrolactone natural product, has been ongoing for the past decade. Multiple studies have shown connections to regulatory systems, acid tolerance mechanisms, biofilm formation, and recently folate dehydrogenase (FolD). Progress elucidating the cause of biofilm-specific activity in Streptococcus mutans has been limited due to low-throughput analyses of carolacton-treated cells. We disclose the discovery of a simplified carolacton-inspired analog that demonstrates inhibitory activity against S. mutans biofilm cells. This discovery permitted a proof of concept chemical genetic screen of S. mutans mutants identifying the carbon catabolite protein A signaling pathway as a putative target.
Collapse
Affiliation(s)
- Amy E. Solinski
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Amber M. Scharnow
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Americo J. Fraboni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
35
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
36
|
Scharnow AM, Solinski AE, Wuest WM. Targeting S. mutans biofilms: a perspective on preventing dental caries. MEDCHEMCOMM 2019; 10:1057-1067. [PMID: 31391878 PMCID: PMC6644389 DOI: 10.1039/c9md00015a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of biofilm diseases, and dental caries in particular, have encouraged extensive research on S. mutans biofilms, including methods of preventing its formation. Numerous small molecules with specific anti-biofilm activity against this pathogen have been isolated and synthesized. Generally, these molecules can be characterized into three categories: sucrose-dependent anti-adhesion, sucrose-independent anti-adhesion and cellular signaling interference. This review aims to provide an overview of the current small molecule strategies used for targeting S. mutans biofilms, and a perspective of the future for the field.
Collapse
Affiliation(s)
- Amber M Scharnow
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - Amy E Solinski
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| |
Collapse
|
37
|
Darmani H, Tawalbeh KH, Al-Hiyasat AS, Al-Akhras MA. Comparison of the Photosensitivity of Biofilms of Different Genera of Cariogenic Bacteria in Tooth Slices. Pol J Microbiol 2019; 67:455-462. [PMID: 30550231 PMCID: PMC7256787 DOI: 10.21307/pjm-2018-053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
Abstract
This study compared the outcome of photosensitization on the viability of four different cariogens in planktonic form as well as biofilms in human dentine. Photodynamic therapy was carried out with a gallium aluminium arsenide laser (670 nm wavelength) using Toluidine blue O (TBO) as the photosensitizer. Cariogenic bacteria (Streptococcus mutans, Lactobacillus casei, Streptococcus salivarius and Actinomyces viscosus) were exposed to TBO and then to the laser for 1 minute in planktonic suspension. Then, tooth slices previously incubated for 24 hours with broth cultures of broth culture of the four cariogenic organisms were exposed to antimicrobial photosensitization. The control samples consisted of planktonic and sessile cells that were exposed to TBO alone, laser alone and the bacterial cells that were not treated with TBO or laser. The results showed significant reductions in the viability of S. mutans, L. casei and A. viscosus in both planktonic form (to 13%, 30%, and 55%, respectively) and sessile form hosted in dentinal tubules (to 19%, 13% and 52%, respectively), relative to the controls. S. salivarius was the least affected in planktonic (94% viability) and sessile form (86% viability). In conclusion, sensitivity to photosensitization is species-dependent and sessile biofilm cells are affected to the same extent as their planktonic counterparts.
Collapse
Affiliation(s)
- Homa Darmani
- Department of Applied Biology, Faculty of Faculty of Science and Arts, Jordan University of Science and Technology , Irbid , Jordan
| | - Khitam H Tawalbeh
- Department of Biology, College of Medicine, King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
| | - Ahmad S Al-Hiyasat
- Department of Restorative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad-Ali Al-Akhras
- Department of Physics, Faculty of Science and Arts, Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
38
|
Senneby A, Neilands J, Svensäter G, Axtelius B, Rohlin M. Threshold values affect predictive accuracy of caries risk assessment. Acta Odontol Scand 2019; 77:315-327. [PMID: 30727798 DOI: 10.1080/00016357.2018.1564838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate effects of thresholds on estimates of predictive accuracy of methods for caries risk assessment. MATERIAL AND METHODS Adolescents, aged 12 visiting two dental clinics, were examined by visual/tactile examination and bitewing radiography at baseline and after one year. Three methods for caries risk assessment were applied: previous caries experience, dentists' risk assessment according to set criteria (presence or absence of caries lesion) and acid tolerance of dental biofilm. The measure for validity (the reference standard) comprised caries lesion progression at 1 year. Predictive accuracy estimates were calculated for several thresholds. RESULTS Accuracy estimates changed with threshold values of the methods and the reference standard. Patient spectrum differed between the clinics, which resulted in different accuracy estimates for the two samples. Generally, negative predictive values were high while positive ones were low indicating that these methods were more efficient in finding individuals who are at low risk of developing caries lesions than those with increased risk. CONCLUSIONS As thresholds and patient spectrum affected predictive accuracy, it may be difficult to design a universal model with set thresholds for caries risk assessment. Foremost, a model should consider the level of aspiration for prediction and clinical decisions that will be made based on the risk assessment in the actual clinical setting.
Collapse
Affiliation(s)
- Anna Senneby
- Department of Oral and Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Jessica Neilands
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Björn Axtelius
- Department of Oral Diagnostics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Madeleine Rohlin
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
39
|
Hickl J, Argyropoulou A, Sakavitsi ME, Halabalaki M, Al-Ahmad A, Hellwig E, Aligiannis N, Skaltsounis AL, Wittmer A, Vach K, Karygianni L. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS One 2018; 13:e0207574. [PMID: 30540782 PMCID: PMC6291084 DOI: 10.1371/journal.pone.0207574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/02/2018] [Indexed: 11/18/2022] Open
Abstract
In light of the growing antibiotic resistance, the usage of plant-derived antimicrobial agents could serve as an effective alternative treatment against oral infections. The aim of this study was to investigate the antimicrobial and antibiofilm activity of Mediterranean herb extracts against representative oral microorganisms. The extraction procedures and the analysis of the obtained extracts were performed under established experimental conditions. The minimum inhibitory (MIC) and bactericidal (MBC) concentrations of the methanol extracts of Cistus creticus ssp. creticus, Cistus monspeliensis, Origanum vulgare, Rosmarinus officinalis, Salvia sclarea and Thymus longicaulis against eight typical oral bacteria and the fungus Candida albicans were determined. The antibiofilm activity against Streptococcus mutans was also quantified using the microtiter plate test. Overall, all tested extracts inhibited effectively the screened obligate anaerobic microorganisms and in concentrations ≥0.3 mg ml-1 had moderate to high antibiofilm activity comparable to that of chlorhexidine (CHX) against S. mutans. In particular, R. officinalis (MIC: 0.08-5.00 mg ml-1) and S. sclarea (MIC: 0.08-2.50 mg ml-1) showed the highest antibacterial activity, while Cistus spp., R. officinalis and S. sclarea significantly inhibited S. mutans biofilm formation at 0.60, 1.25 and 2.50 mg ml-1, respectively. Porphyromonas gingivalis and Parvimonas micra were high susceptible to O. vulgare (MIC = 0.30 mg ml-1), whereas T. longicaulis eradicated all oral bacteria (MBC: 0.15-2.50 mg ml-1). Nevertheless, C. albicans showed no sensitivity to the tested extracts. In conclusion, the tested plant extracts could serve as alternative natural antibacterial and antibiofilm components against oral infections.
Collapse
Affiliation(s)
- Joachim Hickl
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Eleni Sakavitsi
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lamprini Karygianni
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic for Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Manji F, Dahlen G, Fejerskov O. Caries and Periodontitis: Contesting the Conventional Wisdom on Their Aetiology. Caries Res 2018; 52:548-564. [PMID: 29694978 DOI: 10.1159/000488948] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023] Open
Abstract
We review the literature on the oral microbiome and the role of the microbiota in the development of dental caries and periodontitis. While most research has been focused on identifying one or more specific determinants of these diseases, the results have provided limited predictive value and have not been able to explain the variation in the distribution of these diseases observed in epidemiological or clinical studies. Drawing on existing knowledge about the nature of the oral microbiota, we suggest that a stochastic model based on the Weiner process provides simple and parsimonious explanations for the pathogenesis of both caries and periodontitis, making few assumptions, and providing explanations for phenomena that have hitherto proved difficult, or have required complex arguments, to explain. These diseases occur as the result of the dental hard tissues and periodontal tissues integrating the random "noise" caused by normal metabolic activities of commensal microorganisms in the dental biofilm. The processes that result in the progression and regression of caries and periodontitis may be considered as "natural," rather than pathological, even if, when left unchecked over long periods of time, they can result in the development of pathologies. The likelihood of progression or regression can be influenced by other determinants, but these processes will nevertheless occur in the absence of such influences. The distributional characteristics of the model approximate the findings of epidemiological studies indicating that, for both caries and periodontitis, there will be few sites affected in the early period after the eruption of the permanent dentition, but in those older there is an almost linear relationship with increasing age; furthermore, the longer a site survives without being affected, the less likely that it will be affected. We discuss the clinical and public health importance of these findings.
Collapse
Affiliation(s)
- Firoze Manji
- Daraja Press, CSP Mozart, Montreal, Québec, Canada
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ole Fejerskov
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus,
| |
Collapse
|
41
|
Wasfi R, Abd El‐Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 2018; 22:1972-1983. [PMID: 29316223 PMCID: PMC5824418 DOI: 10.1111/jcmm.13496] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and ImmunologyFaculty of PharmacyOctober University for Modern Sciences and Arts (MSA)GizaEgypt
| | - Ola A. Abd El‐Rahman
- Department of Microbiology and ImmunologyFaculty of PharmacyAl‐Azhar University (Girls)CairoEgypt
| | - Mai M. Zafer
- Department of Microbiology and ImmunologyFaculty of PharmacyAhram Canadian University (ACU)GizaEgypt
| | - Hossam M. Ashour
- Department of Biological SciencesCollege of Arts and SciencesUniversity of South Florida St. PetersburgSt. PetersburgFLUSA
- Department of Microbiology and ImmunologyFaculty of PharmacyCairo UniversityCairoEgypt
| |
Collapse
|
42
|
Sordi MB, Moreira TA, Montero JFD, Barbosa LC, Benfatti CAM, Magini RDS, Pimenta ADL, Souza JCMD. Effect of γ-lactones and γ-lactams compounds on Streptococcus mutans biofilms. J Appl Oral Sci 2018; 26:e20170065. [PMID: 29489934 PMCID: PMC5831975 DOI: 10.1590/1678-7757-2017-0065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/14/2017] [Indexed: 01/31/2023] Open
Abstract
Considering oral diseases, antibiofilm compounds can decrease the accumulation of pathogenic species such as Streptococcus mutans at micro-areas of teeth, dental restorations or implant-supported prostheses. OBJECTIVE To assess the effect of thirteen different novel lactam-based compounds on the inhibition of S. mutans biofilm formation. MATERIAL AND METHODS We synthesized compounds based on γ-lactones analogues from rubrolides by a mucochloric acid process and converted them into their corresponding γ-hydroxy-γ-lactams by a reaction with isobutylamine and propylamine. Compounds concentrations ranging from 0.17 up to 87.5 μg mL-1 were tested against S. mutans. We diluted the exponential cultures in TSB and incubated them (37°C) in the presence of different γ-lactones or γ-lactams dilutions. Afterwards, we measured the planktonic growth by optical density at 630 nm and therefore assessed the biofilm density by the crystal violet staining method. RESULTS Twelve compounds were active against biofilm formation, showing no effect on bacterial viability. Only one compound was inactive against both planktonic and biofilm growth. The highest biofilm inhibition (inhibition rate above 60%) was obtained for two compounds while three other compounds revealed an inhibition rate above 40%. CONCLUSIONS Twelve of the thirteen compounds revealed effective inhibition of S. mutans biofilm formation, with eight of them showing a specific antibiofilm effect.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Thaís Altoé Moreira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Juan Felipe Dumes Montero
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Luis Cláudio Barbosa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - César Augusto Magalhães Benfatti
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Ricardo de Souza Magini
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Andréa de Lima Pimenta
- Laboratório de Tecnologias Integradas, Departamento de Engenharia Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Júlio César Matias de Souza
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| |
Collapse
|
43
|
Laosuwan K, Epasinghe DJ, Wu Z, Leung WK, Green DW, Jung HS. Comparison of biofilm formation and migration of Streptococcus mutans on tooth roots and titanium miniscrews. Clin Exp Dent Res 2018; 4:40-47. [PMID: 29744214 PMCID: PMC5893475 DOI: 10.1002/cre2.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Periodontitis and peri‐implantitis are inflammatory diseases caused by periodontal pathogenic bacteria leading to destruction of supporting periodontal/peri‐implant tissue. However, the progression of inflammatory process of these two diseases is different. The bacterial biofilm is the source of bacteria during the inflammatory process. As the bacteria migrate down the surface of tooth or titanium implant, the inflammation spreads along with it. Streptococcus mutans has an important role in oral bacterial biofilm formation in early stage biofilm before the microbiota shift to late stage and become more virulent. The other major difference is the existence of periodontal ligament (PDL) cells in normal teeth but not in peri‐implant tissue. This study aims to compare the S. mutans bacterial biofilm formation and migration on 2 different surfaces, tooth root and titanium miniscrew. The biofilm was grown with a flow cells system to imitate the oral dynamic system with PDL cells. The migration distances were measured, and the biofilm morphology was observed. Data showed that the biofilm formation on miniscrew was slower than those on tooth root at 24 hr. However, there were no difference in the morphology of the biofilm formed on the tooth root with those formed on the miniscrew at both 24 and 48 hr. The biofilm migration rate was significantly faster on miniscrew surface compare with those on tooth root when observe at 48 hr (p < .001). There are no significant differences in biofilm migration within miniscrew group and tooth root group despite the exiting of PDL cell (p > .05). The biofilm's migration rate differences on various surfaces could be one of the factors accounting for the different inflammatory progression between periodontitis and peri‐implantitis disease.
Collapse
Affiliation(s)
- Kittipong Laosuwan
- Applied Oral sciences, Faculty of Dentistry The University of Hong Kong Hong Kong
| | | | - Zhaoming Wu
- Applied Oral sciences, Faculty of Dentistry The University of Hong Kong Hong Kong
| | - Wai Keung Leung
- Periodontology, Faculty of Dentistry The University of Hong Kong Hong Kong
| | | | - Han Sung Jung
- Applied Oral sciences, Faculty of Dentistry The University of Hong Kong Hong Kong.,Dept of Oral Biology Yonsei University College of Dentistry Korea
| |
Collapse
|
44
|
李 转, 许 晓, 陈 璇, 吴 昕, 赵 望. [Role of SMU.2055 gene in regulating acid resistance of Streptococcus mutans UA159]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:198-204. [PMID: 29502060 PMCID: PMC6743886 DOI: 10.3969/j.issn.1673-4254.2018.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To evaluate the effect of SMU.2055 gene on acid resistance of Streptococcus mutans. METHODS A SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique. The growth of the wild-type and mutant strains was monitored in both normal and acidic conditions. The lethal pH level, glycolysis, proton permeability, cell permeability and biofilm formation of the two strains were compared. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. The growth and biofilm formation capacity of the mutant strain were obviously lowered in both normal and acidic conditions. The mutant strain also showed increased lethal pH level, proton permeability, and cell permeability with impaired H+-ATPase activity in acidic conditions, but its minimum glycolytic pH remained unaffected. CONCLUSION The SMU.2055-deficient S. mutans mutant exhibits a lowered acid resistance, which affects the growth, lethal pH, proton permeability, H+-ATPase activity, cell permeability and biofilm formation but not the minimum glycolytic pH of the mutant strain.
Collapse
Affiliation(s)
- 转玲 李
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 璇 陈
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 昕彧 吴
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 望泓 赵
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
45
|
李 转, 许 晓, 陈 璇, 吴 昕, 赵 望. [Role of SMU.2055 gene in regulating acid resistance of Streptococcus mutans UA159]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:198-204. [PMID: 29502060 PMCID: PMC6743886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To evaluate the effect of SMU.2055 gene on acid resistance of Streptococcus mutans. METHODS A SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique. The growth of the wild-type and mutant strains was monitored in both normal and acidic conditions. The lethal pH level, glycolysis, proton permeability, cell permeability and biofilm formation of the two strains were compared. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. The growth and biofilm formation capacity of the mutant strain were obviously lowered in both normal and acidic conditions. The mutant strain also showed increased lethal pH level, proton permeability, and cell permeability with impaired H+-ATPase activity in acidic conditions, but its minimum glycolytic pH remained unaffected. CONCLUSION The SMU.2055-deficient S. mutans mutant exhibits a lowered acid resistance, which affects the growth, lethal pH, proton permeability, H+-ATPase activity, cell permeability and biofilm formation but not the minimum glycolytic pH of the mutant strain.
Collapse
Affiliation(s)
- 转玲 李
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 璇 陈
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 昕彧 吴
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 望泓 赵
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
46
|
Bojanich M, Calderón R. Streptococcus mutans membrane lipid composition: Virulence factors and structural parameters. Arch Oral Biol 2017; 81:74-80. [DOI: 10.1016/j.archoralbio.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/15/2022]
|
47
|
KESKİN E, BAĞLAR S. ACID TOLERANCE RESPONCE OF CARIOGENIC MICROORGANISMS AND MALOLACTIC FERMENTATION. CUMHURIYET DENTAL JOURNAL 2017. [DOI: 10.7126/cumudj.345960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Cai Y, Liao Y, Brandt BW, Wei X, Liu H, Crielaard W, Van Loveren C, Deng DM. The Fitness Cost of Fluoride Resistance for Different Streptococcus mutans Strains in Biofilms. Front Microbiol 2017; 8:1630. [PMID: 28894441 PMCID: PMC5581503 DOI: 10.3389/fmicb.2017.01630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023] Open
Abstract
The cariogenic bacterium Streptococcus mutans can develop stable resistance to fluoride through chromosomal mutations in vitro. Fluoride-resistant S. mutans has seldom been isolated in clinical settings, despite the wide application of fluoride in oral-care products. One explanation is that the fluoride-resistant S. mutans strains have decreased fitness. However, so far, there has been no conclusive evidence to support this idea. The aim of this study was to investigate the fitness cost of 48-h biofilms of two fluoride-resistant S. mutans strains, UF35 and UA159-FR (UAFR), using the wild-type fluoride-sensitive strain UA159 as a reference. The engineered UF35 strain contains one point mutation, whereas UAFR, selected from NaF-containing agar plates, has multiple chromosomal mutations. All biofilms were formed for 48 h under a constantly neutral pH or a pH-cycling (8 h of neutral pH and 16 h of pH 5.5) condition in the absence of fluoride. The biomass of the biofilms was quantified with a crystal violet assay. The biofilms were also treated with chlorhexidine or solutions at pH 3.0, after which their lactic acid production was quantified. Compared to the UF35 and UA159 biofilms, the biomass of UAFR biofilms was two–four fold higher, and the UAFR biofilms were more resistant to chlorhexidine and low pH in terms of lactic acid production. No difference in biomass and lactic acid production was detected between UF35 and UA159 biofilms. The fluoride resistance of UAFR and UF35 strains in biofilms was further confirmed by treating the biofilms with NaF solutions. The level of NaF resistance of the three biofilms is generally ranked as follows: UAFR > UF35 > UA159. In conclusion, there is indeed a fitness consequence in UAFR, but surprisingly, this fluoride-resistant strain performs better than UF35 and UA159 under the described conditions. In addition, UF35 did not display a reduced fitness; it performed as well as the wild-type fluoride-sensitive strain.
Collapse
Affiliation(s)
- Yanling Cai
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Ying Liao
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China
| | - Hongyan Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Cor Van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Dong Mei Deng
- Guangdong Province Key Laboratory of StomatologyGuangzhou, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
49
|
Senneby A, Davies JR, Svensäter G, Neilands J. Acid tolerance properties of dental biofilms in vivo. BMC Microbiol 2017; 17:165. [PMID: 28743239 PMCID: PMC5525231 DOI: 10.1186/s12866-017-1074-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ecological plaque hypothesis explains caries development as the result of the enrichment of acid tolerant bacteria in dental biofilms in response to prolonged periods of low pH. Acid production by an acid tolerant microflora causes demineralisation of tooth enamel and thus, individuals with a greater proportion of acid tolerant bacteria would be expected to be more prone to caries development. Biofilm acid tolerance could therefore be a possible biomarker for caries prediction. However, little is known about the stability of biofilm acid tolerance over time in vivo or the distribution throughout the oral cavity. Therefore the aim of this study was to assess intra-individual differences in biofilm acid-tolerance between different tooth surfaces and inter-individual variation as well as stability of acid tolerance over time. RESULTS The majority of the adolescents showed low scores for biofilm acid tolerance. In 14 of 20 individuals no differences were seen between the three tooth sites examined. In the remaining six, acid-tolerance at the premolar site differed from one of the other sites. At 51 of 60 tooth sites, acid-tolerance at baseline was unchanged after 1 month. However, acid tolerance values changed over a 1-year period in 50% of the individuals. CONCLUSIONS Biofilm acid tolerance showed short-term stability and low variation between different sites in the same individual suggesting that the acid tolerance could be a promising biological biomarker candidate for caries prediction. Further evaluation is however needed and prospective clinical trials are called for to evaluate the diagnostic accuracy.
Collapse
Affiliation(s)
- A Senneby
- Department of Oral and Maxillofacial Radiology, Malmö University, Faculty of Odontology, 205 06, Malmö, SE, Sweden
| | - J R Davies
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - G Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - J Neilands
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| |
Collapse
|
50
|
Liao Y, Brandt BW, Li J, Crielaard W, Van Loveren C, Deng DM. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol 2017; 9:1344509. [PMID: 28748043 PMCID: PMC5508371 DOI: 10.1080/20002297.2017.1344509] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022] Open
Abstract
For decades, fluoride has been used extensively as an anti-caries agent. It not only protects dental hard tissue, but also inhibits bacterial growth and metabolism. The antimicrobial action of fluoride is shown in three main aspects: the acidogenicity, acidurance, and adherence to the tooth surface. To counteract the toxic effect of fluoride, oral bacteria are able to develop resistance to fluoride through either phenotypic adaptation or genotypic changes. Strains that acquire fluoride resistance through the latter route show stable resistance and can usually resist much higher fluoride levels than the corresponding wild-type strain. This review summarizes the characteristics of fluoride-resistant strains and explores the mechanisms of fluoride resistance, in particular the recent discovery of the fluoride exporters. Since the fluoride resistance of the cariogenic bacterium Streptococcus mutans has been studied most extensively, this review mainly discusses the findings related to this species.
Collapse
Affiliation(s)
- Ying Liao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,West China College of Stomatology, Sichuan University, Chengdu, China
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cor Van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|