1
|
Garrigós V, Picazo C, Matallana E, Aranda A. Activation of the yeast Retrograde Response pathway by adaptive laboratory evolution with S-(2-aminoethyl)-L-cysteine reduces ethanol and increases glycerol during winemaking. Microb Cell Fact 2024; 23:231. [PMID: 39164751 PMCID: PMC11337681 DOI: 10.1186/s12934-024-02504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Global warming causes an increase in the levels of sugars in grapes and hence in ethanol after wine fermentation. Therefore, alcohol reduction is a major target in modern oenology. Deletion of the MKS1 gene, a negative regulator of the Retrograde Response pathway, in Saccharomyces cerevisiae was reported to increase glycerol and reduce ethanol and acetic acid in wine. This study aimed to obtain mutants with a phenotype similar to that of the MKS1 deletion strain by subjecting commercial S. cerevisiae wine strains to an adaptive laboratory evolution (ALE) experiment with the lysine toxic analogue S-(2-aminoethyl)-L-cysteine (AEC). RESULTS In laboratory-scale wine fermentation, isolated AEC-resistant mutants overproduced glycerol and reduced acetic acid. In some cases, ethanol was also reduced. Whole-genome sequencing revealed point mutations in the Retrograde Response activator Rtg2 and in the homocitrate synthases Lys20 and Lys21. However, only mutations in Rtg2 were responsible for the overactivation of the Retrograde Response pathway and ethanol reduction during vinification. Finally, wine fermentation was scaled up in an experimental cellar for one evolved mutant to confirm laboratory-scale results, and any potential negative sensory impact was ruled out. CONCLUSIONS Overall, we have shown that hyperactivation of the Retrograde Response pathway by ALE with AEC is a valid approach for generating ready-to-use mutants with a desirable phenotype in winemaking.
Collapse
Affiliation(s)
- Víctor Garrigós
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain.
| | - Cecilia Picazo
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Muñoz-Miranda LA, Zepeda-Peña AC, Casas-Godoy L, Pereira-Santana A, Méndez-Zamora A, Barrera-Martínez I, Rodríguez-Zapata L, Gschaedler-Mathis AC, Figueroa-Yáñez LJ. CRISPRi-induced transcriptional regulation of IAH1 gene and its influence on volatile compounds profile in Kluyveromyces marxianus DU3. World J Microbiol Biotechnol 2024; 40:121. [PMID: 38441729 DOI: 10.1007/s11274-023-03811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 03/07/2024]
Abstract
Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.
Collapse
Affiliation(s)
- Luis A Muñoz-Miranda
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Andrea Catalina Zepeda-Peña
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Leticia Casas-Godoy
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Zapopan, Zapopan, Jalisco, México
| | - Alejandro Pereira-Santana
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. Subsede Sureste, Parque Científico y Tecnológico de Yucatán, Mérida, Yucatán, México
| | - Andrés Méndez-Zamora
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Iliana Barrera-Martínez
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Zapopan, Zapopan, Jalisco, México
| | - Luis Rodríguez-Zapata
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, Yucatán, México
| | - Anne Christine Gschaedler-Mathis
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México.
| | - Luis J Figueroa-Yáñez
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México.
| |
Collapse
|
3
|
Gutiérrez AR, Portu J, López R, Garijo P, González-Arenzana L, Santamaría P. Carbonic maceration vinification: A tool for wine alcohol reduction. Food Chem 2023; 426:136558. [PMID: 37329794 DOI: 10.1016/j.foodchem.2023.136558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The increase in alcohol content in wine due to climate change is one of the main challenges that winemakers face today. Previous studies have indicated that carbonic maceration processing can be used to obtain a wine fraction with lower alcoholic strength. The aim of this study was to determine the effectiveness of this technique in obtaining wines with lower alcohol content. For this purpose, seven trials were carried out, studying a total of 63 wines. The physico-chemical, phenolic and aromatic composition of the wines was analysed using official methods and gas chromatography. The results showed that it is possible to obtain a fraction of carbonic maceration wine (25-35% of the total) with a reduction in alcohol content of up to almost 4% depending on the vinification conditions and the grape variety used. Therefore, this CM fraction, marketed on its own, could be a low-alcohol alternative to red wines.
Collapse
Affiliation(s)
- Ana Rosa Gutiérrez
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Carretera de Burgos Km 6, Finca La Grajera, 26007 Logroño, Spain.
| | - Javier Portu
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Carretera de Burgos Km 6, Finca La Grajera, 26007 Logroño, Spain.
| | - Rosa López
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Carretera de Burgos Km 6, Finca La Grajera, 26007 Logroño, Spain
| | - Patrocinio Garijo
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Carretera de Burgos Km 6, Finca La Grajera, 26007 Logroño, Spain.
| | - Lucía González-Arenzana
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Carretera de Burgos Km 6, Finca La Grajera, 26007 Logroño, Spain.
| | - Pilar Santamaría
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Carretera de Burgos Km 6, Finca La Grajera, 26007 Logroño, Spain.
| |
Collapse
|
4
|
Xynas B, Barnes C. Yeast or water: producing wine with lower alcohol levels in a warming climate: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3249-3260. [PMID: 36585908 DOI: 10.1002/jsfa.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Climate change effects over the last century have seen grape wine growers being faced with earlier budburst and shorter seasons. One effect is higher sugar levels in the grape berries, resulting in wines with higher than typical alcohol concentrations. Winemakers, both in Australia and globally, need to reassess their wine making approaches to address the challenges associated with warmer drier conditions. This review focuses on two pre-fermentation approaches that address ethanol production during fermentation, so that wine makers can produce a wine with lower final alcohol levels at the same time as addressing any negative impacts on wine quality. First, microbiological yeast approaches are reviewed. This approach can reduce final alcohol levels in a treated wine between 0.2% v/v-3.7% v/v; however, diverse wine quality impacts can result, dependant on the microbiological yeast approach taken. Second, the pre-fermentation approach of water addition/substitution into a high sugar grape must is reviewed. To date, recent studies indicate that this 'water treatment' of musts approach is effective with respect to reducing final alcohol levels from between 0.6% v/v-5.9% v/v in the resultant wines, with less variation effects on final wine quality. It is noted that further studies for the 'water treatment' of high sugar musts approach are required to provide additional foundational data sets with respect to impacts on chemical, phenolic and sensory attributes of the final wine products, both within and across vintages. This is especially important as winemakers adapt their winemaking approaches in a changing climate. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Billy Xynas
- Faculty of Veterinary and Agricultural Sciences, Wine Technology and Viticulture, University of Melbourne, Melbourne, VIC, Australia
| | - Chris Barnes
- Faculty of Veterinary and Agricultural Sciences, Wine Technology and Viticulture, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Gardner JM, Alperstein L, Walker ME, Zhang J, Jiranek V. Modern yeast development: finding the balance between tradition and innovation in contemporary winemaking. FEMS Yeast Res 2023; 23:foac049. [PMID: 36255399 PMCID: PMC9990983 DOI: 10.1093/femsyr/foac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 02/01/2023] [Indexed: 11/13/2022] Open
Abstract
A key driver of quality in wines is the microbial population that undertakes fermentation of grape must. Winemakers can utilise both indigenous and purposefully inoculated yeasts to undertake alcoholic fermentation, imparting wines with aromas, flavours and palate structure and in many cases contributing to complexity and uniqueness. Importantly, having a toolbox of microbes helps winemakers make best use of the grapes they are presented with, and tackle fermentation difficulties with flexibility and efficiency. Each year the number of strains available commercially expands and more recently, includes strains of non-Saccharomyces, strains that have been improved using both classical and modern yeast technology and mixed cultures. Here we review what is available commercially, and what may be in the future, by exploring recent advances in fermentation relevant strain improvement technologies. We also report on the current use of microbes in the Australian wine industry, as reported by winemakers, as well as regulations around, and sentiment about the potential use of genetically modified organisms in the future.
Collapse
Affiliation(s)
- Jennifer M Gardner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Lucien Alperstein
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Michelle E Walker
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Jin Zhang
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae 5064, South Australia, Australia
| |
Collapse
|
6
|
Membrane Dialysis for Partial Dealcoholization of White Wines. MEMBRANES 2022; 12:membranes12050468. [PMID: 35629794 PMCID: PMC9146739 DOI: 10.3390/membranes12050468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Membrane dialysis is studied as a promising technique for partial dealcoholization of white wines. The performance of three membrane processes applied for the partial dealcoholization of white wines of the Verdejo variety has been studied in the present work. Combination of Nanofiltration with Pervaporation, single step Pervaporation and, finally, Dialysis, have been applied to white wines from same variety and different vintages. The resulting wines have been chemically and sensorially analyzed and results have been compared with initial characteristics of the wines. From the results obtained, we can conclude that all procedures lead to significant alcohol content reduction (2%, 0.9% and 1.23% v/v respectively). Nevertheless, the best procedure consists in the application of Dialysis to the wines which resulted in a reasonable alcohol content reduction while maintaining organoleptic properties (only 14 consumers were able to distinguish the filtered and original wines, with 17 consumers needed to be this differences significant) and consumer acceptability of the original wine. Therefore, membrane dialysis, as a method of partial dealcoholization of white wines, has undoubted advantages over other techniques based on membranes, which must be confirmed in subsequent studies under more industrial conditions. This work represents the first application of Dialysis for the reduction of alcohol content in wines.
Collapse
|
7
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Techniques for Dealcoholization of Wines: Their Impact on Wine Phenolic Composition, Volatile Composition, and Sensory Characteristics. Foods 2021; 10:foods10102498. [PMID: 34681547 PMCID: PMC8535880 DOI: 10.3390/foods10102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The attention of some winemakers and researchers over the past years has been drawn towards the partial or total dealcoholization of wines and alcoholic beverages due to trends in wine styles, and the effect of climate change on wine alcohol content. To achieve this, different techniques have been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for commercial production. However, the removal of alcohol by these techniques can cause changes in color and losses of desirable volatile aroma compounds, which can subsequently affect the sensory quality and acceptability of the wine by consumers. Aside from the removal of ethanol, other factors such as the ethanol concentration, the kind of alcohol removal technique, the retention properties of the wine non-volatile matrix, and the chemical-physical properties of the aroma compounds can influence changes in the wine sensory quality during dealcoholization. This review highlights and summarizes some of the techniques for wine dealcoholization and their impact on wine quality to help winemakers in choosing the best technique to limit adverse effects in dealcoholized wines and to help meet the needs and acceptance among different targeted consumers such as younger people, pregnant women, drivers, and teetotalers.
Collapse
|
9
|
Comitini F, Agarbati A, Canonico L, Ciani M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22147754. [PMID: 34299371 PMCID: PMC8307806 DOI: 10.3390/ijms22147754] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.
Collapse
|
10
|
Du Q, Liu Y, Song Y, Qin Y. Creation of a Low-Alcohol-Production Yeast by a Mutated SPT15 Transcription Regulator Triggers Transcriptional and Metabolic Changes During Wine Fermentation. Front Microbiol 2021; 11:597828. [PMID: 33381093 PMCID: PMC7768003 DOI: 10.3389/fmicb.2020.597828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
There is significant interest in the wine industry to develop methods to reduce the ethanol content of wine. Here the global transcription machinery engineering (gTME) technology was used to engineer a yeast strain with decreased ethanol yield, based on the mutation of the SPT15 gene. We created a strain of Saccharomyces cerevisiae (YS59-409), which possessed ethanol yield reduced by 34.9%; this was accompanied by the increase in CO2, biomass, and glycerol formation. Five mutation sites were identified in the mutated SPT15 gene of YS59-409. RNA-Seq and metabolome analysis of YS59-409 were conducted compared with control strain, suggesting that ribosome biogenesis, nucleotide metabolism, glycolysis flux, Crabtree effect, NAD+/NADH homeostasis and energy metabolism might be regulated by the mutagenesis of SPT15 gene. Furthermore, two genes related to energy metabolism, RGI1 and RGI2, were found to be associated with the weakened ethanol production capacity, although the precise mechanisms involved need to be further elucidated. This study highlighted the importance of applying gTME technology when attempting to reduce ethanol production by yeast, possibly reprogramming yeast’s metabolism at the global level.
Collapse
Affiliation(s)
- Qing Du
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China.,National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China.,National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China.,National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China.,National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
11
|
Metatranscriptome-based investigation of flavor-producing core microbiota in different fermentation stages of dajiang, a traditional fermented soybean paste of Northeast China. Food Chem 2020; 343:128509. [PMID: 33199116 DOI: 10.1016/j.foodchem.2020.128509] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Dajiang, or naturally fermented soybean paste, has a unique flavor that is influenced by the resident microflora. However, the association between flavor and the core microbiota is unclear. Recent advances in RNA sequencing have identified genes that are actively expressed in complex microbial communities. To this end, we analyzed the time-dependent changes in the microbiota and the metabolite profiles of Dajiang using metatranscriptome sequencing, HS-SPME-GC-MS and amino acid analysis identified 10 volatile compounds that contribute to the development of soybean paste flavor. Further analysis of the correlation between the active microorganisms and the physicochemical characteristics and flavor substances in soybean paste indicated that Lactobacillus and Tetragenococcus were the core genera affecting chromaticity and flavor. These microorganisms produce enzymes that catalyze a series of metabolic pathways that generate flavor substances. Our findings provide new insights into the role of the microbiota in the development of flavor in fermented foods.
Collapse
|
12
|
Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering (Basel) 2020; 7:bioengineering7040128. [PMID: 33066502 PMCID: PMC7712467 DOI: 10.3390/bioengineering7040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The most famous yeast of all, Saccharomyces cerevisiae, has been used by humankind for at least 8000 years, to produce bread, beer and wine, even without knowing about its existence. Only in the last century we have been fully aware of the amazing power of this yeast not only for ancient uses but also for biotechnology purposes. In the last decades, wine culture has become and more demanding all over the world. By applying as powerful a biotechnological tool as genetic engineering in S. cerevisiae, new horizons appear to develop fresh, improved, or modified wine characteristics, properties, flavors, fragrances or production processes, to fulfill an increasingly sophisticated market that moves around 31.4 billion € per year.
Collapse
|
13
|
Eldarov MA, Mardanov AV. Metabolic Engineering of Wine Strains of Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E964. [PMID: 32825346 PMCID: PMC7565949 DOI: 10.3390/genes11090964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Modern industrial winemaking is based on the use of starter cultures of specialized wine strains of Saccharomyces cerevisiae yeast. Commercial wine strains have a number of advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality, it has become increasingly critical to develop new wine strains and winemaking technologies. Novel opportunities for precise wine strain engineering based on detailed knowledge of the molecular nature of a particular trait or phenotype have recently emerged due to the rapid progress in genomic and "postgenomic" studies with wine yeast strains. The review summarizes the current achievements of the metabolic engineering of wine yeast, the results of recent studies and the prospects for the application of genomic editing technologies for improving wine S. cerevisiae strains.
Collapse
Affiliation(s)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
14
|
Sequential Non-Saccharomyces and Saccharomyces cerevisiae Fermentations to Reduce the Alcohol Content in Wine. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decades, the average alcohol content of wine has increased due to climate change and consumer preferences for particular wine styles that resulted in increased grape sugar levels at harvest. Therefore, alcohol reduction is a current challenge in the winemaking industry. Among several strategies under study, the use of non-conventional yeasts in combination with Saccharomyces cerevisiae plays an important role for lowering ethanol production in wines nowadays. In the present work, 33 native non-Saccharomyces strains were assayed in sequential culture with a S. cerevisiae wine strain to determine their potential for reducing the alcohol content in Malvar white wines. Four of the non-Saccharomyces strains (Wickerhamomyces anomalus 21A-5C, Meyerozyma guilliermondii CLI 1217, and two Metschnikowia pulcherrima (CLI 68 and CLI 460)) studied in sequential combination with S. cerevisiae CLI 889 were best able to produce dry wines with decreased alcohol proportion in comparison with one that was inoculated only with S. cerevisiae. These sequential fermentations produced wines with between 0.8% (v/v) and 1.3% (v/v) lower ethanol concentrations in Malvar wines, showing significant differences compared with the control. In addition, these combinations provided favorable oenological characteristics to wines such as high glycerol proportion, volatile higher alcohols, and esters with fruity and sweet character.
Collapse
|
15
|
Bartle L, Sumby K, Sundstrom J, Jiranek V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res 2020; 19:5513997. [PMID: 31187141 DOI: 10.1093/femsyr/foz040] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
The diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Krista Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Joanna Sundstrom
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
16
|
A New Approach to the Reduction of Alcohol Content in Red Wines: The Use of High-Power Ultrasounds. Foods 2020; 9:foods9060726. [PMID: 32498461 PMCID: PMC7353473 DOI: 10.3390/foods9060726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background: To obtain wines with a lower percentage of alcohol, the simplest approach would be an earlier harvest of the grapes. However, this has implications for the wine composition and quality, due to the lack of phenolic maturity that these grapes may present. A technological innovation that could help in this situation could be the use of ultrasound in wineries. Methods: Grapes were harvested with two different ripening levels (25.4 °Brix and 29 °Brix), transported to the winery, and vinified. Also, a large-scale high-power ultrasound system was used to treat part of the less mature grapes just after crushing. These grapes were also vinified. The three different vinifications were skin-macerated for 7 days. The wine aroma compounds and physicochemical, chromatic, and sensory characteristics were analyzed at the time of bottling. Results: The wine made with the ultrasound-treated grapes showed very similar characteristics to the wine made with the more mature grapes, especially regarding total phenol and tannin content, but with an alcohol content 15% lower than the latter. Conclusions: The results indicate that this technology could be applied to grapes to favor the extraction of grape phenolic compounds, even when grape phenolic maturity is not complete, allowing the production of quality wines with a reduced alcohol content.
Collapse
|
17
|
Hranilovic A, Gambetta JM, Jeffery DW, Grbin PR, Jiranek V. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int J Food Microbiol 2020; 329:108651. [PMID: 32512285 DOI: 10.1016/j.ijfoodmicro.2020.108651] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/30/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
In Latin, 'pulcherrima' is a superlative form of an adjective that translates as beautiful. Apart from being 'the most beautiful' yeast, Metschnikowia pulcherrima has a remarkable potential in production of wines with lower ethanol content. The oenological performance of six M. pulcherrima strains was hereby tested in sequential cultures with Saccharomyces cerevisiae. The best-performing strain MP2 was further characterised in fermentations with different S. cerevisiae inoculation delays in both white grape juice and Chemically Defined Grape Juice Medium (CDGJM). The analysis of main metabolites, undertaken prior to sequential inoculations and upon fermentation completion, highlighted metabolic interactions and carbon sinks other than ethanol in MP2 treatments. Depending on the inoculation delay, MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than the S. cerevisiae monoculture, with even larger decreases detected in the CDGJM. The MP2 treatments also contained higher concentrations of TCA cycle by-products (i.e. fumarate and succinate) and glycerol, and lower concentrations of acetic acid. The analysis of volatile compounds showed increased production of acetate esters and higher alcohols in all MP2 wines, alongside other compositional alterations arising from the S. cerevisiae inoculation delay.
Collapse
Affiliation(s)
- Ana Hranilovic
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia.
| | - Joanna M Gambetta
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia
| | - David W Jeffery
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Paul R Grbin
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Vladimir Jiranek
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
18
|
Zhu X, Navarro Y, Mas A, Torija MJ, Beltran G. A Rapid Method for Selecting Non- Saccharomyces Strains with a Low Ethanol Yield. Microorganisms 2020; 8:microorganisms8050658. [PMID: 32369912 PMCID: PMC7284643 DOI: 10.3390/microorganisms8050658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023] Open
Abstract
The alcohol content in wine has increased due to external factors in recent decades. In recent reports, some non-Saccharomyces yeast species have been confirmed to reduce ethanol during the alcoholic fermentation process. Thus, an efficient screening of non-Saccharomyces yeasts with low ethanol yield is required due to the broad diversity of these yeasts. In this study, we proposed a rapid method for selecting strains with a low ethanol yield from forty-five non-Saccharomyces yeasts belonging to eighteen species. Single fermentations were carried out for this rapid selection. Then, sequential fermentations in synthetic and natural must were conducted with the selected strains to confirm their capacity to reduce ethanol compared with that of Saccharomyces cerevisiae. The results showed that ten non-Saccharomyces strains were able to reduce the ethanol content, namely, Hanseniaspora uvarum (2), Issatchenkia terricola (1), Metschnikowia pulcherrima (2), Lachancea thermotolerans (1), Saccharomycodes ludwigii (1), Torulaspora delbrueckii (2), and Zygosaccharomyces bailii (1). Compared with S. cerevisiae, the ethanol reduction of the selected strains ranged from 0.29 to 1.39% (v/v). Sequential inoculations of M. pulcherrima (Mp51 and Mp FA) and S. cerevisiae reduced the highest concentration of ethanol by 1.17 to 1.39% (v/v) in synthetic or natural must. Second, sequential fermentations with Z. bailii (Zb43) and T. delbrueckii (Td Pt) performed in natural must yielded ethanol reductions of 1.02 and 0.84% (v/v), respectively.
Collapse
|
19
|
Puškaš VS, Miljić UD, Djuran JJ, Vučurović VM. The aptitude of commercial yeast strains for lowering the ethanol content of wine. Food Sci Nutr 2020; 8:1489-1498. [PMID: 32180958 PMCID: PMC7063342 DOI: 10.1002/fsn3.1433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/11/2023] Open
Abstract
The high alcohol content in wine usually has a negative impact on its sensory properties, but can also affect the general health of the consumers. The possibility to reduce ethanol production in wines during fermentation involves the use of different yeast strains characterized by the increased production of fermentation by-products (glycerol, 2,3-butanediol, etc.) from the available sugar. The activity of these strains should not impair the sensory properties of the wine. In general, the use of genetically and evolutionarily (non-GM) engineered Saccharomyces cerevisiae strains is still not close enough to commercial application, and therefore, it is unavailable for wine producers. Thus, the aim of this study was to examine the possibility of reducing the production of ethanol in wines using different selected yeast strains (S. cerevisiae, Saccharomyces bayanus, Torulaspora delbrueckii, and Metschnikowia pulcherrima) available at the market. The application of individual yeast and sequential inoculation for wine alcoholic fermentation was examined. The achieved effects were evaluated by determining the content of ethanol, as well as fermentation by-products (glycerol and volatile acids) and aromatic components in wine samples. Depending on the strain/s used, a decrease in ethanol content of up to 0.9% v/v was recorded in comparison with fermentation by S. cerevisiae alone. The sensory analysis of produced wine showed significant differences in taste and flavor. The results of the experiment conducted at the laboratory level and with the use of sterile must were compared to the ones from the scale-up experiment in real vinification conditions. The observed differences in the alcohol content of produced wines were significantly lower.
Collapse
Affiliation(s)
- Vladimir S Puškaš
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Uroš D Miljić
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Jovana J Djuran
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Vesna M Vučurović
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| |
Collapse
|
20
|
Park MK, Kim YS. Comparative metabolic expressions of fermented soybeans according to different microbial starters. Food Chem 2020; 305:125461. [PMID: 31505412 DOI: 10.1016/j.foodchem.2019.125461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 11/23/2022]
Abstract
The quality of fermented soybeans can be determined by diverse metabolites produced by microorganisms. Mass spectrometry-based metabolomic approach was applied to investigate the differences in volatile and non-volatile metabolite profiles of fermented soybeans by different microorganisms [e.g., molds, yeasts, lactic acid bacteria (LAB), and other bacteria]. The partial least squares-discriminant analysis (PLS-DA) for volatile metabolites profiles indicated that the fungi group (mold/yeast) was clearly discriminated from the bacteria group (bacteria/LAB). The metabolic pathways related to the formation of volatile metabolites also differed according to microorganisms. In particular, the formation of branched-chain aliphatic alcohols and esters increased in the fungi group, while that of volatiles derived from fatty acids was superior in the bacteria group. In addition, we could determine the microorganism-specific metabolites using a correlation network analysis. This study can provide the fundamental knowledge on the metabolic differences according to the type of microorganisms in fermented soybeans.
Collapse
Affiliation(s)
- Min Kyung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
21
|
Al Daccache M, Koubaa M, Salameh D, Vorobiev E, Maroun RG, Louka N. Control of the sugar/ethanol conversion rate during moderate pulsed electric field-assisted fermentation of a Hanseniaspora sp. strain to produce low-alcohol cider. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102258] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
van Wyk N, Grossmann M, Wendland J, von Wallbrunn C, Pretorius IS. The Whiff of Wine Yeast Innovation: Strategies for Enhancing Aroma Production by Yeast during Wine Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13496-13505. [PMID: 31724402 DOI: 10.1021/acs.jafc.9b06191] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite being used chiefly for fermenting the sugars of grape must to alcohol, wine yeasts (most prominently Saccharomyces cerevisiae) play a pivotal role in the final aroma profiles of wines. Strain selection, intentionally incorporating non-Saccharomyces yeast in so-called mixed-culture fermentations, and genetic modifications of S. cerevisiae have all been shown to greatly enhance the chemical composition and sensory profile of wines. In this Review, we highlight how wine researchers employ fermenting yeasts to expand on the aroma profiles of the wines they study.
Collapse
Affiliation(s)
- Niël van Wyk
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | - Manfred Grossmann
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | - Jürgen Wendland
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | | |
Collapse
|
23
|
Sieiro-Sampedro T, Figueiredo-González M, González-Barreiro C, Simal-Gandara J, Cancho-Grande B, Rial-Otero R. Impact of mepanipyrim and tetraconazole in Mencía wines on the biosynthesis of volatile compounds during the winemaking process. Food Chem 2019; 300:125223. [DOI: 10.1016/j.foodchem.2019.125223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 02/02/2023]
|
24
|
Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040085] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change threatens food systems, with huge repercussions on food security and on the safety and quality of final products. We reviewed the potential of food microbiology as a source of biotechnological solutions to design climate-smart food systems, using wine as a model productive sector. Climate change entails considerable problems for the sustainability of oenology in several geographical regions, also placing at risk the wine typicity. The main weaknesses identified are: (i) The increased undesired microbial proliferation; (ii) the improved sugars and, consequently, ethanol content; (iii) the reduced acidity and increased pH; (iv) the imbalanced perceived sensory properties (e.g., colour, flavour); and (v) the intensified safety issues (e.g., mycotoxins, biogenic amines). In this paper, we offer an overview of the potential microbial-based strategies suitable to cope with the five challenges listed above. In terms of microbial diversity, our principal focus was on microorganisms isolated from grapes/musts/wines and on microbes belonging to the main categories with a recognized positive role in oenological processes, namely Saccharomyces spp. (e.g., Saccharomyces cerevisiae), non-Saccharomyces yeasts (e.g., Metschnikowia pulcherrima, Torulaspora delbrueckii, Lachancea thermotolerans, and Starmerella bacillaris), and malolactic bacteria (e.g., Oenococcus oeni, Lactobacillus plantarum).
Collapse
|
25
|
Acton E, Lee AHY, Zhao PJ, Flibotte S, Neira M, Sinha S, Chiang J, Flaherty P, Nislow C, Giaever G. Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress. Open Biol 2018; 7:rsob.160330. [PMID: 28592509 PMCID: PMC5493772 DOI: 10.1098/rsob.160330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, ‘prototrophic’ versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.
Collapse
Affiliation(s)
- Erica Acton
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Genome Science and Technology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pei Jun Zhao
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephane Flibotte
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mauricio Neira
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chiang
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains. Metab Eng 2018; 49:178-191. [PMID: 30138679 DOI: 10.1016/j.ymben.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023]
Abstract
Metabolic engineering has been vital to the development of industrial microbes such as the yeast Saccharomyces cerevisiae. However, sequential rounds of modification are often needed to achieve particular industrial design targets. Systems biology approaches can aid in identifying genetic targets for modification through providing an integrated view of cellular physiology. Recently, research into the generation of commercial yeasts that can produce reduced-ethanol wines has resulted in metabolically-engineered strains of S. cerevisiae that are less efficient at producing ethanol from sugar. However, these modifications led to the concomitant production of off-flavour by-products. A combination of transcriptomics, proteomics and metabolomics was therefore used to investigate the physiological changes occurring in an engineered low-ethanol yeast strain during alcoholic fermentation. Integration of 'omics data identified several metabolic reactions, including those related to the pyruvate node and redox homeostasis, as being significantly affected by the low-ethanol engineering methodology, and highlighted acetaldehyde and 2,4,5-trimethyl-1,3-dioxolane as the main off-flavour compounds. Gene remediation strategies were then successfully applied to decrease the formation of these by-products, while maintaining the 'low-alcohol' phenotype. The data generated from this comprehensive systems-based study will inform wine yeast strain development programmes, which, in turn, could potentially play an important role in assisting winemakers in their endeavour to produce low-alcohol wines with desirable flavour profiles.
Collapse
|
27
|
Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. J Biosci Bioeng 2018; 126:183-188. [DOI: 10.1016/j.jbiosc.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/24/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022]
|
28
|
Siebert TE, Barker A, Pearson W, Barter SR, de Barros Lopes MA, Darriet P, Herderich MJ, Francis IL. Volatile Compounds Related to 'Stone Fruit' Aroma Attributes in Viognier and Chardonnay Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2838-2850. [PMID: 29485286 DOI: 10.1021/acs.jafc.7b05343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A 'stone fruit' aroma is important in many white wine varieties and styles, but little is known about the chemical basis of this wine aroma attribute. A set of Viognier and Chardonnay wines that featured 'stone fruit' aroma attributes were selected by a panel of wine experts. The selected wines were characterized by sensory descriptive analysis and detailed volatile chemical composition analyses. This comprehensive data also allowed Viognier wine to be profiled for the first time. By partial least-squares regression, several esters and fatty acids and benzaldehyde were indicated as contributing to the 'peach' attribute; however, a reconstitution sensory study was unsuccessful in mimicking this attribute. A mixture of γ-lactones, monoterpenes, and aldehydes were positively correlated to the 'apricot' aroma, which were generally higher in the Viognier wines. Reconstitution studies confirmed that the monoterpenes linalool, geraniol, and nerol were the most important compounds for the mixture being perceived as having an 'apricot' aroma.
Collapse
Affiliation(s)
- Tracey E Siebert
- The Australian Wine Research Institute , P.O. Box 197, Glen Osmond (Adelaide) SA 5064 , Australia
- School of Pharmacy and Medical Science , University of South Australia , G.P.O Box 2471, Adelaide , SA 5001 , Australia
| | - Alice Barker
- The Australian Wine Research Institute , P.O. Box 197, Glen Osmond (Adelaide) SA 5064 , Australia
| | - Wes Pearson
- The Australian Wine Research Institute , P.O. Box 197, Glen Osmond (Adelaide) SA 5064 , Australia
| | - Sheridan R Barter
- The Australian Wine Research Institute , P.O. Box 197, Glen Osmond (Adelaide) SA 5064 , Australia
| | - Miguel A de Barros Lopes
- School of Pharmacy and Medical Science , University of South Australia , G.P.O Box 2471, Adelaide , SA 5001 , Australia
| | - Philippe Darriet
- Unité de Recherche Œnologie EA 4577, ISVV , University of Bordeaux , Villenave d'Ornon cedex 33882 , France
- USC Œnologie, ISVV , INRA , Villenave d'Ornon cedex 33882 , France
| | - Markus J Herderich
- The Australian Wine Research Institute , P.O. Box 197, Glen Osmond (Adelaide) SA 5064 , Australia
| | - I Leigh Francis
- The Australian Wine Research Institute , P.O. Box 197, Glen Osmond (Adelaide) SA 5064 , Australia
- School of Pharmacy and Medical Science , University of South Australia , G.P.O Box 2471, Adelaide , SA 5001 , Australia
| |
Collapse
|
29
|
Peter JJ, Watson TL, Walker ME, Gardner JM, Lang TA, Borneman A, Forgan A, Tran T, Jiranek V. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions. FEMS Yeast Res 2018; 18:4841842. [DOI: 10.1093/femsyr/foy009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Josephine J Peter
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tom A Lang
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Angus Forgan
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tina Tran
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
30
|
Cuello RA, Flores Montero KJ, Mercado LA, Combina M, Ciklic IF. Construction of low-ethanol-wine yeasts through partial deletion of the Saccharomyces cerevisiae PDC2 gene. AMB Express 2017; 7:67. [PMID: 28324615 PMCID: PMC5360750 DOI: 10.1186/s13568-017-0369-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
We propose an alternative GMO based strategy to obtain Saccharomyces cerevisiae mutant strains with a slight reduction in their ability to produce ethanol, but with a moderate impact on the yeast metabolism. Through homologous recombination, two truncated Pdc2p proteins Pdc2pΔ344 and Pdc2pΔ519 were obtained and transformed into haploid and diploid lab yeast strains. In the pdc2Δ344 mutants the DNA-binding and transactivation site of the protein remain intact, whereas in pdc2Δ519 only the DNA-binding site is conserved. Compared to the control, the diploid BY4743pdc2Δ519 mutant strain reduced up to 7.4% the total ethanol content in lab scale-vinifications. The residual sugar and volatile acidity was not significantly affected by this ethanol reduction. Remarkably, we got a much higher ethanol reduction of 10 and 15% when the pdc2Δ519 mutation was tested in a native and a commercial wine yeast strain against their respective controls. Our results demonstrate that the insertion of the pdc2Δ519 mutation in wine yeast strains can reduce the ethanol concentration up to 1.89% (v/v) without affecting the fermentation performance. In contrast to non-GMO based strategies, our approach permits the insertion of the pdc2Δ519 mutation in any locally selected wine strain, making possible to produce quality wines with regional characteristics and lower alcohol content. Thus, we consider our work a valuable contribution to the problem of high ethanol concentration in wine.
Collapse
|
31
|
Alonso-Del-Real J, Contreras-Ruiz A, Castiglioni GL, Barrio E, Querol A. The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation. Front Microbiol 2017; 8:2087. [PMID: 29118746 PMCID: PMC5661026 DOI: 10.3389/fmicb.2017.02087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns. From a biotechnological point of view, the use of alternative non-Saccharomyces yeasts, yielding lower ethanol concentrations and sometimes giving rise to new and interesting aroma, is one of the trendiest approaches. However, S. cerevisiae usually outcompetes other Saccharomyces species due to its better adaptation to the fermentative environment. For this reason, we studied for the first time the use of a Saccharomyces kudriavzevii strain, CR85, for co-inoculations at increasing proportions and sequential inoculations, as well as the effect of aeration, to improve its fermentation performance in order to obtain wines with an ethanol yield reduction. An enhanced competitive performance of S. kudriavzevii CR85 was observed when it represented 90% of the cells present in the inoculum. Furthermore, airflow supply of 20 VVH to the fermentation synergistically improved CR85 endurance and, interestingly, a significant ethanol concentration reduction was achieved.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Alba Contreras-Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Gabriel L Castiglioni
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| |
Collapse
|
32
|
Pretorius IS. Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine yeast research. EMBO Rep 2017; 18:1875-1884. [PMID: 29061873 PMCID: PMC5666613 DOI: 10.15252/embr.201745231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Synthetic Yeast Genome Project will give scientists a tool for understanding the biological intricacies of eukaryotes and for synthetic biology. Wine researchers will greatly benefit from this project to build new wine yeast strains.
![]()
Collapse
|
33
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation. FEMS Yeast Res 2017; 17:3934655. [PMID: 28810701 DOI: 10.1093/femsyr/fox046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Bruno Fedrizzi
- Wine Science Programme, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Gardner
- Wine Science Programme, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
34
|
Petruzzi L, Capozzi V, Berbegal C, Corbo MR, Bevilacqua A, Spano G, Sinigaglia M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front Microbiol 2017. [PMID: 28642742 PMCID: PMC5462979 DOI: 10.3389/fmicb.2017.00995] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures) and future perspectives.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Vittorio Capozzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Carmen Berbegal
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Maria R Corbo
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| |
Collapse
|
35
|
Varela C, Barker A, Tran T, Borneman A, Curtin C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int J Food Microbiol 2017; 252:1-9. [PMID: 28436828 DOI: 10.1016/j.ijfoodmicro.2017.04.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022]
Abstract
Strategies for production of wines containing lower alcohol concentrations are in strong demand, for reasons of quality, health, and taxation. Development and application of wine yeasts that are less efficient at transforming grape sugars into ethanol has the potential to allow winemakers the freedom to make lower alcohol wines from grapes harvested at optimal ripeness, without the need for post-fermentation processes aimed at removing ethanol. We have recently shown that two non-conventional wine yeast species Metschnikowia pulcherrima and Saccharomyces uvarum were both able to produce wine with reduced alcohol concentration. Both species produced laboratory-scale wines with markedly different volatile aroma compound composition relative to Saccharomyces cerevisiae. This work describes the volatile composition and sensory profiles of reduced-alcohol pilot-scale Merlot wines produced with M. pulcherrima and S. uvarum. Wines fermented with M. pulcherrima contained 1.0% v/v less ethanol than S. cerevisiae fermented wines, while those fermented with S. uvarum showed a 1.7% v/v reduction in ethanol. Compared to S. cerevisiae ferments, wines produced with M. pulcherrima showed higher concentrations of ethyl acetate, total esters, total higher alcohols and total sulfur compounds, while wines fermented with S. uvarum were characterised by the highest total concentration of higher alcohols. Sensorially, M. pulcherrima wines received relatively high scores for sensory descriptors such as red fruit and fruit flavour and overall exhibited a sensory profile similar to that of wine made with S. cerevisiae, whereas the main sensory descriptors associated with wines fermented with S. uvarum were barnyard and meat. This work demonstrates the successful application of M. pulcherrima AWRI3050 for the production of pilot-scale red wines with reduced alcohol concentration and highlights the need for rigorous evaluation of non-conventional yeasts with regard to their sensory impacts.
Collapse
Affiliation(s)
- C Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia.
| | - A Barker
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - T Tran
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - A Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - C Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| |
Collapse
|
36
|
Ballester-Tomás L, Prieto JA, Gil JV, Baeza M, Randez-Gil F. The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. Int J Food Microbiol 2017; 245:59-65. [PMID: 28131961 DOI: 10.1016/j.ijfoodmicro.2017.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/15/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022]
Abstract
Current winemaking trends include low-temperature fermentations and using non-Saccharomyces yeasts as the most promising tools to produce lower alcohol and increased aromatic complexity wines. Here we explored the oenological attributes of a C. sake strain, H14Cs, isolated in the sub-Antarctic region. As expected, the cold sea water yeast strain showed greater cold growth, Na+-toxicity resistance and freeze tolerance than the S. cerevisiae QA23 strain, which we used as a commercial wine yeast control. C. sake H14Cs was found to be more sensitive to ethanol. The fermentation trials of low-sugar content must demonstrated that C. sake H14Cs allowed the cold-induced lag phase of growth to be eliminated and also notably reduced the ethanol (-30%) and glycerol (-50%) content in wine. Instead C. sake produced sorbitol as a compatible osmolyte. Finally, the inspection of the main wine volatile compounds revealed that C. sake produced more higher alcohols than S. cerevisiae. In conclusion, our work evidences that using the Antarctic C. sake H14Cs yeast improves low-temperature must fermentations and has the potential to provide a wine with less ethanol and also particular attributes.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Jose V Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain; Food Technology Area, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
37
|
Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS. Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol 2017; 10:264-278. [PMID: 28083938 PMCID: PMC5328816 DOI: 10.1111/1751-7915.12488] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Alcohol is fundamental to the character of wine, yet too much can put a wine off‐balance. A wine is regarded to be well balanced if its alcoholic strength, acidity, sweetness, fruitiness and tannin structure complement each other so that no single component dominates on the palate. Balancing a wine's positive fruit flavours with the optimal absolute and relative concentration of alcohol can be surprisingly difficult. Over the past three decades, consumers have increasingly demanded wine with richer and riper fruit flavour profiles. In response, grape and wine producers have extended harvest times to increase grape maturity and enhance the degree of fruit flavours and colour intensity. However, a higher degree of grape maturity results in increased grape sugar concentration, which in turn results in wines with elevated alcohol concentration. On average, the alcohol strength of red wines from many warm wine‐producing regions globally rose by about 2% (v/v) during this period. Notwithstanding that many of these ‘full‐bodied, fruit‐forward’ wines are well balanced and sought after, there is also a significant consumer market segment that seeks lighter styles with less ethanol‐derived ‘hotness’ on the palate. Consumer‐focussed wine producers are developing and implementing several strategies in the vineyard and winery to reduce the alcohol concentration in wines produced from well‐ripened grapes. In this context, Saccharomyces cerevisiae wine yeasts have proven to be a pivotal strategy to reduce ethanol formation during the fermentation of grape musts with high sugar content (> 240 g l−1). One of the approaches has been to develop ‘low‐alcohol’ yeast strains which work by redirecting their carbon metabolism away from ethanol production to other metabolites, such as glycerol. This article reviews the current challenges of producing glycerol at the expense of ethanol. It also casts new light on yeast strain development programmes which, bolstered by synthetic genomics, could potentially overcome these challenges.
Collapse
Affiliation(s)
- Hugh D Goold
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,New South Wales Department of Primary Industries, Locked Bag 21, Orange, NSW, 2800, Australia
| | - Heinrich Kroukamp
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia
| | - Isak S Pretorius
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
38
|
Longo R, Blackman JW, Torley PJ, Rogiers SY, Schmidtke LM. Changes in volatile composition and sensory attributes of wines during alcohol content reduction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:8-16. [PMID: 27098726 DOI: 10.1002/jsfa.7757] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
A desirable sensory profile is a major consumer driver for wine acceptability and should be considered during the production of reduced-alcohol wines. Although various viticultural practices and microbiological approaches show promising results, separation technologies such as membrane filtration, in particular reverse osmosis and evaporative perstraction, in addition to vacuum distillation, represent the most common commercial methods used to produce reduced-alcohol wine. However, ethanol removal from wine can result in a significant loss of volatile compounds such as esters (ethyl octanoate, ethyl acetate, isoamyl acetate) that contribute positively to the overall perceived aroma. These losses can potentially reduce the acceptability of the wine to consumers and decrease their willingness to purchase wines that have had their alcohol level reduced. The change in aroma as a result of the ethanol removal processes is influenced by a number of factors: the type of alcohol reduction process; the chemical-physical properties (volatility, hydrophobicity, steric hindrance) of the aroma compounds; the retention properties of the wine non-volatile matrix; and the ethanol level. This review identifies and summarises possible deleterious influences of the dealcoholisation process and describes best practice strategies to maintain the original wine composition. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocco Longo
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - John W Blackman
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Peter J Torley
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA 5064, Australia
- NSW Department of Primary Industries, Wagga Wagga, NSW 2678, Australia
| | - Leigh M Schmidtke
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
39
|
|
40
|
The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation. FEMS Yeast Res 2016; 16:fow100. [DOI: 10.1093/femsyr/fow100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/04/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
|
41
|
Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 2016; 209:57-64. [DOI: 10.1016/j.foodchem.2016.04.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/18/2022]
|
42
|
Abstract
Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future holds is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast strain (AWRI1631), which was recently achieved via metabolic pathway engineering and synthetic enzyme fusion. A peek over the horizon is revealing that the future of "Wine Yeast 2.0" is already here. Therefore, this article seeks to help prepare the wine industry - an industry rich in history and tradition on the one hand, and innovation on the other - for the inevitable intersection of the ancient art practiced by winemakers and the inventive science of pioneering "synthetic genomicists". It would be prudent to proactively engage all stakeholders - researchers, industry practitioners, policymakers, regulators, commentators, and consumers - in a meaningful dialog about the potential challenges and opportunities emanating from Synthetic Biology. To capitalize on the new vistas of synthetic yeast genomics, this paper presents wine yeast research in a fresh context, raises important questions and proposes new directions.
Collapse
|
43
|
Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2703-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R. Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Front Microbiol 2016; 7:642. [PMID: 27199967 PMCID: PMC4854890 DOI: 10.3389/fmicb.2016.00642] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must.
Collapse
Affiliation(s)
- Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - José A Curiel
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Lucia Oro
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Alda J Rodrigues
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| |
Collapse
|
45
|
Rossouw D, Bauer FF. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol 2016; 55:32-46. [DOI: 10.1016/j.fm.2015.11.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/10/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
|
46
|
Papapetridis I, van Dijk M, Dobbe APA, Metz B, Pronk JT, van Maris AJA. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact 2016; 15:67. [PMID: 27118055 PMCID: PMC5574463 DOI: 10.1186/s12934-016-0465-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. RESULTS Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. CONCLUSIONS The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor specificity of the oxidative branch of the pentose-phosphate pathway in S. cerevisiae can also be used to increase glycerol production in wine fermentation and to improve NADH generation and/or generation of precursors derived from the pentose-phosphate pathway in other industrial applications of this yeast.
Collapse
Affiliation(s)
- Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marlous van Dijk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Arthur PA Dobbe
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Benjamin Metz
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
47
|
Nidelet T, Brial P, Camarasa C, Dequin S. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microb Cell Fact 2016; 15:58. [PMID: 27044358 PMCID: PMC4820951 DOI: 10.1186/s12934-016-0456-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. Results To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. Conclusions Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0456-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibault Nidelet
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France.
| | - Pascale Brial
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
48
|
Canonico L, Comitini F, Oro L, Ciani M. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine. Front Microbiol 2016; 7:278. [PMID: 27014203 PMCID: PMC4786567 DOI: 10.3389/fmicb.2016.00278] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/22/2016] [Indexed: 12/01/2022] Open
Abstract
The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained.
Collapse
Affiliation(s)
- Laura Canonico
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Francesca Comitini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Lucia Oro
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Maurizio Ciani
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
49
|
Lee D, Lloyd NDR, Pretorius IS, Borneman AR. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb Cell Fact 2016; 15:49. [PMID: 26944880 PMCID: PMC4779194 DOI: 10.1186/s12934-016-0446-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 11/17/2022] Open
Abstract
Background Raspberry ketone is the primary aroma compound found in raspberries and naturally derived raspberry ketone is a valuable flavoring agent. The economic incentives for the production of raspberry ketone, combined with the very poor yields from plant tissue, therefore make this compound an excellent target for heterologous production in synthetically engineered microbial strains. Methods A de novo pathway for the production of raspberry ketone was assembled using four heterologous genes, encoding phenylalanine/tyrosine ammonia lyase, cinnamate-4-hydroxlase, coumarate-CoA ligase and benzalacetone synthase, in an industrial strain of Saccharomycescerevisiae. Synthetic protein fusions were also explored as a means of increasing yields of the final product. Results The highest raspberry ketone concentration achieved in minimal media exceeded 7.5 mg/L when strains were fed with 3 mM p-coumaric acid; or 2.8 mg/L for complete de novo synthesis, both of which utilized a coumarate-CoA ligase, benzalacetone synthase synthetic fusion protein that increased yields over fivefold compared to the native enzymes. In addition, this strain was shown to be able to produce significant amounts of raspberry ketone in wine, with a raspberry ketone titer of 3.5 mg/L achieved after aerobic fermentation of Chardonnay juice or 0.68 mg/L under anaerobic winemaking conditions. Conclusions We have shown that it is possible to produce sensorially-relevant quantities of raspberry ketone in an industrial heterologous host. This paves the way for further pathway optimization to provide an economical alternative to raspberry ketone derived from plant sources. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0446-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danna Lee
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia.
| | - Natoiya D R Lloyd
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia.
| | | | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia. .,Department of Genetics and Evolution, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
50
|
Unrean P, Jeennor S, Laoteng K. Systematic development of biomass overproducing Scheffersomyces stipitis for high-cell-density fermentations. Synth Syst Biotechnol 2016; 1:47-55. [PMID: 29062927 PMCID: PMC5640594 DOI: 10.1016/j.synbio.2016.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 11/28/2022] Open
Abstract
The development of economically feasible bio-based process requires efficient cell factories capable of producing the desired product at high titer under high-cell-density fermentation. Herein we present a combinatorial approach based on systems metabolic engineering and metabolic evolution for the development of efficient biomass-producing strain. Systems metabolic engineering guided by flux balance analysis (FBA) was first employed to rationally design mutant strains of Scheffersomyces stipitis with high biomass yield. By experimentally implementing these mutations, the biomass yield was improved by 30% in GPD1, 25% in TKL1, 30% in CIT1, and 44% in ZWF1 overexpressed mutants compared to wild-type. These designed mutants were further fine-tuned through metabolic evolution resulting in the maximal biomass yield of 0.49 g-cdw/g-glucose, which matches well with predicted yield phenotype. The constructed mutants are beneficial for biotechnology applications dealing with high cell titer cultivations. This work demonstrates a solid confirmation of systems metabolic engineering in combination with metabolic evolution approach for efficient strain development, which could assist in rapid optimization of cell factory for an economically viable and sustainable bio-based process.
Collapse
Affiliation(s)
- Pornkamol Unrean
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Sukanya Jeennor
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Kobkul Laoteng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|