1
|
Mertes V, Saragliadis A, Mascherin E, Tysvær EB, Roos N, Linke D, Winther-Larsen HC. Recombinant expression of Yersinia ruckeri outer membrane proteins in Escherichia coli extracellular vesicles. Protein Expr Purif 2024; 215:106409. [PMID: 38040272 DOI: 10.1016/j.pep.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.
Collapse
Affiliation(s)
- Verena Mertes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Elisa Mascherin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
| | - Ellen-Beate Tysvær
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Norbert Roos
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Hanne C Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
| |
Collapse
|
2
|
Riborg A, Colquhoun DJ, Gulla S. Biotyping reveals loss of motility in two distinct Yersinia ruckeri lineages exclusive to Norwegian aquaculture. JOURNAL OF FISH DISEASES 2022; 45:641-653. [PMID: 35180320 PMCID: PMC9304254 DOI: 10.1111/jfd.13590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/26/2023]
Abstract
Non-motile strains of Yersinia ruckeri, known as Y. ruckeri biotype 2, now dominate amongst clinical isolates retrieved from rainbow trout internationally. Due to an acute increase in the number of yersiniosis cases in Norway in recent years, followed by introduction of widespread intraperitoneal vaccination against the disease, an investigation on the prevalence of Y. ruckeri biotype 2 in Norwegian aquaculture was conducted. We biotyped 263 Y. ruckeri isolates recovered from diseased salmonids in Norway between 1985 and 2020. A total of seven biotype 2 isolates were identified, four of which were collected between 1985 and 1987, and three of which belong to the current epizootic clone, isolated from two different sea-farms in 2017. Whole-genome sequencing revealed single non-synonymous nucleotide polymorphisms in the flagellar genes flhC in isolates from the 1980s, and in fliP in isolates from 2017. In both variants, motility was restored both by complementation with wild-type alleles in trans and via spontaneous mutation-driven reversion following prolonged incubation on motility agar. While biotype 2 strains do not yet seem to have become broadly established in Norwegian aquaculture, the seven isolates described here serve to document a further two independent cases of Y. ruckeri biotype 2 emergence in salmonid aquaculture.
Collapse
Affiliation(s)
- Andreas Riborg
- Norwegian Veterinary InstituteÅsNorway
- Vaxxinova Norway ASBergenNorway
| | | | | |
Collapse
|
3
|
Ojasanya RA, Gardner IA, Groman DB, Saksida S, Saab ME, Thakur KK. Antimicrobial Susceptibility Profiles of Bacteria Commonly Isolated from Farmed Salmonids in Atlantic Canada (2000–2021). Vet Sci 2022; 9:vetsci9040159. [PMID: 35448657 PMCID: PMC9031543 DOI: 10.3390/vetsci9040159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial infection and antimicrobial resistance are important constraints in the production and sustainability of farmed salmonids. This retrospective study aimed to describe the frequency of bacterial isolates and antimicrobial resistance profiles in salmonid aquaculture in Atlantic Canada. Bacterial isolates and antimicrobial susceptibility testing (AST) results assessed by disk diffusion testing were summarized for 18,776 Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) samples from 2291 unique cases submitted to the Atlantic Veterinary College, Aquatic Diagnostic Services Bacteriology Laboratory from 2000 to 2021. Kidney was the most commonly submitted tissue (60.29%, n = 11,320), and these specimens were mostly submitted as swabs (63.68%, n = 11,957). The most prevalent pathogens detected in these cases were Yersinia ruckeri type 1 (5.54%, n = 127), Renibacterium salmoninarum (2.10%, n = 48), Aeromonas salmonicida (atypical) (1.66%, n = 38), and Pseudomonas fluorescens (1.22%, n = 28). Most bacterial isolates tested (n = 918) showed resistance to florfenicol, oxytetracycline, ormetoprim-sulfadimethoxine, and trimethoprim-sulfamethoxazole, but not to enrofloxacin. This report provides baseline data for antimicrobial surveillance programs that investigate emerging antimicrobial resistance trends in salmonid aquaculture in Atlantic Canada.
Collapse
Affiliation(s)
- Rasaq Abiola Ojasanya
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (I.A.G.); (S.S.); (K.K.T.)
- Correspondence: ; Tel.: +1-(902)-916-9615
| | - Ian A. Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (I.A.G.); (S.S.); (K.K.T.)
| | - David B. Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (D.B.G.); (M.E.S.)
| | - Sonja Saksida
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (I.A.G.); (S.S.); (K.K.T.)
| | - Matthew E. Saab
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (D.B.G.); (M.E.S.)
| | - Krishna Kumar Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (I.A.G.); (S.S.); (K.K.T.)
| |
Collapse
|
4
|
Comparative Reverse Vaccinology of Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa, Frequent Pathogens of Atlantic Salmon and Lumpfish Aquaculture. Vaccines (Basel) 2022; 10:vaccines10030473. [PMID: 35335104 PMCID: PMC8954842 DOI: 10.3390/vaccines10030473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Marine finfish aquaculture is affected by diverse infectious diseases, and they commonly occur as co-infection. Some of the most frequent and prevalent Gram-negative bacterial pathogens of the finfish aquaculture include Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa. To prevent co-infections in aquaculture, polyvalent or universal vaccines would be ideal. Commercial polyvalent vaccines against some of these pathogens are based on whole inactivated microbes and their efficacy is controversial. Identification of common antigens can contribute to the development of effective universal or polyvalent vaccines. In this study, we identified common and unique antigens of P. salmonis, A. salmonicida, Y. ruckeri, V. anguillarum and M. viscosa based on a reverse vaccinology pipeline. We screened the proteome of several strains using complete available genomes and identified a total of 154 potential antigens, 74 of these identified antigens corresponded to secreted proteins, and 80 corresponded to exposed outer membrane proteins (OMPs). Further analysis revealed the outer membrane antigens TonB-dependent siderophore receptor, OMP assembly factor BamA, the LPS assembly protein LptD and secreted antigens flagellar hook assembly protein FlgD and flagellar basal body rod protein FlgG are present in all pathogens used in this study. Sequence and structural alignment of these antigens showed relatively low percentage sequence identity but good structural homology. Common domains harboring several B-cells and T-cell epitopes binding to major histocompatibility (MHC) class I and II were identified. Selected peptides were evaluated for docking with Atlantic salmon (Salmo salar) and Lumpfish MHC class II. Interaction of common peptide-MHC class II showed good in-silico binding affinities and dissociation constants between −10.3 to −6.5 kcal mol−1 and 5.10 × 10−9 to 9.4 × 10−6 M. This study provided the first list of antigens that can be used for the development of polyvalent or universal vaccines against these Gram-negative bacterial pathogens affecting finfish aquaculture.
Collapse
|
5
|
Rasmussen JA, Villumsen KR, von Gersdorff Jørgensen L, Forberg T, Zuo S, Kania PW, Buchmann K, Kristiansen K, Bojesen AM, Limborg MT. Integrative analyses of probiotics, pathogenic infections, and host immune response highlight the importance of gut microbiota in understanding disease recovery in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2022; 132:3201-3216. [PMID: 35032344 DOI: 10.1111/jam.15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS Given the pivotal role played by the gut microbiota in regulating the host immune system, interest has arisen in the possibility of controlling fish health by modulating the gut microbiota. Hence, the need for a better understanding of the host-microbiota interactions after disease responses to optimise the use of probiotics to strengthen disease resilience and recovery. METHODS AND RESULTS We tested the effects of a probiotic feed additive in rainbow trout and challenged the fish with the causative agent for enteric redmouth disease, Yersinia ruckeri. We evaluated the survival, host immune gene expression and on the gut microbiota composition. Results revealed that provision of probiotics and exposure to Y. ruckeri induced immune gene expression in the host associated with changes in the gut microbiota. Subsequently, infection with Y. ruckeri had very little effect on microbiota composition when probiotics were applied, indicating that probiotics increased stabilisation of the microbiota. Our analysis revealed potential biomarkers for monitoring infection status and fish health. Finally, we used modelling approaches to decipher interactions between gut bacteria and the host immune gene responses, indicating removal of endogenous bacteria elicited by non-specific immune responses. CONCLUSIONS We discuss the relevance of these results emphasising the importance of host-microbiota interactions, including the protective potential of the gut microbiota in disease responses. SIGNIFICANCE AND IMPACT OF THE STUDY Our results highlight the functional consequences of probiotic-induced changes in the gut microbiota and the resulting host immune response.
Collapse
Affiliation(s)
- Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Denmark
| | | | | | - Shaozhi Zuo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Per Walter Kania
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, BGI- Shenzhen, Shenzhen, China
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Yang H, Zhujin D, Marana MH, Dalsgaard I, Rzgar J, Heidi M, Asma KM, Per KW, Kurt B. Immersion vaccines against Yersinia ruckeri infection in rainbow trout: Comparative effects of strain differences. JOURNAL OF FISH DISEASES 2021; 44:1937-1950. [PMID: 34392540 PMCID: PMC9290694 DOI: 10.1111/jfd.13507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/07/2023]
Abstract
The protective effects of autogenous and commercial ERM immersion vaccines (bacterins based on Yersinia ruckeri, serotype O1, biotypes 1 and 2) for rainbow trout (Oncorhynchus mykiss) were compared in order to evaluate whether the use of local pathogen strains for immunization can improve protection. In addition, the effect of the bacterin concentration was established for the commercial product. Following sublethal challenge of vaccinated and non-vaccinated control fish with live bacteria, we followed the bacterial count in the fish (gills, liver and spleen). The expression of genes encoding immune factors (IL-1β, IL-6, IL-8, IL-10, IFN-γ, MHCI, MHCII, CD4, CD8, TCRβ, IgM, IgT, IgD, cathelicidins 1 and 2, SAA and C3) and densities of immune cells in organs were recorded. Both vaccines conferred protection as judged from the reduced bacterial load in exposed fish. Innate immune genes were upregulated in all groups following bacterial challenge but significantly more in non-vaccinated naive fish in which densities of SAA-positive immune cells increased. Immunoglobulin genes were upregulated on day 5 post-challenge, and fish vaccinated with the high commercial bacterin dosage showed increased IgM levels by ELISA on day 14 post-challenge, reflecting that the vaccine dosage was correlated to protection. In conclusion, both vaccine types offered protection to rainbow trout when exposed to live Y. ruckeri and no significant difference between commercial and autogenous vaccines was established.
Collapse
Affiliation(s)
- He Yang
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze RiverNeijiang Normal UniversityNeijiangChina
| | - Ding Zhujin
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- School of Marine Science and FisheriesJiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
| | - Moonika H. Marana
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Inger Dalsgaard
- National Institute of Aquatic ResourcesTechnical University of DenmarkLyngbyDenmark
| | - Jaafar Rzgar
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mathiessen Heidi
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Karami M. Asma
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kania W. Per
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Buchmann Kurt
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Sibinga NA, Marquis H. Tissue-specific differences in detection of Yersinia ruckeri carrier status in rainbow trout (Oncorhynchus mykiss). JOURNAL OF FISH DISEASES 2021; 44:2013-2020. [PMID: 34432896 DOI: 10.1111/jfd.13515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Effective monitoring for subclinical infections is a cornerstone of proactive disease management in aquaculture. Salmonid fish that survive enteric redmouth disease (ERM) can carry Yersinia ruckeri as a latent infection for several months, potentially facilitating cryptic spread between facilities that exchange fish. In this study, fingerling rainbow trout (Oncorhynchus mykiss) were infected by immersion and sampled for up to 14 weeks post-infection. Yersinia ruckeri was cultured from the posterior kidney of more than 89% of fish up to 4 weeks post-infection, but from 2% or fewer of fish sampled at later time points. In contrast, qPCR-based detection of the Y. ruckeri 16s rRNA gene in intestine and spleen extracts revealed a much higher rate of infection: at 14 weeks post-infection Y. ruckeri was detected in nearly 50% of spleens and 15% of intestines. The difference between spleen and intestine is likely due at least in part to technical limitations of qPCR on intestinal DNA extracts; accordingly, we propose that qPCR of spleen DNA ought to be considered the preferred standard for detection of carriers of Y. ruckeri.
Collapse
Affiliation(s)
- Nathaniel A Sibinga
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Hélène Marquis
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Diversification of OmpA and OmpF of Yersinia ruckeri is independent of the underlying species phylogeny and evidence of virulence-related selection. Sci Rep 2021; 11:3493. [PMID: 33568758 PMCID: PMC7876001 DOI: 10.1038/s41598-021-82925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) which causes economically significant losses in farmed salmonids, especially Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). However, very little is known about the genetic relationships of disease-causing isolates in these two host species or about factors responsible for disease. Phylogenetic analyses of 16 representative isolates based on the nucleotide sequences of 19 housekeeping genes suggests that pathogenic Atlantic salmon and rainbow trout isolates represent distinct host-specific lineages. However, the apparent phylogenies of certain isolates has been influenced by horizontal gene transfer and recombinational exchange. Splits decomposition analysis demonstrated a net-like phylogeny based on the housekeeping genes, characteristic of recombination. Comparative analysis of the distribution of individual housekeeping gene alleles across the isolates demonstrated evidence of genomic mosaicism and recombinational exchange involving certain Atlantic salmon and rainbow trout isolates. Comparative nucleotide sequence analysis of the key outer membrane protein genes ompA and ompF revealed that the corresponding gene trees were both non-congruent with respect to the housekeeping gene phylogenies providing evidence that horizontal gene transfer has influenced the evolution of both these surface protein-encoding genes. Analysis of inferred amino acid sequence variation in OmpA identified a single variant, OmpA.1, that was present in serotype O1 and O8 isolates representing typical pathogenic strains in rainbow trout and Atlantic salmon, respectively. In particular, the sequence of surface-exposed loop 3 differed by seven amino acids to that of other Y. ruckeri isolates. These findings suggest that positive selection has likely influenced the presence of OmpA.1 in these isolates and that loop 3 may play an important role in virulence. Amino acid sequence variation of OmpF was greater than that of OmpA and was similarly restricted mainly to the surface-exposed loops. Two OmpF variants, OmpF.1 and OmpF.2, were associated with pathogenic rainbow trout and Atlantic salmon isolates, respectively. These OmpF proteins had very similar amino acid sequences suggesting that positive evolutionary pressure has also favoured the selection of these variants in pathogenic strains infecting both species.
Collapse
|
9
|
Portnyagina O, Chistyulin D, Dyshlovoy S, Davidova V, Khomenko V, Shevchenko L, Novikova O. OmpF porin from Yersinia ruckeri as pathogenic factor: Surface antigenic sites and biological properties. Microb Pathog 2020; 150:104694. [PMID: 33359075 DOI: 10.1016/j.micpath.2020.104694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Bacterium Yersinia ruckeri as a pathogen induces causative agent of intestinal fish disease called enteric redmouth disease (ERM) is known. In this study, outer membrane OmpF porin from the Y. ruckeri (YrOmpF) has been identified as a pathogenic factor which affects host macrophage activation and life cycle of eukaryotic cells. Using synthetic peptides corresponding to the sequences of the outer loops of YrOmpF L1 loop of the porin is most involved in the structure of B epitopes on the surface of the microbial cell it was found. T epitopes of the isolated YrOmpF trimer not only by linear, but also by discontinuous determinants, which is due to the secondary structure of the protein are represented. It was shown that YrOmpF was twice more cytotoxic to THP-1 cells (human monocytes, cancer cells) in comparison with CHH-1 cells (Oncorhynchus keta cardiac muscle cell, non-cancer cells). It was found YrOmpF induce cell cycle S-phase arrest in both normal CHH-1 and cancer THP-1 cells. In the cancer cells observed effect was most pronounce. In addition, we have observed an induction of apoptosis in THP-1 cell line treated with YrOmpF for 48 h at IC50 (48.6 μg/ml). Significant cytotoxic effect of YrOmpF on primary mouse peritoneal macrophages been detected as well. Of note, co-incubation of macrophages with anti-YrOmpF antibodies could decrease the amount of lactate dehydrogenase, while the number of living cells significantly increased. YrOmpF stimulates the activity of the phagocytic bactericidal systems especially of the oxygen-independent subsystem it was found. Antibodies against YrOmpF decreased MPO release and CP synthesis by peritoneal macrophages and increased their viability.
Collapse
Affiliation(s)
- Olga Portnyagina
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation; School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690090, Russian Federation.
| | - Dmitry Chistyulin
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Sergey Dyshlovoy
- School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690090, Russian Federation; University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Viktoriya Davidova
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Valentina Khomenko
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Ludmila Shevchenko
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Olga Novikova
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| |
Collapse
|
10
|
Acuña LG, Barros MJ, Montt F, Peñaloza D, Núñez P, Valdés I, Gil F, Fuentes JA, Calderón IL. Participation of two sRNA RyhB homologs from the fish pathogen Yersinia ruckeri in bacterial physiology. Microbiol Res 2020; 242:126629. [PMID: 33153884 DOI: 10.1016/j.micres.2020.126629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023]
Abstract
Small noncoding RNAs (sRNAs) are important regulators of gene expression and physiology in bacteria. RyhB is an iron-responsive sRNA well characterized in Escherichia coli and conserved in other Enterobacteriaceae. In this study, we identified and characterized two RyhB homologs (named RyhB-1 and RyhB-2) in the fish pathogen Yersinia ruckeri. We found that, as in other Enterobacteriaceae, both RyhB-1 and RyhB-2 are induced under iron starvation, repressed by the Fur regulator, and depend on Hfq for stability. Despite these similarities in expression, the mutant strains of Y. ruckeri lacking RyhB-1 (ΔryhB-1) or RyhB-2 (ΔryhB-2) exhibited differential phenotypes. In comparison with the wild type, the ΔryhB-1 strain showed a hypermotile phenotype, reduced biofilm formation, increased replication rate, faster growth, and increased ATP levels in bacterial cultures. By contrast, in salmon cell cultures, the ΔryhB-1 strain exhibited an increased survival. On the other hand, the ΔryhB-2 strain was non-motile and showed augmented biofilm formation as compared to the wild type. The expression of a subset of RyhB conserved targets, selected from different bacterial species, was analyzed by quantitative RT-PCR in wild type, ΔryhB-1, ΔryhB-2, and ΔryhB-1 ΔryhB-2 strains cultured in iron-depleted media. RyhB-1 negatively affected the expression of most analyzed genes (sodB, acnA, sdhC, bfr, fliF, among others), whose functions are related to metabolism and motility, involving iron-containing proteins. Among the genes analyzed, only sdhC and bfr appeared as targets for RyhB-2. Taken together, these results indicate that Y. ruckeri RyhB homologs participate in the modulation of the bacterial physiology with non-redundant roles.
Collapse
Affiliation(s)
- Lillian G Acuña
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - M José Barros
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Fernanda Montt
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Diego Peñaloza
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Paula Núñez
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Iván Valdés
- Desarrollo de Biológicos, Veterquímica S.A., Santiago, Chile.
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Iván L Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
11
|
Wrobel A, Leo JC, Linke D. Overcoming Fish Defences: The Virulence Factors of Yersinia ruckeri. Genes (Basel) 2019; 10:E700. [PMID: 31514317 PMCID: PMC6770984 DOI: 10.3390/genes10090700] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease, a bacterial infection of marine and freshwater fish. The disease mainly affects salmonids, and outbreaks have significant economic impact on fish farms all over the world. Vaccination routines are in place against the major serotypes of Y. ruckeri but are not effective in all cases. Despite the economic importance of enteric redmouth disease, a detailed molecular understanding of the disease is lacking. A considerable number of mostly omics-based studies have been performed in recent years to identify genes related to Y. ruckeri virulence. This review summarizes the knowledge on Y. ruckeri virulence factors. Understanding the molecular pathogenicity of Y. ruckeri will aid in developing more efficient vaccines and antimicrobial compounds directed against enteric redmouth disease.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK.
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
12
|
Ormsby MJ, Grahame E, Burchmore R, Davies RL. Comparative bioinformatic and proteomic approaches to evaluate the outer membrane proteome of the fish pathogen Yersinia ruckeri. J Proteomics 2019; 199:135-147. [PMID: 30831250 PMCID: PMC6447952 DOI: 10.1016/j.jprot.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Yersinia ruckeri is the aetiological agent of enteric redmouth (ERM) disease and is responsible for significant economic losses in farmed salmonids. Enteric redmouth disease is associated primarily with rainbow trout (Oncorhynchus mykiss, Walbaum) but its incidence in Atlantic salmon (Salmo salar) is increasing. Outer membrane proteins (OMPs) of Gram-negative bacteria are located at the host-pathogen interface and play important roles in virulence. The outer membrane of Y. ruckeri is poorly characterised and little is known about its composition and the roles of individual OMPs in virulence. Here, we employed a bioinformatic pipeline to first predict the OMP composition of Y. ruckeri. Comparative proteomic approaches were subsequently used to identify those proteins expressed in vitro in eight representative isolates recovered from Atlantic salmon and rainbow trout. One hundred and forty-one OMPs were predicted from four Y. ruckeri genomes and 77 of these were identified in three or more genomes and were considered as "core" proteins. Gel-free and gel-based proteomic approaches together identified 65 OMPs in a single reference isolate and subsequent gel-free analysis identified 64 OMPs in the eight Atlantic salmon and rainbow trout isolates. Together, our gel-free and gel-based proteomic analyses identified 84 unique OMPs in Y. ruckeri. SIGNIFICANCE: Yersinia ruckeri is an important pathogen of Atlantic salmon and rainbow trout and is of major economic significance to the aquaculture industry worldwide. Disease outbreaks are becoming more problematic in Atlantic salmon and there is an urgent need to investigate in further detail the cell-surface (outer membrane) composition of strains infecting each of these host species. Currently, the outer membrane of Y. ruckeri is poorly characterised and very little is known about the OMP composition of strains infecting each of these salmonid species. This study represents the most comprehensive comparative outer membrane proteomic analysis of Y. ruckeri to date, encompassing isolates of different biotypes, serotypes, OMP-types and hosts of origin and provides insights into the potential roles of these diverse proteins in host-pathogen interactions. The study has identified key OMPs likely to be involved in disease pathogenesis and makes a significant contribution to furthering our understanding of the cell-surface composition of this important fish pathogen that will be relevant to the development of improved vaccines and therapeutics.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Edward Grahame
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, TCRC, University of Glasgow, Glasgow G12 1QH, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
13
|
Wangkahart E, Secombes CJ, Wang T. Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM). FISH & SHELLFISH IMMUNOLOGY 2019; 85:18-30. [PMID: 28757198 DOI: 10.1016/j.fsi.2017.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Enteric redmouth disease (ERM or yersiniosis) is one of the most important diseases of salmonids and leads to significant economic losses. It is caused by the Gram-negative bacterium Yersinia ruckeri but can be controlled by bacterin vaccination. The first commercial ERM vaccine was licenced in 1976 and is one of the most significant and successful health practices within the aquaculture industry. Although ERM vaccination provides complete protection, knowledge of the host immune response to the vaccine and the molecular mechanisms that underpin the protection elicited is limited. In this report, we analysed the expression in spleen and gills of a large set of genes encoding for cytokines, acute phase proteins (APPs) and antimicrobial peptides (AMPs) in response to ERM vaccination in rainbow trout, Oncorhynchus mykiss. Many immune genes in teleost fish are known to have multiple paralogues that can show differential responses to ERM vaccination, highlighting the necessity to determine whether all of the genes present react in a similar manner. ERM vaccination immediately activated a balanced inflammatory response with correlated expression of both pro- and anti-inflammatory cytokines (eg IL-1β1-2, TNF-α1-3, IL-6, IL-8 and IL-10A etc.) in the spleen. The increase of pro-inflammatory cytokines may explain the systemic upregulation of APPs (eg serum amyloid A protein and serum amyloid protein P) and AMPs (eg cathelicidins and hepcidin) seen in both spleen and gills. We also observed an upregulation of all the α-chains but only one β-chain (p40B2) of the IL-12 family cytokines, that suggests specific IL-12 and IL-23 isoforms with distinct functions might be produced in the spleen of vaccinated fish. Notably the expression of Th1 cytokines (IFN-γ1-2) and a Th17 cytokine (IL-17A/F1a) was also up-regulated and correlated with enhanced expression of the IL-12 family α-chains, and the majority of pro- and anti-inflammatory cytokines, APPs and AMPs. These expression profiles may suggest that ERM vaccination activates host innate immunity and expression of specific IL-12 and IL-23 isoforms leading to a Th1 and Th17 biased immune response. A late induction of Th2 cytokines (IL-4/13B1-2) was also observed, that may have a homeostatic role and/or involvement in antibody production. This study has increased our understanding of the host immune response to ERM vaccination and the adaptive pathways involved. The early responses of a set of genes established in this study may provide essential information and function as biomarkers in future vaccine development in aquaculture.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham 44150, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
14
|
Wrobel A, Ottoni C, Leo JC, Linke D. pYR4 From a Norwegian Isolate of Yersinia ruckeri Is a Putative Virulence Plasmid Encoding Both a Type IV Pilus and a Type IV Secretion System. Front Cell Infect Microbiol 2018; 8:373. [PMID: 30460204 PMCID: PMC6232867 DOI: 10.3389/fcimb.2018.00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023] Open
Abstract
Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.
Collapse
Affiliation(s)
| | - Claudio Ottoni
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Wang E, Qin Z, Yu Z, Ai X, Wang K, Yang Q, Liu T, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Molecular Characterization, Phylogenetic, Expression, and Protective Immunity Analysis of OmpF, a Promising Candidate Immunogen Against Yersinia ruckeri Infection in Channel Catfish. Front Immunol 2018; 9:2003. [PMID: 30271401 PMCID: PMC6146100 DOI: 10.3389/fimmu.2018.02003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 11/23/2022] Open
Abstract
Outer membrane porins, as the major components of Gram-negative bacterial membrane proteins, have been proven to be involved in interactions with the host immune system and potent protective antigen candidates against bacterial infection in fish. Outer membrane porin F (OmpF) is one of the major porins of Yersinia ruckeri (Y. ruckeri), the causative agent of enteric red mouth disease of salmonid and non-salmonid fish. In the present study, the molecular characterization and phylogenetic analysis of OmpF gene was studied, heterogenous expression, immunogenicity and protective immunity of OmpF were systemically evaluated as a subunit vaccine for channel catfish against Y. ruckeri infection. The results showed that OmpF gene was highly conserved among 15 known Yersinia species based on the analysis of conserved motifs, sequences alignment and phylogenetic tree, and was subjected to negative/purifying selection with global dN/dS ratios value of 0.649 throughout the evolution. Besides, OmpF was also identified to have immunogenicity by western blotting and was verified to be located on the surface of Y. ruckeri using cell surface staining and indirect immunofluorescence assays. Moreover, recombinant OmpF (rtOmpF) as a subunit vaccine was injected with commercial adjuvant ISA763, significantly enhanced the immune response by increasing serum antibody levels, lysozyme activity, complement C3 activity, total protein content, SOD activity, immune-related genes expression in the head kidney and spleen, and survival percent of channel catfish against Y. ruckeri infection. Thus, our present results not only enriched the information of molecular characterization and phylogenetics of OmpF, but also demonstrated that OmpF holds promise to be used as a potential antigen against Y. ruckeri infection in fish.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenyang Qin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zehui Yu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qian Yang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Multilocus Variable-Number Tandem-Repeat Analysis of Yersinia ruckeri Confirms the Existence of Host Specificity, Geographic Endemism, and Anthropogenic Dissemination of Virulent Clones. Appl Environ Microbiol 2018; 84:AEM.00730-18. [PMID: 29884756 PMCID: PMC6070765 DOI: 10.1128/aem.00730-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 01/14/2023] Open
Abstract
This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context. A multilocus variable-number tandem-repeat analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of 10 variable-number tandem-repeat (VNTR) loci in two five-plex PCRs, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over 7 decades, was analyzed. Minimum-spanning-tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin, and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, subclustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific subclustering further indicates persistent colonization of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less-virulent or avirulent strains. IMPORTANCE This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context.
Collapse
|
17
|
Strøm HK, Ohtani M, Nowak B, Boutrup TS, Jones B, Raida MK, Bojesen AM. Experimental infection by Yersinia ruckeri O1 biotype 2 induces brain lesions and neurological signs in rainbow trout (Oncorhynchus mykiss). JOURNAL OF FISH DISEASES 2018; 41:529-537. [PMID: 29148587 DOI: 10.1111/jfd.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
Pathological manifestations in rainbow trout (Oncorhynchus mykiss) following experimental waterborne infection with Yersinia ruckeri serotype O1 biotype 2 (strain 07111224) were investigated. Rainbow trout were exposed to 8 × 107 CFU/ml of Y. ruckeri by bath for 6 hr, and mortality was then monitored for 22 days post-infection (dpi). Organs were sampled at 3 dpi and also from moribund fish showing signs of severe systemic infection such as bleeding, exophthalmia or erratic swimming behaviour. Y. ruckeri was observed in the meninges and diencephalon of the brain, and lamina propria of olfactory organ at 3 dpi. At 12 dpi, Y. ruckeri had spread throughout the brain including cranial connective tissues and ventricles and the infection was associated with haemorrhages and an infiltration with leucocytes. Y. ruckeri infection and associated with leucocyte infiltration were observed at 13 dpi. In conclusion, Y. ruckeri strain 07111224 causes encephalitis in the acute phase of infection, which could explain why Y. ruckeri-affected fish show exophthalmia and erratic swimming known as signs of ERM.
Collapse
Affiliation(s)
- H K Strøm
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M Ohtani
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - B Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tas., Australia
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - T S Boutrup
- Aquapri Denmark A/S, Frederiksvaerk, Denmark
| | - B Jones
- Murdoch University School of Veterinary and Life Sciences, Perth, WA, Australia
| | | | - A M Bojesen
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
18
|
Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Front Microbiol 2017; 8:121. [PMID: 28217117 PMCID: PMC5290457 DOI: 10.3389/fmicb.2017.00121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.
Collapse
Affiliation(s)
- Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | | | - Kerry L Bartie
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College LondonLondon, UK; The Centre for Genomic Pathogen Surveillance, Wellcome Genome CampusCambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|