1
|
Půža V, Machado RAR. Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. ZOOLOGICAL LETTERS 2024; 10:13. [PMID: 39020388 PMCID: PMC11256433 DOI: 10.1186/s40851-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/08/2024] [Indexed: 07/19/2024]
Abstract
Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.
Collapse
Affiliation(s)
- Vladimír Půža
- Institute of Entomology, Biology centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, České Budějovice, 37005, Czech Republic.
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
2
|
Krithika VP, Shandeep G, Bellie A, Gulsar Banu J, Mannu J, Suganthy M, Gomathi V, Uma D, Mohan P. Harnessing nature's arsenal: Ochrobactrum bacteria metabolites in the battle against root- knot nematode - Insights from in vitro and molecular docking studies. J Invertebr Pathol 2024; 204:108114. [PMID: 38636720 DOI: 10.1016/j.jip.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Agricultural Productivity and plant health are threatened by the root-knot nematode. The use of biocontrol agents reduces the need for chemical nematicides and improves the general health of agricultural ecosystems by offering a more environmentally friendly and sustainable method of managing nematode infestations. Plant-parasitic nematodes can be efficiently managed with the use of entomopathogenic nematodes (EPNs), which are widely used biocontrol agents. This study focused on the nematicidal activity of the secondary metabolites present in the bacteria Ochrobactrum sp. identified in the EPN, Heterorhabditisindica against Root-Knot Nematode (Meloidogyne incognita). Its effect on egg hatching and survival of juveniles of root- knot nematode (RKN) was examined. The ethyl acetate component of the cell-free culture (CFC) filtrate of the Ochrobactrum sp. bacteria was tested at four different concentrations (25 %, 50 %, 75 % and 100 %) along with broth and distilled water as control. The bioactive compounds of Ochrobactrum sp. bacteria showed the highest suppression of M. incognita egg hatching (100 %) and juvenile mortality (100 %) at 100 % concentration within 24 h of incubation. In this study, unique metabolite compounds were identified through the Gas Chromatography- Mass Spectrometry (GC-MS) analysis, which were found to have anti- nematicidal activity. In light of this, molecular docking studies were conducted to determine the impact of biomolecules from Ochrobactrum sp. using significant proteins of M. incognita, such as calreticulin, sterol carrier protein 2, flavin-containing monooxygenase, pectate lyase, candidate secreted effector, oesophageal gland cell secretory protein and venom allergen-like protein. The results also showed that the biomolecules from Ochrobactrum sp. had a significant inhibitory effect on the different protein targets of M. incognita. 3-Epimacronine and Heraclenin were found to inhibit most of the chosen target protein. Among the targets, the docking analysis revealed that Heraclenin exhibited the highest binding affinity of -8.6 Kcal/mol with the target flavin- containing monooxygenase. Further, the in vitro evaluation of 3- Epimacronine confirmed their nematicidal activity against M. incognita at different concentrations. In light of this, the present study has raised awareness of the unique biomolecules of the bacterial symbiont Ochrobactrum sp. isolated from H. indica that have nematicidal properties.
Collapse
Affiliation(s)
- V P Krithika
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Ganeshan Shandeep
- Department of Nematology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Anita Bellie
- Department of Nematology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - J Gulsar Banu
- Principal Scientist (Nematology), ICAR-Central Institute for Cotton Research, Coimbatore, Tamil Nadu, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Suganthy
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - V Gomathi
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - D Uma
- Department of Biochemistry, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Zwyssig M, Spescha A, Patt T, Belosevic A, Machado RAR, Regaiolo A, Keel C, Maurhofer M. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria. THE ISME JOURNAL 2024; 18:wrae028. [PMID: 38381653 PMCID: PMC10945363 DOI: 10.1093/ismejo/wrae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria-bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5. Bacterial populations were assessed over time in experimental systems of increasing complexity. In vitro, SM5 was outcompeted when CHA0 reached a certain cell density, resulting in the collapse of the SM5 population. In contrast, both bacteria were able to coexist upon haemolymph-injection into Galleria mellonella larvae, as found for three further EPP-NAB combinations. Finally, both bacteria were administered by natural infection routes i.e. orally for CHA0 and nematode-vectored for SM5 resulting in the addition of RS5 to the system. This did not alter bacterial coexistence nor did the presence of the EPP affect nematode reproductive success or progeny virulence. CHA0 benefited from RS5, probably by exploiting access routes formed by the nematodes penetrating the larval gut epithelium. Our results indicate that EPPs are able to share an insect host with EPNs and their mutualistic bacteria without major negative effects on the reproduction of any of the three entomopathogens or the fitness of the nematodes. This suggests that their combination is a promising strategy for biological insect pest control.
Collapse
Affiliation(s)
- Maria Zwyssig
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Anna Spescha
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Tabea Patt
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Adrian Belosevic
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchatel, CH-2000 Neuchatel, Switzerland
| | - Alice Regaiolo
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology, Microbiology and Biotechnology, 55128 Mainz, Germany
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
4
|
Vicente-Díez I, Pou A, Campos-Herrera R. The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management. J Invertebr Pathol 2023; 198:107911. [PMID: 36921888 DOI: 10.1016/j.jip.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
The grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a critical pest for vineyards and causes significant economic losses in wine-growing areas worldwide. Identifying and developing novel semiochemical cues (e.g. volatile bacterial compounds) which modify the ovipositional and trophic behaviour of L. botrana in vineyard fields could be a novel control alternative in viticulture. Xenorhabdus spp. and Photorhabdus spp. are becoming one of the best-studied bacterial species due to their potential interest in producing toxins and deterrent factors. In this study, we investigated the effect of the deterrent compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii on the ovipositional moth behaviour and the larval feeding preference of L. botrana. Along with the in-vitro bioassays performed, we screened the potential use of 3 d cell-free bacterial supernatants and 3 and 5 d unfiltered bacterial ferments. In addition, we tested two application systems: (i) contact application of the bacterial compounds and (ii) volatile bacterial compounds application. Our findings indicate that the deterrent effectiveness varied with bacterial species, the use of bacterial cell-free supernatants or unfiltered fermentation product, and the culture times. Grapes soaked in the 3 d X. nematophila and P. laumondii ferments had ∼ 55% and ∼ 95% fewer eggs laid than the control, respectively. Likewise, the volatile compounds emitted by the 5 d P. laumondii fermentations resulted in ∼ 100% avoidance of L. botrana ovipositional activity for three days. Furthermore, both bacterial fermentation products have larval feeding deterrent effects (∼65% of the larva chose the control grapes), and they significantly reduced the severity of damage caused by third instar larva in treated grapes. This study provides insightful information about a novel bacteria-based tool which can be used as an eco-friendly and economical alternative in both organic and integrated control of L. botrana in vineyard.
Collapse
Affiliation(s)
- Ignacio Vicente-Díez
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - Alicia Pou
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain.
| |
Collapse
|
5
|
Ogier JC, Akhurst R, Boemare N, Gaudriault S. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends Microbiol 2023; 31:629-643. [PMID: 36801155 DOI: 10.1016/j.tim.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/19/2023]
Abstract
Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.
Collapse
Affiliation(s)
| | | | - Noël Boemare
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | |
Collapse
|
6
|
Yang T, Wang X, Zhou X. Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). INSECTS 2022; 13:insects13111040. [PMID: 36354864 PMCID: PMC9692958 DOI: 10.3390/insects13111040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/01/2023]
Abstract
Insect-associated microbes exert diverse effects on host fitness. This study provides insights into the microbiota of the bamboo aphid, Melanaphis bambusae, and their response to Conidiobolus obscurus infection. 16S rRNA and ITS sequencing data were used to analyze the bacterial and fungal samples associated with healthy, infected, and starved aphids. At ≥97% nucleotide similarity, the total reads were clustered into 79 bacteria and 97 fungi operational Taxonomic Units (OTUs). The phyla Proteobacteria and Ascomycota dominated the bacterial and fungal communities, respectively. The significant divergence in OTU distribution presented differential profiles of the microbiota in response to host conditions. Lower α-diversity indices were found in bacterial and fungal diversity when the aphids were experiencing fungal infection and starvation stresses, respectively. The β-diversity analyses of the communities showed significant differences among the three host conditions, demonstrating that aphid-associated microbiota could significantly shift in response to varying host conditions. Moreover, some OTUs increased under fungal infection, which potentially increased aphid susceptibility. Presumably, C. obscurus infection contributed to this increase by causing the disintegration of host tissues other than host starvation. In conclusion, understanding the differentiation of aphid microbiota caused by fungal entomopathogens helped facilitate the development of novel pest management strategies.
Collapse
|
7
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
8
|
Skowronek M, Sajnaga E, Kazimierczak W, Lis M, Wiater A. Screening and Molecular Identification of Bacteria from the Midgut of Amphimallon solstitiale Larvae Exhibiting Antagonistic Activity against Bacterial Symbionts of Entomopathogenic Nematodes. Int J Mol Sci 2021; 22:ijms222112005. [PMID: 34769435 PMCID: PMC8584744 DOI: 10.3390/ijms222112005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) are a group of organisms capable of infecting larvae of insects living in soil, including representatives of the family Scarabaeidae. Their insecticidal activity is related to the presence of symbiotic bacteria Xenorhabdus spp. or Photorhabdus spp. in the alimentary tract, which are released into the insect body, leading to its death caused by bacterial toxins and septicemia. Although the antibacterial activities of symbionts of entomopathogenic nematodes have been well described, there is insufficient knowledge of the interactions between these bacteria and microorganisms that naturally inhabit the alimentary tract of insects infested by nematodes. In this study, 900 bacterial strains isolated from midgut samples of Amphimallon solstitiale larvae were tested for their antagonistic activity against the selected five Xenorhabdus and Photorhabdus species. Cross-streak tests showed significant antibacterial activity of 20 isolates. These bacteria were identified as Bacillus [Brevibacterium] frigoritolerans, Bacillus toyonensis, Bacillus wiedmannii, Chryseobacterium lathyri, Chryseobacterium sp., Citrobacter murliniae, Enterococcus malodoratus, Paenibacillus sp., Serratia marcescens and Serratia sp. Since some representatives of the intestinal microbiota of A. solstitiale are able to inhibit the growth of Xenorhabdus and Photorhrhabdus bacteria in vitro, it can be assumed that this type of bacterial interaction may occur at certain stages of insect infection by Steinernema or Heterorhabditis nematodes.
Collapse
Affiliation(s)
- Marcin Skowronek
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
- Correspondence: (M.S.); (A.W.)
| | - Ewa Sajnaga
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Waldemar Kazimierczak
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Magdalena Lis
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
- Correspondence: (M.S.); (A.W.)
| |
Collapse
|
9
|
Upadhyay A, Mohan S. Bacillus subtilis and B. licheniformis Isolated from Heterorhabditis indica Infected Apple Root Borer (Dorysthenes huegelii) Suppresses Nematode Production in Galleria mellonella. Acta Parasitol 2021; 66:989-996. [PMID: 33768406 DOI: 10.1007/s11686-021-00366-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Heterorhabdits indica successfully controlled apple root borer Dorysthenes huegelii in the orchards, but nematode-infected cadavers revealed the presence of non-symbiotic bacterial B. subtilis and B. licheniformis, and no subsequent generations of H. indica were produced (hampered recycling phenomenon). Intrigued, we tested the effect of the two Bacillus species on symbiotic association of H. indica-Photorhabdus luminescens. METHODS One-to-one competitive parallel line in vitro assays were carried out between P. luminescens and the two Bacillus spp., while in vivo H. indica development was studied on the test insect Galleria mellonella which were fed with Bacillus mixed diet, followed by nematode exposure. RESULTS Where P. luminescens was flanked by either of the two Bacillus species, only B. subtilis significantly suppressed its growth, while in reversed assays both the Bacillus growth was unaffected. Heterorhabditis indica was able to kill Galleria larvae pre-fed with the two Bacillus spp.; these cadavers did not develop the characteristic evenly distributed brick red coloration. Besides P. luminesecns, both Bacillus spp. were found to coexist in these cadavers. Development of hermaphrodites was not affected, but second-generation females, and final nematode progeny was reduced significantly. Monozenic lawns of B. subtilis and B. licheniformis did not support H. indica development. CONCLUSION These results show the reduced development of H. indica by the presence of the non-symbiotic bacteria in G. mellonella is likely to affect their ability to recycle in other insect larvae. Reduced recycling caused by non-symbiotic bacteria will reduce the overall long-term pest control benefits and have implications in the development of application strategies using entomopathogenic nematodes (EPNs) as insect control agents.
Collapse
|
10
|
Nanopore-Sequencing Characterization of the Gut Microbiota of Melolontha melolontha Larvae: Contribution to Protection against Entomopathogenic Nematodes? Pathogens 2021; 10:pathogens10040396. [PMID: 33806200 PMCID: PMC8067285 DOI: 10.3390/pathogens10040396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.
Collapse
|
11
|
Lei H, Liu A, Hou Q, Zhao Q, Guo J, Wang Z. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping. BMC Microbiol 2020; 20:272. [PMID: 32867674 PMCID: PMC7457492 DOI: 10.1186/s12866-020-01956-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022] Open
Abstract
Background Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated. Results In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples. Conclusions Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.
Collapse
Affiliation(s)
- Haiying Lei
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Ake Liu
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Qinwen Hou
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Qingsong Zhao
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Jia Guo
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi, Shanxi, 046011, P. R. China.
| |
Collapse
|
12
|
Ogier JC, Pagès S, Frayssinet M, Gaudriault S. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. MICROBIOME 2020; 8:25. [PMID: 32093774 PMCID: PMC7041241 DOI: 10.1186/s40168-020-00800-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The holistic view of bacterial symbiosis, incorporating both host and microbial environment, constitutes a major conceptual shift in studies deciphering host-microbe interactions. Interactions between Steinernema entomopathogenic nematodes and their bacterial symbionts, Xenorhabdus, have long been considered monoxenic two partner associations responsible for the killing of the insects and therefore widely used in insect pest biocontrol. We investigated this "monoxenic paradigm" by profiling the microbiota of infective juveniles (IJs), the soil-dwelling form responsible for transmitting Steinernema-Xenorhabdus between insect hosts in the parasitic lifecycle. RESULTS Multigenic metabarcoding (16S and rpoB markers) showed that the bacterial community associated with laboratory-reared IJs from Steinernema carpocapsae, S. feltiae, S. glaseri and S. weiseri species consisted of several Proteobacteria. The association with Xenorhabdus was never monoxenic. We showed that the laboratory-reared IJs of S. carpocapsae bore a bacterial community composed of the core symbiont (Xenorhabdus nematophila) together with a frequently associated microbiota (FAM) consisting of about a dozen of Proteobacteria (Pseudomonas, Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, Brevundimonas, Deftia, etc.). We validated this set of bacteria by metabarcoding analysis on freshly sampled IJs from natural conditions. We isolated diverse bacterial taxa, validating the profile of the Steinernema FAM. We explored the functions of the FAM members potentially involved in the parasitic lifecycle of Steinernema. Two species, Pseudomonas protegens and P. chlororaphis, displayed entomopathogenic properties suggestive of a role in Steinernema virulence and membership of the Steinernema pathobiome. CONCLUSIONS Our study validates a shift from monoxenic paradigm to pathobiome view in the case of the Steinernema ecology. The microbial communities of low complexity associated with EPNs will permit future microbiota manipulation experiments to decipher overall microbiota functioning in the infectious process triggered by EPN in insects and, more generally, in EPN ecology.
Collapse
Affiliation(s)
| | - Sylvie Pagès
- DGIMI, INRAe-Université de Montpellier, 34095, Montpellier, France
| | - Marie Frayssinet
- DGIMI, INRAe-Université de Montpellier, 34095, Montpellier, France
| | | |
Collapse
|
13
|
Allonsius CN, Van Beeck W, De Boeck I, Wittouck S, Lebeer S. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim Microbiome 2019; 1:7. [PMID: 33499945 PMCID: PMC7807499 DOI: 10.1186/s42523-019-0010-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/21/2019] [Indexed: 01/16/2023] Open
Abstract
Background The popularity of Galleria mellonella as invertebrate model is increasing rapidly, because it forms an attractive alternative to study bacterial, fungal and viral infections, toxin biology, and to screen antimicrobial drugs. For a number of vertebrate and invertebrate animal and plant models, it has been established that the commensals present within the microbial communities on various host surfaces will influence the host’s immune and growth development state and the colonization capacity of newly introduced micro-organisms. The microbial communities of Galleria mellonella larvae have, however, not yet been well characterized. Results In this study, we present the bacterial communities that were found by 16S rRNA amplicon sequencing on different body sites of G. mellonella larvae. These communities showed very little diversity and were mostly dominated by one Enterococcus taxon. In addition, we found that the production conditions (as ‘bait’ for fishing or under more controlled ‘research grade’ conditions - with or without hormones and antibiotics) appear to have little impact on the microbiota of the larvae. Conclusions Establishment of the simplicity of the microbiota of G. mellonella larvae underlines the potential of the larvae as a model host system for microbiome-host interactions.
Collapse
Affiliation(s)
- Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| |
Collapse
|
14
|
Abstract
In recent years, tremendous advances have been made in our ability to characterize complex microbial communities such as the gut microbiota, and numerous surveys of the human gut microbiota have identified countless associations between different compositional attributes of the gut microbiota and adverse health conditions. However, most of these findings in humans are purely correlative and animal models are required for prospective evaluation of such changes as causative factors in disease initiation or progression. As in most fields of biomedical research, microbiota-focused studies are predominantly performed in mouse or rat models. Depending on the field of research and experimental question or objective, non-rodent models may be preferable due to better translatability or an inability to use rodents for various reasons. The following review describes the utility and limitations of several non-rodent model species for research on the microbiota and its influence on host physiology and disease. In an effort to balance the breadth of potential model species with the amount of detail provided, four model species are discussed: zebrafish, dogs, pigs, and rabbits.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, United States of America
| |
Collapse
|
15
|
Aujoulat F, Pagès S, Masnou A, Emboulé L, Teyssier C, Marchandin H, Gaudriault S, Givaudan A, Jumas-Bilak E. The population structure of Ochrobactrum isolated from entomopathogenic nematodes indicates interactions with the symbiotic system. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:131-139. [PMID: 30790700 DOI: 10.1016/j.meegid.2019.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/14/2018] [Accepted: 02/16/2019] [Indexed: 02/02/2023]
Abstract
Entomopathogenic nematodes (EPNs) form specific mutualistic associations with bioluminescent enterobacteria. In Heterorhabditidis indica, Ochrobactrum spp. was identified beside the symbiont Photorhabdus luminescens but its involvement in the symbiotic association in the EPNs remains unclear. This study describe the population structure and the diversity in Ochrobactrum natural populations isolated from EPNs in the Caribbean basin in order to question the existence of EPN-specialized clones and to gain a better insight into Ochrobactrum-EPNs relationships. EPN-associated Ochrobactrum and Photorhabdus strains were characterized by multi-locus sequence typing, Pulsed-Field Gel Electrophoresis fingerprinting and phenotypic traits. Population study showed the absence of EPN-specialized clones in O. intermedium and O. anthropi but suggested the success of some particular lineages. A low level of genetic and genomic diversification of Ochrobactrum isolated from the natural population of Caribbean nematodes was observed comparatively to the diversity of human-associated Ochrobactrum strains. Correspondences between Ochrobactrum and P. luminescens PFGE clusters have been observed, particularly in the case of nematodes from Dominican Republic and Puerto Rico. O. intermedium and O. anthropi associated to EPNs formed less biofilm than human-associated strains. These results evoke interactions between Ochrobactrum and the EPN symbiotic system rather than transient contamination. The main hypothesis to investigate is a toxic/antitoxic relationship because of the ability of Ochrobactrum to resist to antimicrobial and toxic compounds produced by Photorhabdus.
Collapse
Affiliation(s)
- Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Univ Montpellier, Montpellier, France
| | - Sylvie Pagès
- Diversité, Génomes & Interactions Microorganismes-Insectes, INRA, Univ Montpellier, Montpellier, France
| | - Agnès Masnou
- HydroSciences Montpellier, IRD, CNRS, Univ Montpellier, Montpellier, France
| | - Loic Emboulé
- CHU de Pointe-à-Pitre/Abymes, Pointe-à-Pitre, Guadeloupe, France
| | | | - Hélène Marchandin
- HydroSciences Montpellier, IRD, CNRS, Univ Montpellier, Montpellier, France
| | - Sophie Gaudriault
- Diversité, Génomes & Interactions Microorganismes-Insectes, INRA, Univ Montpellier, Montpellier, France
| | - Alain Givaudan
- Diversité, Génomes & Interactions Microorganismes-Insectes, INRA, Univ Montpellier, Montpellier, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
16
|
Ciezki K, Wesener S, Jaber D, Mirza S, Forst S. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. MICROBIOLOGY-SGM 2019; 165:538-553. [PMID: 30938671 DOI: 10.1099/mic.0.000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Xenorhabdus species are symbionts of entomopathogenic nematodes and pathogens of susceptible insects. Nematodes enter insect hosts and perforate the midgut to invade the haemocoel where Xenorhabdus bacteria are released transitioning to their pathogenic stage. During nematode invasion microbes from the insect gut translocate into the haemocoel. Different species of nematodes carrying specific strains of Xenorhabdus can also invade the same insect. Xenorhabdus species thereby compete for nutrients and space with both related strains and non-related gut microbes. While Xenorhabdus species produce diverse antimicrobial compounds in complex media, their functions in insect hosts are not well understood. We show that Xenorhabdus szentirmaii produced ngrA-dependent antibiotics that were active against both gut-derived microbes and Xenorhabdus nematophila whereas antibiotics of X. nematophila were not active against X. szentirmaii. X. nematophila growth was inhibited in co-cultures with wild-type X. szentirmaii in medium that mimics insect haemolymph. An antibiotic-deficient strain of X. szentirmaii was created by inactivating the ngrA gene that encodes the enzyme that attaches the 4' phosphopantetheinyl moiety to non-ribosomal peptide synthetases involved in antibiotic biosynthesis. X. nematophila growth was not inhibited in co-cultures with the ngrA strain. The growth of X. nematophila was suppressed in Manduca sexta co-injected with wild-type X. szentirmaii and X. nematophila. In contrast, growth of X. nematophila was not suppressed in M. sexta co-injected with the ngrA strain. Two unique compounds were detected by MALDI-TOF MS analysis in haemolymph infected with the wild-type but not with the ngrA strain. Finally, killing of M. sexta was delayed in insects infected with the ngrA strain. These findings indicate that in the insect host X. szentirmaii produces ngrA-dependent products involved in both interspecies competition and virulence.
Collapse
Affiliation(s)
- Kristin Ciezki
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shane Wesener
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Danny Jaber
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shama Mirza
- Shimadzu Laboratory for Advanced and Applied Analytical Chemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Steven Forst
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Spatiotemporal expression of the putative MdtABC efflux pump of Phtotorhabdus luminescens occurs in a protease-dependent manner during insect infection. PLoS One 2019; 14:e0212077. [PMID: 30763358 PMCID: PMC6375597 DOI: 10.1371/journal.pone.0212077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.
Collapse
|
18
|
Hoinville ME, Wollenberg AC. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:165-176. [PMID: 29203330 DOI: 10.1016/j.dci.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Photorhabdus bacteria enter into a mutualistic symbiosis with Heterorhabditis nematodes to infect insect larvae. However, they rapidly kill the model nematode Caenorhabditis elegans. One hypothesis for these divergent outcomes is that the nematode defense responses differ. To begin testing this hypothesis, we have systematically analyzed available data on the transcriptional response of C. elegans to P. luminescens strain Hb. From a starting pool of over 7000 differentially expressed genes, we carefully chose 21 Heterorhabditis-conserved genes to develop as comparative markers. Using newly designed and validated qRT-PCR primers, we measured expression of these genes in C. elegans exposed to the sequenced TT01 strain of P. luminescens, on two different media types. Almost all (18/21) of the genes showed a significant response to P. luminescens strain TT01. One response is dependent on media type, and a subset of genes may respond differentially to distinct strains. Overall, we have established useful resources and generated new hypotheses regarding how C. elegans responds to P. luminescens infection.
Collapse
Affiliation(s)
- Megan E Hoinville
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA
| | - Amanda C Wollenberg
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA.
| |
Collapse
|