1
|
Rivero MA, Krüger A, Rodríguez EM, Signorini Porchietto ML, Lucchesi PMA. Seropositivity to Shiga toxin 2 among Argentinian urban and rural residents. Association with sociodemographic and exposure factors. J Public Health (Oxf) 2023; 45:e30-e37. [PMID: 34969078 DOI: 10.1093/pubmed/fdab405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) are enteric pathogens that cause hemolytic-uremic syndrome (HUS). Ruminants, especially cattle, are their main reservoir. This study describes the seroepidemiology of STEC in rural and urban populations in Argentina, a country with a high HUS incidence. METHODS A cross-sectional study was performed in patients without gastrointestinal symptoms. IgG antibodies against Stx2 were detected by western blotting. RESULTS Anti-Stx2 antibodies were detected in 14.56% of serum samples, more frequently in rural (19.38%) than urban residents (12%). Seropositivity was associated with lower socioeconomic status (SES). Among the other variables considered, thawing homemade hamburgers before cooking them, and the lack of knowledge about HUS were also associated with seropositivity. A multivariate logistic regression analysis performed with the variables that were statistically significant showed that only the SES index remained significant. As SES was measured based on several variables, we further analyzed each one of them and found that the lack of a high education level was statistically associated with seropositivity. CONCLUSIONS The present findings have implications for STEC prevention efforts, highlighting the importance of considering SES and risks factors linked to different SES levels when targeting consumer-level public health interventions.
Collapse
Affiliation(s)
- Mariana Alejandra Rivero
- Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Edgardo Mario Rodríguez
- Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | | | - Paula María Alejandra Lucchesi
- Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
2
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
3
|
Quiguanás-Guarín E, Granobles-Velandia C, Arango-Gil B, Giraldo-Rubio V, Castaño-Osorio J. Aislamiento de Escherichia coli productora de toxina Shiga (STEC) en heces de ganado y detección de factores de virulencia asociados con su patogénesis. INFECTIO 2020. [DOI: 10.22354/in.v25i1.906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objetivo: Aislar STEC en las heces del ganado bovino en el municipio de Ulloa, Valle del Cauca y detectar factores de virulencia asociados con la patogénesis. Materiales y métodos: Se tomaron 21 muestras provenientes de bovinos, las cuales fueron tomadas directamente del recto del animal mediante hisopos. Las muestras se procesaron hasta obtener colonias puras a las cuales se les evaluó la presencia de los genes stx1, stx2, eae, saa y hlyA mediante PCR y posteriormente, se evaluó el efecto citotóxico de las muestras positivas sobre células Vero (ATCC-CCL-81.4). Resultados: De las 21 muestras de heces de bovinos,12 presentaron bacterias con uno o ambos genes stx. Se obtuvieron 106 aislamientos totales de STEC y se observaron diferencias en cuanto a la presencia y ausencia de los genes de virulencia evaluados en los aislamientos de cada bovino, obteniendo cinco combinaciones de genes. 48 aislamientos presentaron únicamente el gen stx2 y 58 presentaron tanto el gen stx1 como el gen stx2; de los 106 aislamientos, se detectaron 44 con el gen hlyA y 57 con el gen saa. Conclusiones: Todos los sobrenadantes de STEC analizados mostraron actividad citotóxica sobre las células Vero, mientras que en ausencia de STEC las células formaron monocapa después de 48 h de incubación. Este trabajo es el primer reporte en Colombia que aporta información sobre la presencia de STEC en el ganado bovino, la presencia de factores de virulencia y el potencial efecto citotóxico que poseen estas cepas nativas.
Collapse
|
4
|
Buytaers FE, Saltykova A, Denayer S, Verhaegen B, Vanneste K, Roosens NHC, Piérard D, Marchal K, De Keersmaecker SCJ. A Practical Method to Implement Strain-Level Metagenomics-Based Foodborne Outbreak Investigation and Source Tracking in Routine. Microorganisms 2020; 8:E1191. [PMID: 32764329 PMCID: PMC7463776 DOI: 10.3390/microorganisms8081191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
The management of a foodborne outbreak depends on the rapid and accurate identification of the responsible food source. Conventional methods based on isolation of the pathogen from the food matrix and target-specific real-time polymerase chain reactions (qPCRs) are used in routine. In recent years, the use of whole genome sequencing (WGS) of bacterial isolates has proven its value to collect relevant information for strain characterization as well as tracing the origin of the contamination by linking the food isolate with the patient's isolate with high resolution. However, the isolation of a bacterial pathogen from food matrices is often time-consuming and not always successful. Therefore, we aimed to improve outbreak investigation by developing a method that can be implemented in reference laboratories to characterize the pathogen in the food vehicle without its prior isolation and link it back to human cases. We tested and validated a shotgun metagenomics approach by spiking food pathogens in specific food matrices using the Shiga toxin-producing Escherichia coli (STEC) as a case study. Different DNA extraction kits and enrichment procedures were investigated to obtain the most practical workflow. We demonstrated the feasibility of shotgun metagenomics to obtain the same information as in ISO/TS 13136:2012 and WGS of the isolate in parallel by inferring the genome of the contaminant and characterizing it in a shorter timeframe. This was achieved in food samples containing different E. coli strains, including a combination of different STEC strains. For the first time, we also managed to link individual strains from a food product to isolates from human cases, demonstrating the power of shotgun metagenomics for rapid outbreak investigation and source tracking.
Collapse
Affiliation(s)
- Florence E. Buytaers
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (F.E.B.); (A.S.); (K.V.); (N.H.C.R.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Ghent, Belgium;
| | - Assia Saltykova
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (F.E.B.); (A.S.); (K.V.); (N.H.C.R.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Ghent, Belgium;
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (S.D.); (B.V.)
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (S.D.); (B.V.)
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (F.E.B.); (A.S.); (K.V.); (N.H.C.R.)
| | - Nancy H. C. Roosens
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (F.E.B.); (A.S.); (K.V.); (N.H.C.R.)
| | - Denis Piérard
- National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC STEC), Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium;
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Ghent, Belgium;
- Department of Information Technology, IDlab, IMEC, Ghent University, 9000 Ghent, Belgium
- Department of Genetics, University of Pretoria, 0001 Pretoria, South Africa
| | - Sigrid C. J. De Keersmaecker
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (F.E.B.); (A.S.); (K.V.); (N.H.C.R.)
| |
Collapse
|
5
|
Zuppi M, Tozzoli R, Chiani P, Quiros P, Martinez-Velazquez A, Michelacci V, Muniesa M, Morabito S. Investigation on the Evolution of Shiga Toxin-Converting Phages Based on Whole Genome Sequencing. Front Microbiol 2020; 11:1472. [PMID: 32754128 PMCID: PMC7366253 DOI: 10.3389/fmicb.2020.01472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are pivotal elements in the dissemination of virulence genes. The main virulence determinants of Shiga Toxin producing E. coli, Shiga Toxins (Stx), are encoded by genes localized in the genome of lambdoid bacteriophages. Stx comprise two antigenically different types, Stx1 and Stx2, further divided into subtypes. Among these, certain Stx2 subtypes appear to be more commonly occurring in the most severe forms of the STEC disease, haemorrhagic colitis and haemolytic uremic syndrome (HUS). This study aimed at obtaining insights on the evolution of Stx2 bacteriophages, due to their relevance in public health, and we report here on the analysis of the genomic structure of Stx2 converting phages in relation with the known reservoir of the E. coli strains harboring them. Stx2-converting phages conveying the genes encoding different stx2 subtypes have been isolated from STEC strains and their whole genomes have been sequenced, analyzed and compared to those of other Stx2 phages available in the public domain. The phages' regions containing the stx2 genes have been analyzed in depth allowing to make inference on the possible mechanisms of selection and maintenance of certain Stx2 phages in the reservoir. The "stx regions" of different stx2 gene subtypes grouped into three different evolutionary lines in the comparative analysis, reflecting the frequency with which these subtypes are found in different animal niches, suggesting that the colonization of specific reservoir by STEC strains could be influenced by the Stx phage that they carry. Noteworthy, we could identify the presence of nanS-p gene exclusively in the "stx regions" of the phages identified in STEC strains commonly found in cattle. As a matter of fact, this gene encodes an esterase capable of metabolizing sialic acids produced by submaxillary glands of bovines and present in great quantities in their gastrointestinal tract.
Collapse
Affiliation(s)
- Michele Zuppi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosangela Tozzoli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pablo Quiros
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Adan Martinez-Velazquez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
7
|
Burgán J, Krüger A, Lucchesi PMA. Comparable stx 2a expression and phage production levels between Shiga toxin-producing Escherichia coli strains from human and bovine origin. Zoonoses Public Health 2019; 67:44-53. [PMID: 31868306 DOI: 10.1111/zph.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.
Collapse
Affiliation(s)
- Julia Burgán
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Alejandra Krüger
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhang LX, Simpson DJ, McMullen LM, Gänzle MG. Comparative Genomics and Characterization of the Late Promoter pR' from Shiga Toxin Prophages in Escherichia coli. Viruses 2018; 10:v10110595. [PMID: 30384416 PMCID: PMC6266700 DOI: 10.3390/v10110595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 02/02/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction.
Collapse
Affiliation(s)
- Ling Xiao Zhang
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - David J Simpson
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Lynn M McMullen
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
9
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Virulent gene profile and antibiotic susceptibility pattern of Shiga toxin-producing Escherichia coli (STEC) from cattle and camels in Maiduguri, North-Eastern Nigeria. Trop Anim Health Prod 2018; 50:1327-1341. [DOI: 10.1007/s11250-018-1565-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
11
|
Krüger A, Burgán J, Friedrich AW, Rossen JWA, Lucchesi PMA. ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. INFECTION GENETICS AND EVOLUTION 2018; 60:126-132. [PMID: 29476813 DOI: 10.1016/j.meegid.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 01/08/2023]
Abstract
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145.
Collapse
Affiliation(s)
- A Krüger
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina.
| | - J Burgán
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| | - A W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - J W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - P M A Lucchesi
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| |
Collapse
|
12
|
Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina. Int J Food Microbiol 2017; 261:57-61. [DOI: 10.1016/j.ijfoodmicro.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022]
|
13
|
Alonso MZ, Krüger A, Sanz ME, Padola NL, Lucchesi PM. Serotypes, virulence profiles and stx subtypes of Shigatoxigenic Escherichia coli isolated from chicken derived products. Rev Argent Microbiol 2016; 48:325-328. [DOI: 10.1016/j.ram.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022] Open
|
14
|
Mainda G, Lupolova N, Sikakwa L, Bessell PR, Muma JB, Hoyle DV, McAteer SP, Gibbs K, Williams NJ, Sheppard SK, La Ragione RM, Cordoni G, Argyle SA, Wagner S, Chase-Topping ME, Dallman TJ, Stevens MP, Bronsvoort BMD, Gally DL. Phylogenomic approaches to determine the zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) isolated from Zambian dairy cattle. Sci Rep 2016; 6:26589. [PMID: 27220895 PMCID: PMC4879551 DOI: 10.1038/srep26589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022] Open
Abstract
This study assessed the prevalence and zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) sampled from 104 dairy units in the central region of Zambia and compared these with isolates from patients presenting with diarrhoea in the same region. A subset of 297 E. coli strains were sequenced allowing in silico analyses of phylo- and sero-groups. The majority of the bovine strains clustered in the B1 ‘commensal’ phylogroup (67%) and included a diverse array of serogroups. 11% (41/371) of the isolates from Zambian dairy cattle contained Shiga toxin genes (stx) while none (0/73) of the human isolates were positive. While the toxicity of a subset of these isolates was demonstrated, none of the randomly selected STEC belonged to key serogroups associated with human disease and none encoded a type 3 secretion system synonymous with typical enterohaemorrhagic strains. Positive selection for E. coli O157:H7 across the farms identified only one positive isolate again indicating this serotype is rare in these animals. In summary, while Stx-encoding E. coli strains are common in this dairy population, the majority of these strains are unlikely to cause disease in humans. However, the threat remains of the emergence of strains virulent to humans from this reservoir.
Collapse
Affiliation(s)
- Geoffrey Mainda
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK.,Ministry Livestock and Fisheries, Kabwe, Zambia
| | - Nadejda Lupolova
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | | | - Paul R Bessell
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | | | - Deborah V Hoyle
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - Sean P McAteer
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | | | | | | | | | | | - Sally A Argyle
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - Sam Wagner
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | | | | | - Mark P Stevens
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | | | - David L Gally
- Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| |
Collapse
|
15
|
Angel Villegas N, Baronetti J, Albesa I, Etcheverría A, Becerra MC, Padola NL, Paraje MG. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms. Toxicol In Vitro 2015; 29:1692-700. [PMID: 26130220 DOI: 10.1016/j.tiv.2015.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, with the main virulence factor of this bacterium being its capacity to secrete Shiga toxins (Stxs). Therefore, the use of certain antibiotics for the treatment of this infection, which induces the liberation of Stxs, is controversial. Reactive oxygen and nitrogen species are also involved in the pathogenesis of different diseases. The purpose of this study was to analyze the effects of antibiotics on biofilms of STEC and the relationships between cellular stress and the release of Stx. To this end, biofilms of reference and clinical strains were treated with antibiotics (ciprofloxacin, fosfomycin and rifaximin) and the production of oxidants, the antioxidant defense system and toxin release were evaluated. Ciprofloxacin altered the prooxidant-antioxidant balance, with a decrease of oxidant metabolites and an increase of superoxide dismutase and catalase activity, being associated with high-levels of Stx production. Furthermore, inhibition of oxidative stress by exogenous antioxidants was correlated with a reduction in the liberation of Stx, indicating the participation of this phenomenon in the release of this toxin. In contrast, fosfomycin and rifaximin produced less alteration with a minimal production of Stx. Our data show that treatment of biofilm-STEC with these antibiotics induces oxidative stress-mediated release of Stx.
Collapse
Affiliation(s)
- Natalia Angel Villegas
- IMBIV-CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - José Baronetti
- IMBIV-CONICET y Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
| | - Inés Albesa
- IMBIV-CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Analía Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Dpto. SAMP, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - M Cecilia Becerra
- IMBIV-CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Dpto. SAMP, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - M Gabriela Paraje
- IMBIV-CONICET y Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
16
|
Affiliation(s)
- Analia Etcheverria
- a Laboratorio de Imunoquímica y Biotecnología ; Centro de Investigación Veterinaria de Tandil (CIVETAN) ; Tandil , Buenos Aires , Argentina
| |
Collapse
|
17
|
Livezey KW, Groschel B, Becker MM. Use of the ecf1 gene to detect Shiga toxin-producing Escherichia coli in beef samples. J Food Prot 2015; 78:675-84. [PMID: 25836391 DOI: 10.4315/0362-028x.jfp-14-417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Escherichia coli O157:H7 and six serovars (O26, O103, O121, O111, O145, and O45) are frequently implicated in severe clinical illness worldwide. Standard testing methods using stx, eae, and O serogroup-specific gene sequences for detecting the top six non-O157 STEC bear the disadvantage that these genes may reside, independently, in different nonpathogenic organisms, leading to false-positive results. The ecf operon has previously been identified in the large enterohemolysin-encoding plasmid of eae-positive Shiga toxin-producing E. coli (STEC). Here, we explored the utility of the ecf operon as a single marker to detect eae-positive STEC from pure broth and primary meat enrichments. Analysis of 501 E. coli isolates demonstrated a strong correlation (99.6%) between the presence of the ecf1 gene and the combined presence of stx, eae, and ehxA genes. Two large studies were carried out to determine the utility of an ecf1 detection assay to detect non-O157 STEC strains in enriched meat samples in comparison to the results using the U. S. Department of Agriculture Food Safety and Inspection Service (FSIS) method that detects stx and eae genes. In ground beef samples (n = 1,065), the top six non-O157 STEC were detected in 4.0% of samples by an ecf1 detection assay and in 5.0% of samples by the stx- and eae-based method. In contrast, in beef samples composed largely of trim (n = 1,097), the top six non-O157 STEC were detected at 1.1% by both methods. Estimation of false-positive rates among the top six non-O157 STEC revealed a lower rate using the ecf1 detection method (0.5%) than using the eae and stx screening method (1.1%). Additionally, the ecf1 detection assay detected STEC strains associated with severe illness that are not included in the FSIS regulatory definition of adulterant STEC.
Collapse
Affiliation(s)
- Kristin W Livezey
- Roka Bioscience, Inc., 10398 Pacific Center Court, San Diego, California 92121, USA
| | - Bettina Groschel
- Roka Bioscience, Inc., 10398 Pacific Center Court, San Diego, California 92121, USA
| | - Michael M Becker
- Roka Bioscience, Inc., 10398 Pacific Center Court, San Diego, California 92121, USA.
| |
Collapse
|
18
|
|
19
|
Miko A, Rivas M, Bentancor A, Delannoy S, Fach P, Beutin L. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Front Cell Infect Microbiol 2014; 4:78. [PMID: 24987616 PMCID: PMC4060028 DOI: 10.3389/fcimb.2014.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113 , terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113 , espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans.
Collapse
Affiliation(s)
- Angelika Miko
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR)Berlin, Germany
| | - Marta Rivas
- Servicio Fisiopatogenia, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”Buenos Aires, Argentina
| | - Adriana Bentancor
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Sabine Delannoy
- Food Safety Laboratory, French Agency for Food, Environmental and Occupational Health (Anses)Maisons-Alfort, France
| | - Patrick Fach
- Food Safety Laboratory, French Agency for Food, Environmental and Occupational Health (Anses)Maisons-Alfort, France
| | - Lothar Beutin
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR)Berlin, Germany
| |
Collapse
|
20
|
Characterization of "Candidatus Liberibacter asiaticus" populations by double-locus analyses. Curr Microbiol 2014; 69:554-60. [PMID: 24912994 DOI: 10.1007/s00284-014-0621-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
"Candidatus Liberibacter asiaticus" (CaLas) is associated with citrus Huanglongbing (HLB, yellow shoot disease), which is highly destructive to world citrus production. Understanding the relationships of CaLas isolates from different geographical regions is important for HLB research and development of disease management strategies. In this study, 301 CaLas isolates [85 Brazil, 132 China, and 84 U.S. (83 Florida and 1 California)] were collected, and genomic variations among them were evaluated based on the analyses of two genomic loci: trn1, characteristic of variable tandem repeat numbers (TRNs), and snp1, characteristic of single nucleotide polymorphisms (SNPs). Locus trn1 revealed the homogeneity of all Brazilian isolates, and locus snp1 revealed the homogeneity of most Florida isolates. When the two loci were analyzed simultaneously, i.e., double-locus (DL) analyses, CaLas isolates were clustered mostly according to geographical origins. DL genotype 1 included 97 % of the Chinese isolates, DL genotype 2 included all Brazilian isolates, and DL genotype 3 included 93 % of the U.S. isolates. DL analyses successfully revealed inter-continental overlapping or movement pattern of CaLas isolates. The isolate recently found in California belonged to Asiatic DL genotype 1.
Collapse
|
21
|
Relevance of biofilms in the pathogenesis of Shiga-toxin-producing Escherichia coli infection. ScientificWorldJournal 2013; 2013:607258. [PMID: 24324376 PMCID: PMC3845835 DOI: 10.1155/2013/607258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/25/2013] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to determine the relationships among biofilm formation, cellular stress and release of Shiga toxin (Stx) by three different clinical Shiga toxin-producing Escherichia coli (STEC) strains. The biofilm formation was determined using crystal violet stain in tryptic soy broth or thioglycollate medium with the addition of sugars (glucose or mannose) or hydrogen peroxide. The reactive oxygen species (ROSs) were detected by the reduction of nitro blue tetrazolium and reactive nitrogen intermediates (RNI) determined by the Griess assay. In addition, the activities of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were studied. For the cytotoxicity studies, Vero cells were cultured with Stx released of STEC biofilms. The addition of sugars in both culture mediums resulted in an increase in biofilm biomass, with a decrease in ROS and RNI production, low levels of SOD and CAT activity, and minimal cytotoxic effects. However, under stressful conditions, an important increase in the antioxidant enzyme activity and high level of Stx production were observed. The disturbance in the prooxidant-antioxidant balance and its effect on the production and release of Stx evaluated under different conditions of biofilm formation may contribute to a better understanding of the relevance of biofilms in the pathogenesis of STEC infection.
Collapse
|
22
|
Etcheverría AI, Padola NL. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 2013; 4:366-72. [PMID: 23624795 PMCID: PMC3714128 DOI: 10.4161/viru.24642] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shiga toxins 1 and 2. Additional virulence markers are a plasmid-encoded enterohemolysin (ehxA), an autoagglutinating adhesin (Saa), a catalase-peroxidase (katP), an extracellular serine protease (espP), a zinc metalloprotease (stcE), a subtilase cytotoxin (subAB), among others. Other virulence factors are intimin and adhesins that had a roll in the adherence of STEC to bovine colon. This review focuses on the virulence traits of STEC and especially on those related to the adhesion to bovine colon. The known of the interaction between STEC and the bovine host is crucial to develop strategies to control cattle colonization.
Collapse
Affiliation(s)
- Analía Inés Etcheverría
- Laboratorio de Imunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | | |
Collapse
|
23
|
Fernández D, Krüger A, Polifroni R, Bustamante AV, Sanso AM, Etcheverría AI, Lucchesi PMA, Parma AE, Padola NL. Characterization of Shiga toxin-producing Escherichia coli O130:H11 and O178:H19 isolated from dairy cows. Front Cell Infect Microbiol 2013; 3:9. [PMID: 23483233 PMCID: PMC3592196 DOI: 10.3389/fcimb.2013.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/19/2013] [Indexed: 02/01/2023] Open
Abstract
Shiga toxin-producing E. coli (STEC) are isolated from human patients with bloody diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS). In the last years, the infections with non-O157 serotypes are increasing their frequency of association with human disease. STEC produce Shiga toxin (Stx) and other virulence factors that could contribute to human pathogenesis. Cattle are the main reservoir and the transmission to humans is through the consumption of undercooked meat, non-pasteurized dairy products, and vegetables or water contaminated with feces. We have previously determined that O130:H11 and O178:H19 serotypes were the most prevalent in dairy cows from Argentina. In the present study, 37 and 25 STEC isolates from dairy cows belonging to O130:H11 and O178:H19 serotypes, respectively, were characterized regarding to their cytotoxicity on Vero cells, stx subtypes, presence of sab and typing by multiple-locus variable-number tandem repeat analysis (MLVA). All strains demonstrated a cytotoxic effect, and in O130:H11 isolates, stx2EDL933 was the predominant subtype. In O178:H19 isolates the main stx2 subtype was stx2vha. The sab gene was detected in 65 and 24% of the isolates belonging to O130:H11 and O178:H19, respectively. Only one MLVA profile was identified among the O130:H11 isolates meanwhile 10 MLVA profiles were detected among the O178:H19 isolates which were grouped in two main clusters. In conclusion, our data show that O130:H11 and O178:H19 STEC isolates encode virulence factors associated with severe human disease and both serotypes should be considered for routinely testing. Our subtyping experiments showed that isolates could be distinguished based on the stx2 subtype and the presence/absence of sab gene, and for isolates belonging to O178:H19, also when the MLVA type was considered. However, MLVA subtyping of O130:H11 isolates will require the development of more specific markers.
Collapse
Affiliation(s)
- Daniel Fernández
- Laboratorio de Inmunoquímica y Biotecnología, Facultad Ciencias Veterinarias, Centro de Investigaciones Veterinarias Tandil-Consejo Nacional de Investigaciones Científicas y Técnicas-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIVETAN-CONICET-CICPBA), Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ju W, Shen J, Li Y, Toro MA, Zhao S, Ayers S, Najjar MB, Meng J. Non-O157 Shiga toxin-producing Escherichia coli in retail ground beef and pork in the Washington D.C. area. Food Microbiol 2012; 32:371-7. [DOI: 10.1016/j.fm.2012.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022]
|
25
|
Blais BW, Gauthier M, Descheênes M, Huszczynski G. Polyester cloth-based hybridization array system for identification of enterohemorrhagic Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157. J Food Prot 2012; 75:1691-7. [PMID: 22947477 DOI: 10.4315/0362-028x.jfp-12-116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A cloth-based hybridization array system (CHAS) was developed for the identification of foodborne colony isolates of seven priority enterohemorrhagic Escherichia coli (EHEC-7) serogroups targeted by U. S. food inspection programs. Gene sequences associated with intimin; Shiga-like toxins 1 and 2; and the antigenic markers O26, O45, O103, O111, O121, O145, and O157 were amplified in a multiplex PCR incorporating a digoxigenin label, and detected by hybridization of the PCR products with an array of specific oligonucleotide probes immobilized on a polyester cloth support, with subsequent immunoenzymatic assay of the captured amplicons. The EHEC-7 CHAS exhibited 100 % inclusivity and 100 % exclusivity characteristics with respect to detection of the various markers among 89 different E. coli strains, with various marker gene profiles and 15 different strains of non-E. coli bacteria.
Collapse
Affiliation(s)
- Burton W Blais
- Ontario Laboratory Network, Canadian Food Inspection Agency, Central Experimental Farm, Ottawa, Canada.
| | | | | | | |
Collapse
|
26
|
Parma YR, Chacana PA, Lucchesi PMA, Rogé A, Granobles Velandia CV, Krüger A, Parma AE, Fernández-Miyakawa ME. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies. Front Cell Infect Microbiol 2012; 2:84. [PMID: 22919675 PMCID: PMC3417390 DOI: 10.3389/fcimb.2012.00084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 11/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli.
Collapse
Affiliation(s)
- Y R Parma
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25 (1712), Castelar Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Polifroni R, Etcheverría AI, Sanz ME, Cepeda RE, Krüger A, Lucchesi PMA, Fernández D, Parma AE, Padola NL. Molecular characterization of Shiga toxin-producing Escherichia coli isolated from the environment of a dairy farm. Curr Microbiol 2012; 65:337-43. [PMID: 22706777 DOI: 10.1007/s00284-012-0161-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/19/2012] [Indexed: 11/30/2022]
Abstract
Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.
Collapse
Affiliation(s)
- Rosana Polifroni
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Dpto. SAMP, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Granobles Velandia CV, Krüger A, Parma YR, Parma AE, Lucchesi PMA. Differences in Shiga toxin and phage production among stx(2g)-positive STEC strains. Front Cell Infect Microbiol 2012; 2:82. [PMID: 22919673 PMCID: PMC3417572 DOI: 10.3389/fcimb.2012.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are characterized by the production of Shiga toxins (Stx) encoded by temperate bacteriophages. Stx production is linked to the induction of the phage lytic cycle. Several stx variants have been described and differentially associated with the risk of developing severe illness. The variant named stx(2g) was first identified in a STEC strain isolated from the faeces of healthy cattle. Analysis of stx(2g)-positive strains isolated from humans, animals, and environmental sources have shown that they have a close relationship. In this study, stx(2g)-positive STEC isolated from cattle were analyzed for phage and Stx production, with the aim to relate the results to differences observed in cytotoxicity. The presence of inducible phages was assessed by analyzing the bacterial growth/lysis curves and also by plaque assay. Bacterial growth curves in the absence of induction were similar for all isolates, however, notably differed among induced cultures. The two strains that clearly evidenced bacteriolysis under this condition also showed higher phage titers in plaque assays. However, only the phage plaques produced by one of these strains (FB 62) hybridized with a stx(2)-probe. Furthermore, the production of Stx was evaluated by enzyme immunoassay (EIA) and Western immunoblotting in overnight supernatants. By EIA, we detected Stx only in supernatants of FB 62, with a higher signal for induced than uninduced cultures. By immunoblotting, Stx2 could be detected after induction in all stx(2g)-positive isolates, but with lower amounts of Stx2B subunit in those supernatants where phages could not be detected. Taking into account all the results, several differences could be found among stx(2g)-positive strains. The strain with the highest cytotoxic titer showed higher levels of stx(2)-phages and toxin production by EIA, and the opposite was observed for strains that previously showed low cytotoxic titers, confirming that in stx(2g)-positive strains Stx production is phage-regulated.
Collapse
Affiliation(s)
- Claudia V Granobles Velandia
- Laboratorio de Inmunoquímica y Biotecnología, Departamento SAMP, Fac. Cs. Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
29
|
Parma YR, Chacana PA, Rogé A, Kahl A, Cangelosi A, Geoghegan P, Lucchesi PMA, Fernández-Miyakawa ME. Antibodies anti-Shiga toxin 2 B subunit from chicken egg yolk: isolation, purification and neutralization efficacy. Toxicon 2011; 58:380-8. [PMID: 21803069 PMCID: PMC7111861 DOI: 10.1016/j.toxicon.2011.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/20/2011] [Accepted: 07/12/2011] [Indexed: 12/30/2022]
Abstract
Shiga toxins (Stx1 and Stx2) are the main virulence factors of enterohemorrhagic Escherichia coli (EHEC), a foodborne pathogen associated with diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. The aim of this study was to evaluate the antibodies against Stx2 obtained from egg yolks of laying hens immunized with a recombinant Stx2B subunit. A high specific response in serum was observed 25 days after the first immunization and IgY antibodies were extracted from day 47th and purified from egg yolk. A concentration of 0.84 mg of total IgY/ml of egg yolk was obtained, of which 8% were antigen specific. The ability of anti-Stx2B IgY to recognize Stx2B and Stx2 either in solid-phase or in solution were evaluated and compared with anti-Stx2B rabbit antibodies by Western blotting and ELISA. The protective efficacy of IgY against Stx2 was determined by in vitro and in vivo experiments. The results show that IgY was able to recognize Stx2B and Stx2 in denatured conditions, attached to a solid-phase and free in solution. The anti-Stx2B IgY could effectively block the biological activity of Stx2 on Vero cells and protect mice from Stx2 challenge. The data suggest that immunization of hens with Stx2B could be a strategy to obtain at low cost a relatively high concentration of anti-Stx2 egg yolk IgY, able to neutralize Stx2 lethal activity. IgY technology could be an useful tool for research, diagnosis and therapy of EHEC infection.
Collapse
Affiliation(s)
- Y R Parma
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto, Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25 (1712), Castelar, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|