1
|
Sun Y, Yang P, She M, Lin C, Ye Y, Xu C, Shen Z. A Vip3Af mutant confers high resistance to broad lepidopteran insect pests. PEST MANAGEMENT SCIENCE 2024. [PMID: 39300681 DOI: 10.1002/ps.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis (Bt) have been utilized for control of lepidopteran insect pests. The majority of known Vip3 proteins possess exceptional high toxicity against Noctuid insects such as the fall armyworm (FAW, Spodoptera frugiperda), beet armyworm (BAW, Spodoptera exigua) and cotton bollworm (CBW, Helicoverpa armigera), but generally have relatively low or even no activity against some very important pest insects, such as Asian corn borer (ACB, Ostrinia furnacalis), European corn borer (ECB, Ostrinia nubilalis), rice stem borer (RSB, Chilo suppressalis) and oriental armyworm (OAW, Mythimna separata). RESULTS Here, we report mutant Vip3Af with a single amino acid mutation, Vip3Af-T686R, which gains significantly higher insecticidal activity against ACB, OAW and BAW, while retaining high activity against FAW, CBW and RSB. Protein proteolytic activation in vitro showed that the proteolytic activation efficiency of the mutant protein was greater than the wild-type protein in the midgut juice of ACB, OAW and BAW. Transgenic corn expressing this mutant Vip3Af showed high levels of resistance to ACB, OAW, FAW, BAW and CBW. CONCLUSION Our results suggest that Vip3Af may be a superior Vip3A mutant for the development of transgenic crops with resistance to a broad range of lepidopteran pest species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Pan Yang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingjun She
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaoyang Lin
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yuxuan Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Chao Xu
- Ruifeng Biotechnology Co., Ltd, Hangzhou, China
| | - Zhicheng Shen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
2
|
Lázaro-Berenguer M, Quan Y, Hernández-Martínez P, Ferré J. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Sci Rep 2022; 12:4578. [PMID: 35301405 PMCID: PMC8931066 DOI: 10.1038/s41598-022-08633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their different specificity, the use of Vip3 proteins from Bacillus thuringiensis in combination with the conventionally used Cry proteins in crop protection is being essential to counteract the appearance of insect resistance. Therefore, understanding the mode of action of Vip3 proteins is crucial for their better application, with special interest on the binding to membrane receptors as the main step for specificity. Derived from in vitro heterologous competition binding assays using 125I-Vip3A and other Vip3 proteins as competitors, it has been shown that Vip3 proteins share receptors in Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). In this study, using 125I-Vip3Aa, we have first extended the in vitro competition binding site model of Vip3 proteins to Spodoptera littoralis. With the aim to understand the relevance (in terms of toxicity) of the binding to the midgut sites observed in vitro on the insecticidal activity of these proteins, we have performed in vivo competition assays with S. littoralis larvae, using disabled mutant (non-toxic) Vip3 proteins as competitors for blocking the toxicity of Vip3Aa and Vip3Af. The results of the in vivo competition assays confirm the occurrence of shared binding sites among Vip3 proteins and help understand the functional role of the shared binding sites as revealed in vitro.
Collapse
Affiliation(s)
- María Lázaro-Berenguer
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Yudong Quan
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Juan Ferré
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins (Basel) 2020; 12:toxins12080522. [PMID: 32823872 PMCID: PMC7472478 DOI: 10.3390/toxins12080522] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth. There are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer toxins have an insecticidal activity against many Coleopteran and Hemipteran pests. Vip3, the most extensively studied family of Vip toxins, is effective against Lepidopteron. Vip proteins do not share homology in sequence and binding sites with Cry proteins, but share similarities at some points in their mechanism of action. Vip3 proteins are expressed as pyramids alongside Cry proteins in crops like maize and cotton, so as to control resistant pests and delay the evolution of resistance. Biotechnological- and in silico-based analyses are promising for the generation of mutant Vip proteins with an enhanced insecticidal activity and broader spectrum of target insects.
Collapse
|
5
|
Djenane Z, Lázaro-Berenguer M, Nateche F, Ferré J. Evaluation of the Toxicity of Supernatant Cultures and Spore-Crystal Mixtures of Bacillus thuringiensis Strains Isolated from Algeria. Curr Microbiol 2020; 77:2904-2914. [PMID: 32651607 DOI: 10.1007/s00284-020-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis (Bt) is the most used technology for biological control of insect pathogens worldwide. In order to select new Bt candidates challenging the emergence of insect's resistance, a mass bioassay and molecular screening was performed on an autochthonous collection. Toxicity assays against neonate larvae of three lepidopteran species (Mamestra brassicae, Grapholita molesta, and Spodoptera exigua) were conducted using spore-crystal mixtures and supernatant cultures of 49 Bt isolates harboring at least one gene coding for a lepidopteran-specific insecticidal protein. A threshold of 30% of "functional mortality" was used to discriminate between "nontoxic" and "toxic" isolates. The toxicity of many Bt isolates competed with that of Btk-HD1. However, only three of them (Bl4NA, Bl5NA, and Bl9NA) showed high toxicity in both spore-crystal mixtures and supernatant cultures against the three lepidopteran species. The Bt isolates Bl4NA and Bl9NA express a protein of 130 kDa whereas the Bt isolate Bl5NA expresses a protein of 65-70 kDa. The LC-MS/MS results indicate that the major peptides in the 130 kDa band of Bl9NA were Cry1Da, Cry1Ca, Cry1Ab, and Cry1Aa, and those in the 70 kDa band of Bl5NA were Cry1Aa and Cry1Ca. The evaluation of the protein content of the supernatants by comparison to Btk-HD1 indicates the overproduction of Vip3 proteins in these strains (most likely Vip3Aa in Bl4NA and Bl9NA and Vip3Ca in Bl5NA). In addition, these three Bt strains do not produce β-exotoxins. Based on our results, the three selected strains could be considered promising candidates to be used in insect pest control.
Collapse
Affiliation(s)
- Zahia Djenane
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, El Alia, BP 32, 16111, Bab Ezzouar, Algiers, Algeria.,ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.,Department of Biology, Faculty of Sciences, University Yahia Farès, 26000, Médéa, Algeria
| | - Maria Lázaro-Berenguer
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Farida Nateche
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, El Alia, BP 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
6
|
Yan X, Lu J, Ren M, He Y, Wang Y, Wang Z, He K. Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel). INSECTS 2020; 11:insects11040208. [PMID: 32230856 PMCID: PMC7240488 DOI: 10.3390/insects11040208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
Abstract
Black cutworm (BCW), Agrotis ipsilon (Hufnagel), is an occasional pest of maize that can cause considerable economic loss and injury to corn seedlings. This research mainly assessed the susceptibility of BCW neonates to 11 Bt toxins (Cry1Ab, Cry1Ac, Cry1Ah, Cry1F, Cry1Ie, Cry1B, Cry2Aa, Vip3_ch1, Vip3_ch4, Vip3Ca2, Vip3Aa19) by exposing neonates to an artificial diet containing Bt toxins and evaluated the efficacy of three transgenic maize events (C008, C009, C010) expressing Vip3Aa19 toxin against BCW. The toxin-diet bioassay data indicated that Vip3Aa19 protein (LC50 = 0.43 μg/g) was the most active against BCW. Chimeric protein Vip3_ch1 (LC50 = 5.53 μg/g), Cry1F (LC50 = 83.62 μg/g) and Cry1Ac (LC50 = 184.77 μg/g) were less toxic. BCW was very tolerant to the other Bt toxins tested, with LC50 values more than 200 μg/g. Greenhouse studies were conducted with artificial infestations at the whorl stage by placing second-instar BCW larvae into whorl leaf and the fourth-instar larvae at the base of maize seedings. These results suggest that these transgenic maize events expressing Vip3Aa19 can provide effective control for BCW.
Collapse
Affiliation(s)
- Xiaorui Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
| | - Junjiao Lu
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China; (J.L.); (M.R.)
| | - Meifeng Ren
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China; (J.L.); (M.R.)
| | - Yin He
- Department of Physical Medicine and Rehabilitation, University of Alabama, Birmingham, AL 35401, USA;
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
- Correspondence: (Y.W.); (K.H.); Tel./Fax: +86-10-6281-5932
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
- Correspondence: (Y.W.); (K.H.); Tel./Fax: +86-10-6281-5932
| |
Collapse
|
7
|
Intracellular localization and cytotoxicity of Bacillus thuringiensis Vip3Aa against Spodoptera frugiperda (Sf9) cells. J Invertebr Pathol 2020; 171:107340. [DOI: 10.1016/j.jip.2020.107340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022]
|
8
|
Gomis-Cebolla J, Ferreira dos Santos R, Wang Y, Caballero J, Caballero P, He K, Jurat-Fuentes JL, Ferré J. Domain Shuffling between Vip3Aa and Vip3Ca: Chimera Stability and Insecticidal Activity against European, American, African, and Asian Pests. Toxins (Basel) 2020; 12:E99. [PMID: 32033215 PMCID: PMC7076965 DOI: 10.3390/toxins12020099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
The bacterium Bacillus thuringiensis produces insecticidal Vip3 proteins during the vegetative growth phase with activity against several lepidopteran pests. To date, three different Vip3 protein families have been identified based on sequence identity: Vip3A, Vip3B, and Vip3C. In this study, we report the construction of chimeras by exchanging domains between Vip3Aa and Vip3Ca, two proteins with marked specificity differences against lepidopteran pests. We found that some domain combinations made proteins insoluble or prone to degradation by trypsin as most abundant insect gut protease. The soluble and trypsin-stable chimeras, along with the parental proteins Vip3Aa and Vip3Ca, were tested against lepidopteran pests from different continents: Spodopteraexigua, Spodopteralittoralis, Spodopterafrugiperda,Helicoverpaarmigera, Mamestrabrassicae, Anticarsiagemmatalis, and Ostriniafurnacalis. The exchange of the Nt domain (188 N-terminal amino acids) had little effect on the stability and toxicity (equal or slightly lower) of the resulting chimeric protein against all insects except for S.frugiperda, for which the chimera with the Nt domain from Vip3Aa and the rest of the protein from Vip3Ca showed a significant increase in toxicity compared to the parental Vip3Ca. Chimeras with the C-terminal domain from Vip3Aa (from amino acid 510 of Vip3Aa to the Ct) with the central domain of Vip3Ca (amino acids 189-509 based on the Vip3Aa sequence) made proteins that could not be solubilized. Finally, the chimera including the Ct domain of Vip3Ca and the Nt and central domain from Vip3Aa was unstable. Importantly, an insect species tolerant to Vip3Aa but susceptible to Vip3Ca, such as Ostriniafurnacalis, was also susceptible to chimeras maintaining the Ct domain from Vip3Ca, in agreement with the hypothesis that the Ct region of the protein is the one conferring specificity to Vip3 proteins.
Collapse
Affiliation(s)
- Joaquín Gomis-Cebolla
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100-Burjassot, Spain;
| | - Rafael Ferreira dos Santos
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (R.F.d.S.); (J.L.J.-F.)
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (K.H.)
| | - Javier Caballero
- Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain; (J.C.); (P.C.)
| | - Primitivo Caballero
- Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain; (J.C.); (P.C.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (K.H.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (R.F.d.S.); (J.L.J.-F.)
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100-Burjassot, Spain;
| |
Collapse
|
9
|
Zheng M, Evdokimov AG, Moshiri F, Lowder C, Haas J. Crystal structure of a Vip3B family insecticidal protein reveals a new fold and a unique tetrameric assembly. Protein Sci 2019; 29:824-829. [PMID: 31840313 DOI: 10.1002/pro.3803] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Vegetatively expressed insecticidal proteins (VIPs) produced by Bacillus thuringiensis fall into several classes of which the third, VIP3, is known for their activity against several key Lepidopteran pests of commercial broad acre crops and because their mode of action does not overlap with that of crystalline insecticidal proteins. The details of the VIP3 structure and mode of action have remained obscure for the quarter century that has passed since their discovery. In the present article, we report the first crystal structure of a full-length VIP3 protein. Crystallization of this target required multiple rounds of construct optimization and screening-over 200 individual sequences were expressed and tested. This protein adopts a novel global fold that combines domains with hitherto unreported topology and containing elements seemingly borrowed from carbohydrate-binding domains, lectins, or from other insecticidal proteins.
Collapse
Affiliation(s)
- Meiying Zheng
- Protein Science Department, Bayer, Chesterfield, Missouri
| | | | - Farhad Moshiri
- Protein Science Department, Bayer, Chesterfield, Missouri
| | - Casey Lowder
- Protein Science Department, Bayer, Chesterfield, Missouri
| | - Jeff Haas
- Protein Science Department, Bayer, Chesterfield, Missouri
| |
Collapse
|
10
|
Pruter LS, Brewer MJ, Weaver MA, Murray SC, Isakeit TS, Bernal JS. Association of Insect-Derived Ear Injury With Yield and Aflatoxin of Maize Hybrids Varying in Bt Transgenes. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1401-1411. [PMID: 31586402 DOI: 10.1093/ee/nvz112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Environmental factors have been associated with the production of aflatoxin in maize, Zea mays L., and it is inconclusive whether transgenic, Bacillus thuringiensis (Bt), maize has an impact on aflatoxin accumulation. Maize hybrids differing in transgenes were planted in two locations from 2014 to 2017. Yield, aflatoxin, and ear injury caused by corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), were measured across three groups of hybrids differing in transgenes including near-isogenic hybrids, and water-stressed conditions. The hybrid groups consisted of non-Bt hybrids with no Bt transgenes, a second group with one or more Cry-Bt transgenes, and the third group with vegetative insecticidal Bt protein and Cry-Bt transgenes (Cry/Vip-Bt). Across the six data sets derived from 11 experiments, the Cry-Bt and Cry/Vip-Bt hybrids had less ear injury and aflatoxin on average than non-Bt hybrids. The effects of ear injury on yield and aflatoxin were more prominent and consistent in Corpus Christi, TX, where hybrids experienced more water-limited conditions than in College Station, TX. The trend of increased aflatoxin among hybrids with increased ear injury was further resolved when looking at Cry-Bt and Cry/Vip-Bt isogenic hybrids in Corpus Christi. The results supported that the maize hybrids with the inclusion of Cry-Bt and Cry/Vip-Bt transgenes warrant further investigation in an integrated approach to insect and aflatoxin management in sub-tropical rain-fed maize production regions. Research outcomes may be improved by focusing on areas prone to water-stress and by using hybrids with similar genetic backgrounds.
Collapse
Affiliation(s)
- Luke S Pruter
- Entomology Program, Texas A&M AgriLife Research & Extension Center, Corpus Christi, TX
| | - Michael J Brewer
- Entomology Program, Texas A&M AgriLife Research & Extension Center, Corpus Christi, TX
| | - Mark A Weaver
- Department of Plant Pathology, USDA-ARS, Stoneville, MS
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX
| | - Thomas S Isakeit
- Department of Plant Pathology, Texas A&M University, College Station, TX
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX
| |
Collapse
|
11
|
Soares Figueiredo C, Nunes Lemes AR, Sebastião I, Desidério JA. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Appl Biochem Biotechnol 2019; 188:798-809. [DOI: 10.1007/s12010-019-02952-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
12
|
Kahn TW, Chakroun M, Williams J, Walsh T, James B, Monserrate J, Ferré J. Efficacy and Resistance Management Potential of a Modified Vip3C Protein for Control of Spodoptera frugiperda in Maize. Sci Rep 2018; 8:16204. [PMID: 30385802 PMCID: PMC6212501 DOI: 10.1038/s41598-018-34214-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022] Open
Abstract
A modified Vip3C protein has been developed that has a spectrum of activity that has the potential to be commercially useful for pest control, and shows good efficacy against Spodoptera frugiperda in insect bioassays and field trials. For the first time Vip3A and Vip3C proteins have been compared to Cry1 and Cry2 proteins in a complete set of experiments from insect bioassays to competition binding assays to field trials, and the results of these complementary experiments are in agreement with each other. Binding assays with radiolabelled toxins and brush border membrane vesicles from S. frugiperda and Helicoverpa armigera show that the modified Vip3C protein shares binding sites with Vip3A, and does not share sites with Cry1F or Cry2A. In agreement with the resulting binding site model, Vip3A-resistant insects were also cross-resistant to the modified Vip3C protein. Furthermore, maize plants expressing the modified Vip3C protein, but not those expressing Cry1F protein, were protected against Cry1F-resistant S. frugiperda in field trials.
Collapse
Affiliation(s)
- Theodore W Kahn
- BASF Agricultural Solutions Seed US LLC, 3500 Paramount Parkway, Morrisville, NC, 27560, USA
| | - Maissa Chakroun
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
- Centre de Biotechnologie de Sfax (CBS), Sfax, Tunisia
| | - Jayme Williams
- BASF Agricultural Solutions Seed US LLC, 3500 Paramount Parkway, Morrisville, NC, 27560, USA
| | - Tom Walsh
- CSIRO, Black Mountain, Clunies Ross St., Acton, 2601, ACT, Australia
| | - Bill James
- CSIRO, Black Mountain, Clunies Ross St., Acton, 2601, ACT, Australia
| | - Jessica Monserrate
- BASF Agricultural Solutions Seed US LLC, 3500 Paramount Parkway, Morrisville, NC, 27560, USA
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
13
|
Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J Invertebr Pathol 2018; 155:64-70. [DOI: 10.1016/j.jip.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
14
|
Banyuls N, Hernández-Rodríguez CS, Van Rie J, Ferré J. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Sci Rep 2018; 8:7539. [PMID: 29765057 PMCID: PMC5953952 DOI: 10.1038/s41598-018-25346-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/20/2018] [Indexed: 11/16/2022] Open
Abstract
Vip3 vegetative insecticidal proteins from Bacillus thuringiensis are an important tool for crop protection against caterpillar pests in IPM strategies. While there is wide consensus on their general mode of action, the details of their mode of action are not completely elucidated and their structure remains unknown. In this work the alanine scanning technique was performed on 558 out of the total of 788 amino acids of the Vip3Af1 protein. From the 558 residue substitutions, 19 impaired protein expression and other 19 substitutions severely compromised the insecticidal activity against Spodoptera frugiperda. The latter 19 substitutions mainly clustered in two regions of the protein sequence (amino acids 167-272 and amino acids 689-741). Most of these substitutions also decreased the activity to Agrotis segetum. The characterisation of the sensitivity to proteases of the mutant proteins displaying decreased insecticidal activity revealed 6 different band patterns as evaluated by SDS-PAGE. The study of the intrinsic fluorescence of most selected mutants revealed only slight shifts in the emission peak, likely indicating only minor changes in the tertiary structure. An in silico modelled 3D structure of Vip3Af1 is proposed for the first time.
Collapse
Affiliation(s)
- N Banyuls
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain
| | - C S Hernández-Rodríguez
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain
| | - J Van Rie
- Bayer CropScience N.V., Ghent, Belgium
| | - J Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
15
|
Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Sci Rep 2017; 7:16245. [PMID: 29176692 PMCID: PMC5701239 DOI: 10.1038/s41598-017-16406-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023] Open
Abstract
The insecticidal Vip3 proteins from Bacillus thuringiensis (Bt), along with the classical Bt Cry proteins, are currently used in Bt-crops to control insect pests, since they do not share the same mode of action. Here we characterized the response of Spodoptera exigua larvae after Vip3 challenge. The expression profile of 47 genes was analyzed in larvae challenged with three concentrations of Vip3Ca. Results showed that the up-regulated genes were mainly involved in immune response, whereas the down-regulated genes were mainly involved in the digestion process. Other mechanisms of cellular response to the damage such as apoptosis were analyzed. For this analysis, sections from the midguts were examined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The nuclei of the midgut epithelial cells were stained at the highest concentration of the Vip3Ca protein and at lower concentrations of Vip3Aa in agreement with the different potency of the two proteins. In addition, apoptosis was also examined by the analysis of the expression of five caspase genes. The present study shows that exposure of S. exigua larvae to sublethal concentrations of Vip3 proteins activates different insect response pathways which trigger the regulation of some genes, APN shedding, and apoptotic cell death.
Collapse
|
16
|
Gomis-Cebolla J, Ruiz de Escudero I, Vera-Velasco NM, Hernández-Martínez P, Hernández-Rodríguez CS, Ceballos T, Palma L, Escriche B, Caballero P, Ferré J. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J Invertebr Pathol 2016; 142:60-67. [PMID: 27756652 DOI: 10.1016/j.jip.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/13/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The Vip3Ca protein, discovered in a screening of Spanish collections of Bacillus thuringiensis, was known to be toxic to Chrysodeixis chalcites, Mamestra brassicae and Trichoplusia ni. In the present study, its activity has been tested with additional insect species and we found that Cydia pomonella is moderately susceptible to this protein. Vip3Ca (of approximately 90kDa) was processed to an approximately 70kDa protein when incubated with midgut juice in all tested species. The kinetics of proteolysis correlated with the susceptibility of the insect species to Vip3Ca. The activation was faster to slower in the following order: M. brassicae (susceptible), Spodoptera littoralis (moderately susceptible), Agrotis ipsilon and Ostrinia nubilalis (slightly susceptible). Processing Vip3Ca by O. nubilalis or M. brassicae midgut juice did not significantly changed its toxicity to either insect species, indicating that the low susceptibility of O. nubilalis is not due to a problem in the midgut processing of the toxin. M. brassicae larvae fed with Vip3Ca showed binding of this toxin to the apical membrane of the midgut epithelial cells. Histopathological inspection showed sloughing of the epithelial cells with further disruption, which suggests that the mode of action of Vip3Ca is similar to that described for Vip3Aa. Biotin-labeled Vip3Ca and Vip3Aa bound specifically to M. brassicae brush border membrane vesicles and both toxins competed for binding sites. This result suggests that insects resistant to Vip3A may also be cross-resistant to Vip3C, which has implications for Insect Resistance Management (IRM).
Collapse
Affiliation(s)
- Joaquín Gomis-Cebolla
- Estructura de Recerca Interdisciplinar en Biotecnología y Biomedicina (ERI BIOTECMED), Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, 46100 Burjassot, Spain
| | - Iñigo Ruiz de Escudero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Avda. de Pamplona nº 123, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Natalia Mara Vera-Velasco
- Estructura de Recerca Interdisciplinar en Biotecnología y Biomedicina (ERI BIOTECMED), Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, 46100 Burjassot, Spain
| | - Patricia Hernández-Martínez
- Estructura de Recerca Interdisciplinar en Biotecnología y Biomedicina (ERI BIOTECMED), Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, 46100 Burjassot, Spain
| | - Carmen Sara Hernández-Rodríguez
- Estructura de Recerca Interdisciplinar en Biotecnología y Biomedicina (ERI BIOTECMED), Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, 46100 Burjassot, Spain
| | - Tomás Ceballos
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Avda. de Pamplona nº 123, 31192 Mutilva, Navarra, Spain
| | - Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Avda. de Pamplona nº 123, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Baltasar Escriche
- Estructura de Recerca Interdisciplinar en Biotecnología y Biomedicina (ERI BIOTECMED), Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, 46100 Burjassot, Spain
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Avda. de Pamplona nº 123, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Juan Ferré
- Estructura de Recerca Interdisciplinar en Biotecnología y Biomedicina (ERI BIOTECMED), Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
17
|
Ricietto APS, Gomis-Cebolla J, Vilas-Bôas GT, Ferré J. Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. J Invertebr Pathol 2016; 141:1-5. [PMID: 27686262 DOI: 10.1016/j.jip.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
The Oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), is a major pest of fruit trees worldwide, such as peach and apple. Bacillus thuringiensis has been shown to be an efficient alternative to synthetic insecticides in the control of many agricultural pests. The objective of this study was to evaluate the effectiveness of B. thuringiensis individual toxins and their mixtures for the control of G. molesta. Bioassays were performed with Cry1Aa, Cry1Ac, Cry1Ca, Vip3Aa, Vip3Af and Vip3Ca, as well as with the commercial products DiPel® and XenTari®. The most active proteins were Vip3Aa and Cry1Aa, with LC50 values of 1.8 and 7.5ng/cm2, respectively. Vip3Ca was nontoxic to this insect species. Among the commercial products, DiPel® was slightly, but significantly, more toxic than XenTari®, with LC50 values of 13 and 33ng commercial product/cm2, respectively. Since Vip3A and Cry1 proteins are expressed together in some insect-resistant crops, we evaluated possible synergistic or antagonistic interactions among them. The results showed moderate to high antagonism in the combinations of Vip3Aa with Cry1Aa and Cry1Ca.
Collapse
Affiliation(s)
- Ana Paula Scaramal Ricietto
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain
| | - Joaquín Gomis-Cebolla
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain
| | | | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
18
|
Conditions for homogeneous preparation of stable monomeric and oligomeric forms of activated Vip3A toxin from Bacillus thuringiensis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:257-264. [DOI: 10.1007/s00249-016-1162-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
|
19
|
Herrero S, Bel Y, Hernández-Martínez P, Ferré J. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. CURRENT OPINION IN INSECT SCIENCE 2016; 15:89-96. [PMID: 27436737 DOI: 10.1016/j.cois.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
Bioinsecticides based on Bacillus thuringiensis have long been used as an alternative to synthetic insecticides to control insect pests. In this review, we focus on insects of the genus Spodoptera, including relevant polyphagous species that are primary and secondary pests of many crops, and how B. thuringiensis toxins can be used for Spodoptera spp. pest management. We summarize the main findings related to susceptibility, midgut binding specificity, mechanisms of response and resistance of this insect genus to B. thuringiensis toxins.
Collapse
Affiliation(s)
- Salvador Herrero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Yolanda Bel
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Patricia Hernández-Martínez
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Juan Ferré
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
20
|
Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol Mol Biol Rev 2016; 80:329-350. [PMID: 26935135 DOI: 10.1128/mmbr.00060-15.address] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.
Collapse
Affiliation(s)
- Maissa Chakroun
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Núria Banyuls
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Yolanda Bel
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Baltasar Escriche
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
21
|
Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Sci Rep 2016; 6:23861. [PMID: 27025647 PMCID: PMC4812304 DOI: 10.1038/srep23861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 01/02/2023] Open
Abstract
Vip proteins, a new group of insecticidal toxins produced by Bacillus thuringiensis, are effective against specific pests including Spodoptera litura. Here, we report construction of a transcriptome database of S. litura by de novo assembly along with detection of the transcriptional response of S. litura larvae to Vip3Aa toxin. In total, 56,498 unigenes with an N50 value of 1,853 bp were obtained. Results of transcriptome abundance showed that Vip3Aa toxin provoked a wide transcriptional response of the S. litura midgut. The differentially expressed genes were enriched for immunity-related, metabolic-related and Bt-related genes. Twenty-nine immunity-related genes, 102 metabolic-related genes and 62 Bt-related genes with differential expression were found. On the basis of transcriptional profiling analysis, we focus on the functional validation of trypsin which potentially participated in the activation of Vip3Aa protoxin. Zymogram analysis indicated that the presence of many proteases, including trypsin, in S. litura larvae midgut. Results of enzymolysis in vitro of Vip3Aa by trypsin, and bioassay and histopathology of the trypsin-digested Vip3Aa toxin showed that trypsin was possibly involved in the Vip3Aa activation. This study provides a transcriptome foundation for the identification and functional validation of the differentially expressed genes in an agricultural important pest, S. litura.
Collapse
|
22
|
Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol Mol Biol Rev 2016; 80:329-50. [PMID: 26935135 DOI: 10.1128/mmbr.00060-15] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.
Collapse
|
23
|
Baranek J, Kaznowski A, Konecka E, Naimov S. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. J Invertebr Pathol 2015; 130:72-81. [PMID: 26146224 DOI: 10.1016/j.jip.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
Abstract
Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests.
Collapse
Affiliation(s)
- Jakub Baranek
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Samir Naimov
- Department of Plant Physiology and Molecular Biology, Plovdiv University, Plovdiv, Bulgaria
| |
Collapse
|
24
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
25
|
Azzouz H, Kebaili-Ghribi J, ben Farhat-Touzri D, Daoud F, Fakhfakh I, Tounsi S, Jaoua S. Selection and characterisation of an HD1-like Bacillus thuringiensis isolate with a high insecticidal activity against Spodoptera littoralis (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2014; 70:1192-1201. [PMID: 24124020 DOI: 10.1002/ps.3661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/16/2013] [Accepted: 10/03/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Spodoptera littoralis (Boisduval) larvae are known by their susceptibility to Bacillus thuringiensis subsp. aizawai strains. In order to prevent the appearance of B. thuringiensis (Bt) resistance and to develop economical Bt-based biopesticides, the selection and the characterisation of a B. thuringiensis isolate toxic against S. littoralis larvae and overproducing δ-endotoxins were investigated. RESULTS Among 124 Tunisian B. thuringiensis isolates assessed against S. littoralis larvae, four isolates showed toxicity similar to and higher than the toxicity of the aizawai strain HD133 and the kurstaki strain HD1 respectively. The plasmid pattern of the selected isolates was similar to that of HD1. Polymerase chain reaction (PCR) analysis using specific primers revealed that these isolates present different gene contents. The only detected gene encoding Spodoptera-specific toxin was cry9. The selected isolates were found to produce bipyramidal and cubic crystals. The assessment of δ-endotoxin production by these isolates showed that BUPM28 produced 43.71 and 80.81% more δ-endotoxin than HD1 and HD133 respectively. The application of osmotic or heat shock stress on the BUPM28 isolate made it possible to enhance δ-endotoxin production by 22 and 23% respectively. CONCLUSION On the basis of its potent insecticidal activity and its high level of δ-endotoxin production, the BUPM28 isolate can be considered to be an effective alternative for the control of S. littoralis.
Collapse
Affiliation(s)
- Hichem Azzouz
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
26
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin. Toxins (Basel) 2014; 6:1490-504. [PMID: 24784323 PMCID: PMC4052248 DOI: 10.3390/toxins6051490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Universidad Pública de Navarra-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, Navarra 31192, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Navarra 31006, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Navarra 31006, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Universidad Pública de Navarra-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, Navarra 31192, Spain.
| |
Collapse
|
27
|
Ruiz de Escudero I, Banyuls N, Bel Y, Maeztu M, Escriche B, Muñoz D, Caballero P, Ferré J. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 2014; 117:51-5. [PMID: 24508583 DOI: 10.1016/j.jip.2014.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Five Bacillus thuringiensis Vip3A proteins (Vip3Aa, Vip3Ab, Vip3Ad, Vip3Ae and Vip3Af) and their corresponding trypsin-activated toxins were tested for their toxicity against eight lepidopteran pests: Agrotis ipsilon, Helicoverpa armigera, Mamestra brassicae, Spodoptera exigua, Spodoptera frugiperda, Spodoptera littoralis, Ostrinia nubilalis and Lobesia botrana. Toxicity was first tested at a high dose at 7 and 10 days. No major differences were found when comparing protoxins vs. trypsin-activated toxins. The proteins that were active against most of the insect species were Vip3Aa, Vip3Ae and Vip3Af, followed by Vip3Ab. Vip3Ad was non-toxic to any of the species tested. Considering the results by insect species, A. ipsilon, S. frugiperda and S. littoralis were susceptible to Vip3Aa, Vip3Ab, Vip3Ae and Vip3Af; S. exigua was susceptible to Vip3Aa and Vip3Ae, and moderately susceptible to Vip3Ab; M. brassicae and L. botrana were susceptible to Vip3Aa, Vip3Ae and Vip3Af; H. armigera was moderately susceptible to Vip3Aa, Vip3Ae and Vip3Af, and O. nubilalis was tolerant to all Vip3 proteins tested, although it showed some susceptibility to Vip3Af. The results obtained will help to design new combinations of insecticidal protein genes in transgenic crops or in recombinant bacteria for the control of insect pests.
Collapse
Affiliation(s)
- Iñigo Ruiz de Escudero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Núria Banyuls
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain
| | - Yolanda Bel
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain
| | - Mireya Maeztu
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain
| | - Baltasar Escriche
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain
| | - Delia Muñoz
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Juan Ferré
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain.
| |
Collapse
|