1
|
Hu L, Chen Y, Wu Q, Zeng Q, Zhang T, Yu G, He M, Chen D, Su X, Zhang Y, Zhang Z, Shen J. Alteration in microbes changed the contents of oviposition-deterrent pheromones on the Spodoptera litura egg surface. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-8. [PMID: 39582382 DOI: 10.1017/s000748532400066x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Microorganisms symbiotic with insects, whether permanently or temporarily, play a crucial role in the nutrition, development, reproduction, defence, and metamorphosis regulation. In some Lepidoptera, oviposition-deterrent pheromones (ODPs) on egg surface were used by pregnant females to modify the behaviour of conspecifics to avoid excessive competition for limited resources. In this study, we constructed four different Spodoptera litura groups, including, OH, OA, SH, and OA, which either feed on different hosts or grow in different environments. The 16S rDNA libraries of microbes from the egg surface of the four groups were constructed and sequenced. According to alpha and beta diversity indices, the microbes in environments and diets considerably influenced the richness, diversity, and community compositions of the microbiota on egg surfaces. The quantity of the main ODP components and the corresponding oviposition-deterrent activity among four groups were significantly differed among the four groups. The result of this study revealed that altering of microbes in environments or diets considerably changed the contents of ODP and oviposition-deterrent activity. As ODPs impart oviposition-deterrent activity towards closely related species, the findings of this study suggest that we should pay more attention to the role of symbiotic microorganisms in changing the ability of insects, especially sympatric species, to occupy the optimal niche when developing novel pest-control strategies.
Collapse
Affiliation(s)
- Liming Hu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yirui Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiumei Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Taoli Zhang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guohui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Muyang He
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dasong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangning Su
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, China
| | - Yuping Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, China
| | - Zhenfei Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, China
| | - Jianmei Shen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Marulanda-Moreno SM, Saldamando-Benjumea CI, Vivero Gomez R, Cadavid-Restrepo G, Moreno-Herrera CX. Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ 2024; 12:e17087. [PMID: 38623496 PMCID: PMC11017975 DOI: 10.7717/peerj.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024] Open
Abstract
Background Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.
Collapse
Affiliation(s)
- Sandra María Marulanda-Moreno
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Clara Inés Saldamando-Benjumea
- Grupo de Biotecnología Vegetal UNALMED-CIB. Línea en Ecología y Evolución de Insectos, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Rafael Vivero Gomez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| |
Collapse
|
3
|
Liu Y, Zhang L, Cai X, Rutikanga A, Qiu B, Hou Y. The Diversity of Wolbachia and Other Bacterial Symbionts in Spodoptera frugiperda. INSECTS 2024; 15:217. [PMID: 38667347 PMCID: PMC11050099 DOI: 10.3390/insects15040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Lina Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Alexandre Rutikanga
- College of Agriculture and Animal Husbandry, University of Rwanda, Kigali 999051, Rwanda
| | - Baoli Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| |
Collapse
|
4
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
5
|
Fu J, Wang J, Huang X, Guan B, Feng Q, Deng H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front Microbiol 2023; 14:1237684. [PMID: 37789854 PMCID: PMC10543693 DOI: 10.3389/fmicb.2023.1237684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Spodoptera frugiperda is a serious world-wide agricultural pest. Gut microorganisms play crucial roles in growth, development, immunity and behavior of host insects. Methods Here, we reported the composition of gut microbiota in a laboratory-reared strain of S. frugiperda using 16S rDNA sequencing and the effects of gut microbiota on the reproduction. Results Proteobacteria and Firmicutes were the predominant bacteria and the taxonomic composition varied during the life cycle. Alpha diversity indices indicated that the eggs had higher bacterial diversity than larvae, pupae and adults. Furthermore, eggs harbored a higher abundance of Ralstonia, Sediminibacterium and microbes of unclassified taxonomy. The dynamics changes in bacterial communities resulted in differences in the metabolic functions of the gut microbiota during development. Interestingly, the laid eggs in antibiotic treatment groups did not hatch much due to the gut dysbacteriosis, the results showed gut microbiota had a significant impact on the male reproduction. Discussion Our findings provide new perspectives to understand the intricate associations between microbiota and host, and have value for the development of S. frugiperda management strategies focusing on the pest gut microbiota.
Collapse
Affiliation(s)
- Junrui Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Liu YC, Chen TH, Huang YF, Chen CL, Nai YS. Investigation of the fall armyworm (Spodoptera frugiperda) gut microbiome and entomopathogenic fungus-induced pathobiome. J Invertebr Pathol 2023; 200:107976. [PMID: 37541570 DOI: 10.1016/j.jip.2023.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
The gut microflora plays an important role in insect development and physiology. The gut bacterial microbiome of the fall armyworm (FAW), Spodoptera frugiperda, in both cornfield and laboratory-reared populations was investigated using a 16S metagenomic approach. The alpha- and beta-diversity of the cornfield FAW populations varied among sampling sites and were higher than those of the laboratory-reared FAW population, indicating that different diets and environments influence the gut bacterial composition. To better understand the interaction between the microbiome and entomopathogenic fungi (EPF), FAWs from organic and conventionally managed corn fields and from the laboratory-reared colony were inoculated with Beauveria bassiana NCHU-153 (Bb-NCHU-153). A longer median lethal time (LT50) was observed in the Bb-NCHU-153-infected cornfield FAW population than in the laboratory-reared FAWs. In terms of the microbiome, three Bb-NCHU-153-infected FAW groups showed different gut bacterial compositions compared to noninfected FAW. Further investigation of the cooccurrence network and linear discriminant analysis (LDA) of effect size (LEfSe) revealed that the enriched bacterial genera, such as Enterococcus, Serratia, Achromobacter, and Tsukamurella, in the gut might play the role of opportunistic pathogens after fungal infection; in contrast, some gut bacteria of Methylobacterium, Marinomonas, Paenochrobactrum, Pseudomonas, Acinetobacter, Delftia, Dietzia, Gordonia, Leucobacter, Paracoccus, and Stenotrophomonas might be probiotics against EPF infection. These results indicated that EPF infection can change the gut bacterial composition and lead to a pathobiome in the FAW and that some bacterial species might protect the FAW from EPF infection. These findings could be applied to the design of pathobiome-inducing biocontrol strategies.
Collapse
Affiliation(s)
- Yao-Chia Liu
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Tzu-Han Chen
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan; Department of Computer Science and Engineering, Yuan-Ze University, Tao-Yuan City 32003, Taiwan
| | - Chang-Lin Chen
- Department of Horticulture, National Chung-Hsing University, Taichung 402, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
7
|
Monyama MC, Taioe OM, Nkhebenyane JS, van Wyk D, Ramatla T, Thekisoe OMM. Bacterial Communities Associated with Houseflies ( Musca domestica L.) Inhabiting Hospices in South Africa. Microorganisms 2023; 11:1440. [PMID: 37374941 DOI: 10.3390/microorganisms11061440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Houseflies are alleged reservoirs as well as vectors of human and animal pathogens, including bacteria, because they frequently have contact with animal excreta and decaying organic substances. The rapid adaptation process of ingested microbes in the insect gut may involve gene transfer, including antibiotic resistance determinants among different bacterial strains. Six hundred and fifty-seven (n = 657) houseflies were collected from hospices and were identified morphologically and genetically using the 16S rRNA, CO1, and ITS2 barcoding genes. This study also characterized the bacterial communities harboured by the captured houseflies using 16S rRNA metabarcoding on the next-generation sequencing (NGS) platform and further sought to detect antibiotic resistance traits by using gene-specific PCR assays. Generated sequences for the targeted gene fragments matched with Musca domestica and all the sequences were deposited to the GenBank database. The 16S rRNA metabarcoding analysis revealed that the most abundant phyla detected with variable abundance observed among all the houseflies were Proteobacteria, followed by Firmicutes, and Bacteroidetes. Furthermore, the NGS data revealed the presence of multiple bacterial genera, including Providencia, Enterobacter, Dysgonomonas, Escherichia-Shigella, Klebsiella, Pseudomonas, and Streptococcus, which are known to harbour potentially pathogenic species of animals and humans. Antibiotic resistance genes detected from the housefly DNA in this study included ermB, tetA, blaSHV, and blaTEM. Moreover, these genes are associated with resistance to erythromycin, tetracycline, and beta-lactams antibiotics, respectively. The presence of bacterial pathogens and the detection of antibiotic resistance genes from the houseflies collected from the hospices indicates the possible health risk to patients in hospices and the surrounding community. Therefore, it is imperative to keep high standards of hygiene, food preparation, safety, and control of houseflies in hospices.
Collapse
Affiliation(s)
- Maropeng C Monyama
- Department of Life and Consumer Sciences, University of South Africa, Florida 1710, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Oriel M Taioe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Jane S Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Deidre van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Oriel M M Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
8
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
9
|
Zheng R, Cheng L, Peng J, Li Q, Yang F, Yang D, Xia Y, Tang Q. Comparative analysis of gut microbiota and immune genes linked with the immune system of wild and captive Spodoptera frugiperda (Lepidoptera: Noctuidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104530. [PMID: 36084754 DOI: 10.1016/j.dci.2022.104530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is one of the most highly polyphagous invasive pests causing serious damage to maize crops in China. However, little is known about the gut immune responses to the environment, particularly along the migration routes in Jianghuai, China, throughout the autumn and winter. In this study, high-throughput sequencing and real-time quantitative PCR (RT-qPCR) were employed to examine the variations in immune genes and gut microbiome communities between captive and wild fall armyworm populations. Results showed that the diversity and community of the gut's microbes were higher in wild populations, and the average weighted UniFrac distance between bacterial taxa varied. A wide variety of immune genes were more abundant in the wild populations than in others. Results indicated that diets and different survival conditions impacted the gut microbiota and immune system of S. frugiperda, which was crucial for environmental adaptation. These differences in gut microbiota and immune responses between wild and captive Fall armyworms are critical for comprehending the symbiotic relationship between microbes, immune genes, and hosts. They also highlight the need for increased focus on developing more effective and environmentally friendly pest control methods.
Collapse
Affiliation(s)
- Renwen Zheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Luoling Cheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Peng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qianqian Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Fan Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Dehua Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingfeng Tang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Windfelder AG, Müller FHH, Mc Larney B, Hentschel M, Böhringer AC, von Bredow CR, Leinberger FH, Kampschulte M, Maier L, von Bredow YM, Flocke V, Merzendorfer H, Krombach GA, Vilcinskas A, Grimm J, Trenczek TE, Flögel U. High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity. Nat Commun 2022; 13:7216. [PMID: 36433960 PMCID: PMC9700799 DOI: 10.1038/s41467-022-34865-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare.
Collapse
Affiliation(s)
- Anton G Windfelder
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank H H Müller
- Radiology and Nuclear Medicine Ludwigshafen, Ludwigshafen, Germany
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anna Christina Böhringer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | | | - Florian H Leinberger
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Lorenz Maier
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Yvette M von Bredow
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Merzendorfer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Department, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Tina E Trenczek
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany.
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Xu X, De Mandal S, Wu H, Zhu S, Kong J, Lin S, Jin F. Effect of Diet on the Midgut Microbial Composition and Host Immunity of the Fall Armyworm, Spodoptera frugiperda. BIOLOGY 2022; 11:1602. [PMID: 36358303 PMCID: PMC9687563 DOI: 10.3390/biology11111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024]
Abstract
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Li DD, Li JY, Hu ZQ, Liu TX, Zhang SZ. Fall Armyworm Gut Bacterial Diversity Associated with Different Developmental Stages, Environmental Habitats, and Diets. INSECTS 2022; 13:insects13090762. [PMID: 36135463 PMCID: PMC9503601 DOI: 10.3390/insects13090762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a major invasive pest that seriously threatens world agricultural production and food security. Microorganisms play a crucial role in the growth and development of insects. However, the diversity and dynamics of gut microbes with different developmental stages, environmental habitats, and diets in S. frugiperda remain unclear. In this study, we found the changes of the microbiome of S. frugiperda across their life stages, and the bacteria were dominated by Firmicutes and Proteobacteria. The community composition of the egg stage was quite different from other developmental stages, which had the highest community diversity and community richness, and was dominated by Proteobacteria. The bacterial community compositions of male and female adults were similar to those of early larvae stage (L1-L2), and operational taxonomic units (OTUs) with abundant content were Enterococcus and Enterobacteriaceae bacteria, including Enterobacteria, Klebsiella, Pantoea, and Escherichia. The third instar larvae (L3) mainly consist of Enterococcus. The late stage larvae (L4-L6) harbored high proportions of Enterococcus, Rhodococcus, and Ralstonia. There was no significant difference in gut microbial composition between field populations and laboratory populations in a short period of rearing time. However, after long-term laboratory feeding, the gut microbial diversity of S. frugiperda was significantly reduced. Enterococcus and Rhodococccus of S. frugiperda feeding on maize showed higher relative proportion, while the microbial community of S. frugiperda feeding on artificial diet was composed mainly of Enterococcus, with a total of 98% of the gut microbiota. The gene functions such as metabolism, cell growth and death, transport and catabolism, and environmental adaptation were more active in S. frugiperda feeding on corn than those feeding on artificial diet. In short, these results indicate that developmental stage, habitat, and diet can alter the gut bacteria of S. frugiperda, and suggest a vertical transmission route of bacteria in S. frugiperda. A comprehensive understanding of gut microbiome of S. frugiperda will help develop novel pest control strategies to manage this pest.
Collapse
|
13
|
Zhou L, Chen C, Wang X. Gut Bacterial Diversity and Community Structure of Spodoptera exigua (Lepidoptera: Noctuidae) in the Welsh Onion-producing Areas of North China. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1102-1114. [PMID: 35765845 DOI: 10.1093/jee/toac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Gut microbiota play an important role in digestion, development, nutritional metabolism, and detoxification in insects. However, scant information exists on the gut bacterial variation, composition, and community structure of the beet armyworm, Spodoptera exigua (Hübner), and how its gut microbiota has adapted to different geographical environments. Using 16S rRNA high-throughput sequencing technology, we detected 3,837,408 high-quality reads and 1,457 operational taxonomic units (OTUs) in 47 gut samples of S. exigua collected from ten sites in northern China. Overall, we identified 697 bacterial genera from 30 phyla, among which Proteobacteria and Firmicutes were the most dominant phyla. Gut bacterial alpha-diversity metrics revealed significant differences among these populations. We detected the highest alpha bacterial diversity in Xinming, northern Liaoning Province, and the lowest bacterial diversity in Zhangwu, western Liaoning Province. Beta diversity indicated that the gut microbial community structure of S. exigua in Liaoning Province was significantly different from that of other populations. There was a similar microbial community structure among populations in the adjacent province, suggesting that the environment influences bacterial succession in this pest. Finally, PICRUSt analysis demonstrated that microbial functions closely associated with the gut microbiomes mainly included membrane transport, carbohydrate metabolism and replication, and amino acid metabolism.
Collapse
Affiliation(s)
- Lihong Zhou
- Institute of Flower, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, 110161, P.R. China
| | - Chen Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Xingya Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| |
Collapse
|
14
|
Gohl P, LeMoine C, Cassone B. Diet and ontogeny drastically alter the larval microbiome of the invertebrate model Galleria mellonella. Can J Microbiol 2022; 68:594-604. [PMID: 35863073 DOI: 10.1139/cjm-2022-0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Larvae of the greater wax moth (Galleria mellonella) are an emerging animal model to study the innate immune response and biodegradation of plastic polymers. Both of these complex biological processes are likely impacted by the plasticity of host-microbe interactions, which remains understudied in lepidopterans. Consequently we carried out 16S rRNA sequencing to explore the effect diet (natural, artificial) has on the bacterial assemblages of G. mellonella in different tissues (gut, fat bodies, silk glands) throughout development (eggs, six instar stages, adults). The microbiome was rich in diversity, with Proteobacteria and Firmicutes being the most represented phyla. Contrary to other lepidopterans, G. mellonella appears to possess a resident microbiome dominated by Ralstonia. As larvae progress through development, the bacterial assemblages become increasingly shaped by the caterpillar's diet. In particular, a number of bacteria genera widely associated with the G. mellonella microbiome (e.g., Enterococcus and Enterbacter) were significantly enriched on an artificial diet. Overall these results indicate that the G. mellonella microbiome is not as simplistic and homogenous as previously described. Rather, its bacterial communities are drastically affected by both diet and ontogeny, which should be taken into consideration in future studies planning to use G. mellonella as model species.
Collapse
Affiliation(s)
- Patrick Gohl
- Brandon University Faculty of Science, 414985, Brandon, Manitoba, Canada;
| | - Christophe LeMoine
- Brandon University Faculty of Science, 414985, Brandon, Manitoba, Canada;
| | - Bryan Cassone
- Brandon University, 1916, Brandon, Manitoba, Canada;
| |
Collapse
|
15
|
Chen YP, Li YH, Sun ZX, Du EW, Lu ZH, Li H, Gui FR. Effects of Host Plants on Bacterial Community Structure in Larvae Midgut of Spodoptera frugiperda. INSECTS 2022; 13:insects13040373. [PMID: 35447815 PMCID: PMC9031720 DOI: 10.3390/insects13040373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The gut microbiota plays an important role in insect physiology and behavior. The interaction among the different structures of gut bacterial community in the fall armyworm (FAW), Spodoptera frugiperda, and different host plants, and whether these different gut bacteria are responsible for the rapid spread of FAW to a variety of host plants after invasion are largely unexplored. In the present paper, we used a culture-independent approach targeting the bacterial 16S rRNA gene of gut bacteria of the 5th instar larvae of FAW fed on four different host plants. It aimed to analyze the effects of host plants on gut bacteria abundance, community structure and metabolic function. We found that host plants exerted considerable effects on the structure and composition of the gut bacteria in FAW and the differences among the four groups identified were significant. They were related to the detoxification and adaptation of FAW to toxic secondary metabolites of the host plant. These differences enabled the gut microbiome to perform different functions. This study lays a foundation for further studies on the function of intestinal bacteria in FAW and the adaptive mechanism to the host. Abstract The fall armyworm (FAW), Spodoptera frugiperda, is one of the most important invasive species and causes great damage to various host crops in China. In this study, the diversity and function of gut bacteria in the 5th instar larvae of FAW fed on maize, wheat, potato and tobacco leaves were analyzed through 16S rRNA sequencing. A total of 1324.25 ± 199.73, 1313.5 ± 74.87, 1873.00 ± 190.66 and 1435.25 ± 139.87 operational taxonomic units (OTUs) from the gut of FAW fed on these four different host plants were detected, respectively. Firmicutes, Proteobacteria and Bacteroidetes were the most abundant bacterial phyla. Beta diversity analysis showed that the gut bacterial community structure of larvae fed on different host plants was significantly differentiated. At the genus level, the abundance of Enterococcus in larvae fed on wheat was significantly lower than those fed on the other three host plants. Enterobacter and ZOR0006 were dominant in FAW fed on tobacco leaves, and in low abundance in larvae fed on wheat. Interestingly, when fed on Solanaceae (tobacco and potato) leaves which contained relative higher levels of toxic secondary metabolites than Gramineae (wheat and maize), the genera Enterococcus, Enterobacter and Acinetobacter were significantly enriched. The results indicated that gut bacteria were related to the detoxification and adaptation of toxic secondary metabolites of host plants in FAW. Further analysis showed that replication, repair and nucleotide metabolism functions were enriched in the gut bacteria of larvae fed on tobacco and potato. In conclusion, the gut bacterial diversity and community composition in FAW larvae fed on different host plants showed significant differences, and the insect is likely to regulate their gut bacteria for adaptation to different host plants.
Collapse
Affiliation(s)
- Ya-Ping Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.-P.C.); (Z.-X.S.); (E.-W.D.); (Z.-H.L.); (H.L.)
| | - Ya-Hong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China;
| | - Zhong-Xiang Sun
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.-P.C.); (Z.-X.S.); (E.-W.D.); (Z.-H.L.); (H.L.)
| | - E-Wei Du
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.-P.C.); (Z.-X.S.); (E.-W.D.); (Z.-H.L.); (H.L.)
| | - Zhi-Hui Lu
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.-P.C.); (Z.-X.S.); (E.-W.D.); (Z.-H.L.); (H.L.)
| | - Hao Li
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.-P.C.); (Z.-X.S.); (E.-W.D.); (Z.-H.L.); (H.L.)
| | - Fu-Rong Gui
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.-P.C.); (Z.-X.S.); (E.-W.D.); (Z.-H.L.); (H.L.)
- Correspondence: ; Tel.: +86-1320-8714-612
| |
Collapse
|
16
|
Lv D, Liu X, Dong Y, Yan Z, Zhang X, Wang P, Yuan X, Li Y. Comparison of Gut Bacterial Communities of Fall Armyworm ( Spodoptera frugiperda) Reared on Different Host Plants. Int J Mol Sci 2021; 22:ijms222011266. [PMID: 34681926 PMCID: PMC8540368 DOI: 10.3390/ijms222011266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/19/2023] Open
Abstract
Spodoptera frugiperda is a highly polyphagous and invasive agricultural pest that can harm more than 300 plants and cause huge economic losses to crops. Symbiotic bacteria play an important role in the host biology and ecology of herbivores, and have a wide range of effects on host growth and adaptation. In this study, high-throughput sequencing technology was used to investigate the effects of different hosts (corn, wild oat, oilseed rape, pepper, and artificial diet) on gut microbial community structure and diversity. Corn is one of the most favored plants of S. frugiperda. We compared the gut microbiota on corn with and without a seed coating agent. The results showed that Firmicutes and Bacteroidetes dominated the gut microbial community. The microbial abundance on oilseed rape was the highest, the microbial diversity on wild oat was the lowest, and the microbial diversity on corn without a seed coating agent was significantly higher than that with such an agent. PCoA analysis showed that there were significant differences in the gut microbial community among different hosts. PICRUSt analysis showed that most of the functional prediction categories were related to metabolic and cellular processes. The results showed that the gut microbial community of S. frugiperda was affected not only by the host species, but also by different host treatments, which played an important role in host adaptation. It is important to deepen our understanding of the symbiotic relationships between invasive organisms and microorganisms. The study of the adaptability of host insects contributes to the development of more effective and environmentally friendly pest management strategies.
Collapse
Affiliation(s)
- Dongbiao Lv
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xueying Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanlu Dong
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zizheng Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xuan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY 14456, USA;
| | - Xiangqun Yuan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (X.Y.); (Y.L.)
| | - Yiping Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (D.L.); (X.L.); (Y.D.); (Z.Y.); (X.Z.)
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (X.Y.); (Y.L.)
| |
Collapse
|
17
|
Zhang N, He J, Shen X, Sun C, Muhammad A, Shao Y. Contribution of sample processing to gut microbiome analysis in the model Lepidoptera, silkworm Bombyx mori. Comput Struct Biotechnol J 2021; 19:4658-4668. [PMID: 34504661 PMCID: PMC8390955 DOI: 10.1016/j.csbj.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Microbes that live inside insects play various roles in host biology, ranging from nutrient supplementation to host defense. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa and important in natural ecosystems, their microbiotas are little-studied, and to understand their structure and function, it is necessary to identify potential factors that affect microbiome analysis. Using a model organism, the silkworm Bombyx mori, we investigated the effects of different sample types (whole gut, gut content, gut tissue, starvation, or frass) and metagenomic DNA extraction methodologies (small-scale versus large-scale) on the composition and diversity of the caterpillar gut microbial communities. High-throughput 16S rRNA gene sequencing and computational analysis of the resulting data unraveled that DNA extraction has a large effect on the outcome of metagenomic analysis: significant biases were observed in estimates of community diversity and in the ratio between Gram-positive and Gram-negative bacteria. Furthermore, bacterial communities differed significantly among sample types. The gut content and whole gut samples differed least, both had a higher percentage of Enterococcus and Acinetobacter species; whereas the frass and starvation samples differed substantially from the whole gut and were poor representatives of the gut microbiome. Thus, we recommend a small-scale DNA extraction methodology for sampling the whole gut under normal insect rearing conditions whenever possible, as this approach provides the most accurate assessment of the gut microbiome. Our study highlights that evaluation of the optimal sample-processing approach should be the first step taken to confidently assess the contributions of microbiota to Lepidoptera.
Collapse
Affiliation(s)
- Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China
| |
Collapse
|
18
|
Deguenon JM, Dhammi A, Ponnusamy L, Travanty NV, Cave G, Lawrie R, Mott D, Reisig D, Kurtz R, Roe RM. Bacterial Microbiota of Field-Collected Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Bt and Non-Bt Cotton. Microorganisms 2021; 9:microorganisms9040878. [PMID: 33923893 PMCID: PMC8072973 DOI: 10.3390/microorganisms9040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
The bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), is an important agricultural pest in U.S. cotton and is managed using transgenic hybrids that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). The reduced efficacy against H. zea caterpillars of Bt plants expressing Cry toxins is increasing in the field. In a first step towards understanding Bt cotton–bollworm–microbiota interactions, we investigated the internal bacterial microbiota of second–third stadium H. zea collected in the field from non-Bt versus Bt (WideStrike) cotton in close proximity (in North Carolina, USA). The bacterial populations were analyzed using culture-dependent and -independent molecular approaches. We found that WideStrike samples had a higher bacterial density and diversity per larva than insects collected from non-Bt cotton over two field seasons: 8.42 ± 0.23 and 5.36 ± 0.75 (log10 colony forming units per insect) for WideStrike compared to 6.82 ± 0.20 and 4.30 ± 0.56 for non-Bt cotton for seasons 1 and 2, respectively. Fifteen phyla, 103 families, and 229 genera were identified after performing Illumina sequencing of the 16S rRNA. At the family level, Enterobacteriaceae and Enterococcaceae were the most abundant taxa. The Enterococcaceae family was comprised mostly of Enterococcus species (E. casseliflavus and another Enterococcus sp.). Members of the Enterococcus genus can acidify their environment and can potentially reduce the alkaline activation of some Bt toxins. These findings argue for more research to better understand the role of cotton–bollworm–bacteria interactions and the impact on Bt toxin caterpillar susceptibility.
Collapse
Affiliation(s)
- Jean M. Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Anirudh Dhammi
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
- Correspondence:
| | - Nicholas V. Travanty
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Grayson Cave
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Roger Lawrie
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Dan Mott
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Ryan Kurtz
- Cotton Incorporated, Cary, NC 27513, USA;
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| |
Collapse
|
19
|
Višňovská D, Pyszko P, Šigut M, Kostovčík M, Kolařík M, Kotásková N, Drozd P. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol Ecol 2021; 96:5855491. [PMID: 32520323 DOI: 10.1093/femsec/fiaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Compared with the highly diverse microbiota of leaves, herbivorous insects exhibit impoverished gut microbial communities. Research to date has focused on the bacterial component of these gut microbiomes, neglecting the fungal component. As caterpillar gut bacterial microbiomes are derived strongly from their diet, we hypothesized that their mycobiomes would reflect the host leaf mycobiomes. Using the ITS2 rDNA and V5-V6 16S rRNA gene regions for DNA metabarcoding of caterpillar gut and host leaf sample pairs we compared their mycobiome genus diversity and compositions and identified genera associated with caterpillar guts. Leaves and caterpillar guts harbored different mycobiomes with quite low qualitative similarity (Jaccard index = 38.03%). The fungal genera most significantly associated with the caterpillar gut included Penicillium, Mucor and unidentified Saccharomycetales, whereas leaf-associated genera included Holtermanniella, Gibberella (teleomorph of Fusarium) and Seimatosporium. Although caterpillar gut and leaf mycobiomes had similar genus richness overall, this indicator was not correlated for individual duplets. Moreover, as more samples entered the analysis, mycobiome richness increased more rapidly in caterpillar guts than in leaves. The results suggest that the mycobiota of the caterpillar gut differs from that of their feeding substrate; further, the mycobiomes appear to be richer than the well-studied bacterial microbiotas.
Collapse
Affiliation(s)
- Denisa Višňovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- BIOCEV, Institute of Microbiology, Academy of Sciences of the Czech Republic, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Nela Kotásková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
20
|
Subta P, Yodsuwan P, Yongsawas R, In-on A, Warrit N, Panha S, Khongphinitbunjong K, Chantawannakul P, Attasopa K, Disayathanoowat T. Bacterial Communities in Three Parts of Intestinal Tracts of Carpenter Bees ( Xylocopa tenuiscapa). INSECTS 2020; 11:E497. [PMID: 32756386 PMCID: PMC7469164 DOI: 10.3390/insects11080497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
This study investigated different bacterial communities in three intestinal parts (foregut, midgut and hindgut) of Xylocopatenuiscapa to understand the roles of gut bacteria. Our phylogenetic analysis revealed that X. tenuiscapa is closely related to Xylocopa latipes. The 16S rRNA gene in the genomic DNA samples from the gut was examined by illumina (Solexa) and a total of 998 operational taxonomic unit (OTUs) clusters were found. Taxonomic classification identified 16 bacterial phyla and unclassified bacteria. The dominant bacteria taxa in the three parts of X. tenuiscapa gut were Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. In the foregut, Lactobacillales and Enterobacteriaceae were predominantly found. The population in the midgut was similar to that in the foregut, with the addition of Gilliamella, which was also abundant. The most dominant bacteria identified in the hindgut were similar to those in the midgut and Lactobacillales, Enterobacteriaceae, Gilliamella, Bifidobacteriaceae and Flavobacteriaceae appeared in abundance. Moreover, our results suggest that a community structure of bacteria in different parts of X. tenuiscapa's gut may be an important indicator of carpenter bees' health. This functional study of bacterial communities revealed significant differences among the three intestinal parts and is the first report of the gut bacteria structure in solitary bees.
Collapse
Affiliation(s)
- Phakamas Subta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.Y.); (R.Y.); (P.C.)
| | - Phongsathon Yodsuwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.Y.); (R.Y.); (P.C.)
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.Y.); (R.Y.); (P.C.)
| | - Ammarin In-on
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi (Bang Khun Thian Campus), Bang Khun Thian, Bangkok 10150, Thailand;
| | - Natapot Warrit
- Center of Excellence in Entomology, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Somsak Panha
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | | | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.Y.); (R.Y.); (P.C.)
| | - Korrawat Attasopa
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.Y.); (R.Y.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Chen B, Xie S, Zhang X, Zhang N, Feng H, Sun C, Lu X, Shao Y. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. PEST MANAGEMENT SCIENCE 2020; 76:1313-1323. [PMID: 31603616 DOI: 10.1002/ps.5642] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Many insect pests rely on microbial symbionts to obtain nutrients or for defence, thereby allowing them to exploit novel food sources and degrade environmental xenobiotics, including pesticides. Although Lepidoptera is one of the most diverse insect taxa and includes important agricultural pests, lepidopteran microbiotas, particularly functional traits, have not been studied widely. Here, we provide a comprehensive characterization of the gut microbiota across multiple mulberry-feeding lepidopteran species, resolving both community structure and metabolic potential. RESULTS Our results indicate abundant bacteria inside the gut of larval Lepidoptera. However, even though they were fed the same diet, the structures of the bacterial communities differed in four major mulberry pest species, suggesting host-specific effects on microbial associations. Community-level metabolic reconstructions further showed that although taxonomic composition varied greatly, carbohydrate and amino acid metabolism and membrane transporter were key functional capabilities of the gut bacteria in all samples, which may play basic roles in the larval gut. In addition, principal coordinate analysis (PCoA) of gut bacterial-predicted gene ontologies revealed specialized features of the microbiota associated with these mulberry pests, which were divided into two distinct clusters (macrolepidopterans and microlepidopterans). This pattern became even more prominent when further Lepidoptera species were involved. CONCLUSIONS A suite of gut microbiota metabolic functions significantly correlated with larval size; the metabolism of terpenoids and polyketides, xenobiotics biodegradation and metabolism were specifically enriched in large species, while small larvae had enhanced nucleotide metabolism. Our report paves the way for uncovering the correlation between host phenotype and microbial symbiosis in this notorious insect pest group. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bosheng Chen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Sen Xie
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiancui Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huihui Feng
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
22
|
Liu Y, Shen Z, Yu J, Li Z, Liu X, Xu H. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. PEST MANAGEMENT SCIENCE 2020; 76:1353-1362. [PMID: 31605420 DOI: 10.1002/ps.5646] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Microbiota that live in the gut of insects have a wide range of effects on host nutrition, physiology, and behavior. They may shape the adaptation of their hosts to different habitats and lifestyles. To characterize the gut microbiota of fruit borers comprehensively, we compared bacterial communities among Grapholita molesta, Conogethes punctiferalis, Carposina sasakii, and Cydia pomonella, which are serious lepidopteran pests. We selected G. molesta as a representative pest to more explicitly test the influence of host dietary niche on the insect gut microbiome, and compared the bacterial microbial communities of G. molesta fed different diets (peach shoots and apple) using Illumina high-throughput sequencing technology. RESULTS The results show that Proteobacteria and Firmicutes are dominant in their gut microbiota. The C. sasakii had the highest richness values and G. molesta (shoot-feeding) had the highest diversity, whereas C. pomonella and G. molesta (fruit-feeding) had the lowest bacterial richness and diversity, respectively. The ANOSIM analysis revealed significant differences in the structure of gut microbiota among different insects. In addition, G. molesta with a different feeding diet had significant differences in gut microbiota composition. PICRUSt analysis indicated that most functional prediction categories were related to metabolism. CONCLUSION Our results show that gut microbiota composition is affected significantly not only by host species but also host diets. An enhanced understanding of these herbivore-associated microbial symbionts is essential for understanding the biology and ecology of the host insect, and may offer new possibilities to improve integrated pest-management strategies for efficient control of fruit borers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianmei Yu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huanli Xu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Huff R, Inhoque Pereira R, Pissetti C, Mellender de Araújo A, Alves d’Azevedo P, Frazzon J, GuedesFrazzon AP. Antimicrobial resistance and genetic relationships of enterococci from siblings and non-siblings Heliconius erato phyllis caterpillars. PeerJ 2020; 8:e8647. [PMID: 32149028 PMCID: PMC7049460 DOI: 10.7717/peerj.8647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies evaluating bacteria in insects can provide information about host-microorganism-environment interactions. The gut microbial community has a profound effect on different physiological functions of insects. Enterococcus spp. are part of the gut community in humans and other animals, as well as in insects. The presence and antimicrobial resistance profile of enterococci are well studied in different animals; however, data for Heliconius erato phyllis (Lepidoptera: Nymphalidae) do not yet exist. Therefore, the aims of this study were to evaluate the distribution of enterococcal species, their antimicrobial resistance profile and virulence genes, and the genetic relationships between enterococci isolated from fecal samples from sibling and non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil. METHODS Three H. erato phyllis females were captured (two from a forest fragment and one from an urban area), and kept individually in open-air insectaries. Eggs were collected and caterpillars (siblings and non-siblings) were fed daily with Passiflora suberosa leaves. Fecal samples (n = 12) were collected from fifth-instar caterpillars, inoculated in selective medium, and 15 bacterial colonies were randomly selected from each sample. Enterococci were identified by PCR and MALDI-TOF, analyzed by disk diffusion antimicrobial susceptibility tests, and screened for resistance and virulence genes by PCR. The genetic relationships between the strains were determined using pulsed-field gel electrophoresis (PFGE). RESULTS A total of 178 enterococci strains were identified: E. casseliflavus (74.15%; n = 132), E. mundtii (21.34%; n = 38), E. faecalis (1.12%; n = 2) and Enterococcus sp. (3.37%; n = 6). High rates of resistance to rifampicin (56%) and erythromycin (31%) were observed; 120 (67.41%) of the isolates showed resistance to at least one antibiotic and six (3.37%) were multidrug-resistant.None of the erythromycin-resistant strains was positive for the erm(B) and msrC genes. The virulence genes esp, ace, and gelE were observed in 35%, 7%, and 1% of the strains, respectively. PFGE separated the enterococci into 22 patterns, four being composed of strains from sibling caterpillars. CONCLUSION Enterococcus casseliflavus was the dominant species in fecal samples of fifth-instar caterpillars. Resistant enterococci strains may be related to environmental pollution or the resistome. The PFGE analysis showed genetic relationships between some strains, suggesting that the enterococci isolated from fecal samples of the sibling caterpillars might have come from common sources, e.g., via diet (herbivory) and/or vertical transmission (through the egg surface). Further studies will be conducted to better understand the role of Enterococcus in the microbial community of the gastrointestinal tract of these insects, and the mechanisms involved in acquisition and maintenance of enterococci.
Collapse
Affiliation(s)
- Rosana Huff
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rebeca Inhoque Pereira
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Pissetti
- Department of Veterinary Preventive Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aldo Mellender de Araújo
- Institute of Biosciences, Genetic Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Alves d’Azevedo
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeverson Frazzon
- Food Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula GuedesFrazzon
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Mereghetti V, Chouaia B, Limonta L, Locatelli DP, Montagna M. Evidence for a conserved microbiota across the different developmental stages of Plodia interpunctella. INSECT SCIENCE 2019; 26:466-478. [PMID: 29090848 DOI: 10.1111/1744-7917.12551] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/24/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Diversity and composition of lepidopteran microbiotas are poorly investigated, especially across the different developmental stages. To improve this knowledge, we characterize the microbiota among different developmental stages of the Indian meal moth, Plodia interpunctella, which is considered one of the major pest of commodities worldwide. Using culture-independent approach based on Illumina 16S rRNA gene sequencing we characterized the microbiota of four developmental stages: eggs, first-, and last-instar larvae, and adult. A total of 1022 bacterial OTUs were obtained, showing a quite diversified microbiota associated to all the analyzed stages. The microbiotas associated with P. interpunctella resulted almost constant throughout the developmental stages, with approximately 77% of bacterial OTUs belonging to the phylum of Proteobacteria. The dominant bacterial genus is represented by Burkholderia (∼64%), followed by Propionibacterium, Delftia, Pseudomonas, and Stenotrophomonas. A core bacterial community, composed of 139 OTUs, was detected in all the developmental stages, among which 112 OTUs were assigned to the genus Burkholderia. A phylogenetic reconstruction, based on the 16S rRNA, revealed that our Burkholderia OTUs clustered with Burkholderia cepacia complex, in the same group of those isolated from the hemipterans Gossyparia spuria and Acanthococcus aceris. The functional profiling, predicted on the base of the bacterial 16S rRNA, indicates differences in the metabolic pathways related to metabolism of amino acids between preimaginal and adult stages. We can hypothesize that bacteria may support the insect host during preimaginal stages.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Lidia Limonta
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Daria Patrizia Locatelli
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
25
|
Gao X, Li W, Luo J, Zhang L, Ji J, Zhu X, Wang L, Zhang S, Cui J. Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). J Appl Microbiol 2019; 126:1199-1208. [PMID: 30597740 DOI: 10.1111/jam.14190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 02/05/2023]
Abstract
AIMS Spodoptera exigua is a serious pest of many agricultural crops. However, the bacterial communities of S. exigua are poorly studied, particularly over their entire life cycle. We aimed to study the biodiversity of the microbiota across the life cycle of S. exigua and to provide a better and obtain insight into new pest control strategies. METHODS AND RESULTS The bacterial diversity across the life cycle of S. exigua was studied using Illumina MiSeq sequencing of 16S rRNA genes. Spodoptera exigua is dominated by Proteobacteria and Firmicutes, with a total relative abundance of 90·03%. Enterococcus (24·6%), Pseudomonas (12·2%) and Asaia (45·9%) were abundant and active in eggs, while Methylobacterium (18·7%) and Halomonas (16·5%) dominated freshly eclosed larvae. The 3rd and 5th instar larvae were dominated by Enterococcus (76·3 and 62·0%). Pupal stages had the highest microbial diversity. There was no significant difference between newly emerged males and females. Symbionts of eggs were extremely similar and probably vertically transmitted by males during mating. CONCLUSIONS The result showed that the bacterial community was affected by the host developmental stages. Our results also suggest that symbionts of egg mass are probably vertically transmitted control by male spawning adults. SIGNIFICANCE AND IMPACT OF THE STUDY Our study documents the symbiont bacteria across the life cycle of S. exigua. Understanding the microbial symbionts may provide clues to develop potential biocontrol techniques against this pest.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - W Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - J Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - L Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - J Ji
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - X Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - L Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - S Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| | - J Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, PR China
| |
Collapse
|
26
|
Ravenscraft A, Berry M, Hammer T, Peay K, Boggs C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1346] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Michelle Berry
- Department of Biology Stanford University Stanford California 94305 USA
| | - Tobin Hammer
- Ecology and Evolutionary Biology University of Colorado Boulder Boulder Colorado 80309 USA
| | - Kabir Peay
- Department of Biology Stanford University Stanford California 94305 USA
| | - Carol Boggs
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
27
|
Grahl N, Dolben EL, Filkins LM, Crocker AW, Willger SD, Morrison HG, Sogin ML, Ashare A, Gifford AH, Jacobs NJ, Schwartzman JD, Hogan DA. Profiling of Bacterial and Fungal Microbial Communities in Cystic Fibrosis Sputum Using RNA. mSphere 2018; 3:e00292-18. [PMID: 30089648 PMCID: PMC6083091 DOI: 10.1128/msphere.00292-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Here, we report an approach to detect diverse bacterial and fungal taxa in complex samples by direct analysis of community RNA in one step using NanoString probe sets. We designed rRNA-targeting probe sets to detect 42 bacterial and fungal genera or species common in cystic fibrosis (CF) sputum and demonstrated the taxon specificity of these probes, as well as a linear response over more than 3 logs of input RNA. Culture-based analyses correlated qualitatively with relative abundance data on bacterial and fungal taxa obtained by NanoString, and the analysis of serial samples demonstrated the use of this method to simultaneously detect bacteria and fungi and to detect microbes at low abundance without an amplification step. Compared at the genus level, the relative abundances of bacterial taxa detected by analysis of RNA correlated with the relative abundances of the same taxa as measured by sequencing of the V4V5 region of the 16S rRNA gene amplified from community DNA from the same sample. We propose that this method may complement other methods designed to understand dynamic microbial communities, may provide information on bacteria and fungi in the same sample with a single assay, and with further development, may provide quick and easily interpreted diagnostic information on diverse bacteria and fungi at the genus or species level.IMPORTANCE Here we demonstrate the use of an RNA-based analysis of specific taxa of interest, including bacteria and fungi, within microbial communities. This multiplex method may be useful as a means to identify samples with specific combinations of taxa and to gain information on how specific populations vary over time and space or in response to perturbation. A rapid means to measure bacterial and fungal populations may aid in the study of host response to changes in microbial communities.
Collapse
Affiliation(s)
- Nora Grahl
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Emily L Dolben
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Laura M Filkins
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Alex W Crocker
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sven D Willger
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Alix Ashare
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Alex H Gifford
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Nicholas J Jacobs
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joseph D Schwartzman
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Deborah A Hogan
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
28
|
Scopel W, Cônsoli FL. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros. Antonie van Leeuwenhoek 2018; 111:2413-2424. [PMID: 30019154 DOI: 10.1007/s10482-018-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
Abstract
Symbionts are widely distributed in eukaryotes, and potentially affect the physiology, ecology and evolution of their host. Most insects harbour free-living bacteria in their haemocoel and gut lumen, intracellular-living bacteria in a range of tissues or bacteria in host-derived specialized cells. Stinkbugs, as do many arthropods, harbour extracellular bacteria in the gut that may affect the fitness of their host. This study identified the culturable symbionts associated with the ovaries, spermatheca, seminal vesicle and posterior midgut region (V4) of males and females of Euschistus heros (F.) (Hemiptera: Pentatomidae). Several culture media were used to isolate the bacteria associated with these structures. The selected colonies (morphotypes) were cultured in liquid medium, subjected to genomic DNA extraction, 16S rRNA gene amplification, and restriction fragment length polymorphism (RFLP) analyses. Morphotypes with distinct RFLP patterns were purified and sequenced, and the sequences obtained were used for putative identification and phylogenetic analysis. Comparison of the sequences with those available in the EzTaxon-e database and the use of a matrix of paired distances grouped the isolates in phylotypes belonging to the Phylum Proteobacteria. Proteobacteria was represented by γ-Proteobacteria phylotypes belonging to Enterobacteriaceae, while Firmicutes had Bacilli phylotypes distributed in Enterococcaceae and Staphylococcaceae. Some of the phylotypes identified were associated exclusively with single structures, such as ovaries, spermatheca and the V4 midgut region of males and females. All culturable bacteria associated with the seminal vesicle were also associated with other tissues.
Collapse
Affiliation(s)
- Wanessa Scopel
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
29
|
Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME JOURNAL 2018; 12:2252-2262. [PMID: 29895989 PMCID: PMC6092317 DOI: 10.1038/s41396-018-0174-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Bombyx mori, the domesticated silkworm, is of great importance as a silk producer and as a powerful experimental model for the basic and applied research. Similar to other animals, abundant microorganisms live inside the silkworm gut; however, surprisingly, the microbiota of this model insect has not been well characterized to date. Here, we comprehensively characterized the gut microbiota of the domesticated silkworm and its wild relatives. Comparative analyses with the mulberry-feeding moths Acronicta major and Diaphania pyloalis revealed a highly diverse but distinctive silkworm gut microbiota despite thousands of years of domestication, and stage-specific signatures in both total (DNA-based) and active (RNA-based) bacterial populations, dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Most fungal sequences were assigned to the phyla Ascomycota and Basidiomycota. Environmental factors, including diet and human manipulation (egg production), likely influence the silkworm gut composition. Despite a lack of spatial variation along the gut, microbial community shifts were apparent between early instars and late instars, in concert with host developmental changes. Our results demonstrate that the gut microbiota of silkworms assembles into increasingly identical community throughout development, which differs greatly from those of other mulberry-feeding lepidopterans from the same niche, highlighting host-specific effects on microbial associations and the potential roles these communities play in host biology.
Collapse
Affiliation(s)
- Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqian Du
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Arunprasanna Vimalanathan
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baohong Wang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China.
| |
Collapse
|
30
|
Cascading effects on bacterial communities: cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME JOURNAL 2018; 12:1952-1963. [PMID: 29695861 DOI: 10.1038/s41396-018-0102-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
Abstract
Large mammalian herbivores greatly influence the functioning of grassland ecosystems. Through plant consumption, excreta, and trampling, they modify biodiversity, nutrient cycling, and soil properties. Grazing mammals can also alter soil and rhizosphere bacterial communities, but their effect on the microbiome of other animals in the habitat (i.e., insects) is unknown. Using an experimental field approach and Illumina MiSeq 16S rRNA gene sequencing, we analyzed the influence of cattle grazing on the microbial community of spring webworm caterpillars, Ocnogyna loewii. Our experimental setup included replicated grazed and non-grazed paddocks from which caterpillars were collected twice (first-second and fourth-fifth instar). The caterpillars' microbiome is composed mostly of Proteobacteria and Firmicutes, and contains a potential symbiont from the genus Carnobacterium (55% of reads). We found that grazing significantly altered the microbiome composition of late instar caterpillars, probably through changes in diet (plant) composition and availability. Furthermore, the microbiome composition of early instar caterpillars significantly differed from late instar caterpillars in 221 OTUs (58 genera). Pseudomonas and Acinetobacter were dominant in early instars, while Carnobacterium and Acinetobacter were dominant in late instars. This study provides new ecological perspectives on the cascading effects mammalian herbivores may have on the microbiome of other animals in their shared habitat.
Collapse
|
31
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
32
|
Pandiarajan J, Krishnan M. Comparative bacterial survey in the gut of lepidopteran insects with different bionetwork. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718010137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
34
|
Whitaker MRL, Salzman S, Sanders J, Kaltenpoth M, Pierce NE. Microbial Communities of Lycaenid Butterflies Do Not Correlate with Larval Diet. Front Microbiol 2016; 7:1920. [PMID: 27965647 PMCID: PMC5129467 DOI: 10.3389/fmicb.2016.01920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the species in this order are herbivorous. We surveyed bacterial communities in the guts of larvae from 31 species of lycaenid butterflies whose caterpillars had diets ranging from obligate carnivory to strict herbivory. Contrary to our expectations, we found that the bacterial communities of carnivorous and herbivorous caterpillars do not differ in richness, diversity, or composition. Many of the observed bacterial genera are commonly found in soil and plant surfaces, and we detected known homopteran endosymbionts in the guts of homopterophagous species, suggesting that larvae acquire gut bacteria from their food and environment. These results indicate that lycaenid butterflies do not rely on specific bacterial symbioses to mediate their diverse diets, and provide further evidence of taxonomically depauperate bacterial communities among Lepidoptera.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, CambridgeMA, USA; Insect Symbiosis Research Group, Max Planck Institute for Chemical EcologyJena, Germany
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge MA, USA
| | - Jon Sanders
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical EcologyJena, Germany; Department for Evolutionary Ecology, Johannes Gutenberg UniversityMainz, Germany
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge MA, USA
| |
Collapse
|
35
|
Death Becomes Them: Bacterial Community Dynamics and Stilbene Antibiotic Production in Cadavers of Galleria mellonella Killed by Heterorhabditis and Photorhabdus spp. Appl Environ Microbiol 2016; 82:5824-37. [PMID: 27451445 DOI: 10.1128/aem.01211-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Insect larvae killed by entomopathogenic nematodes are thought to contain bacterial communities dominated by a single bacterial genus, that of the nematode's bacterial symbiont. In this study, we used next-generation sequencing to profile bacterial community dynamics in greater wax moth (Galleria mellonella) larvae cadavers killed by Heterorhabditis nematodes and their Photorhabdus symbionts. We found that, although Photorhabdus strains did initially displace an Enterococcus-dominated community present in uninfected G. mellonella insect larvae, the cadaver community was not static. Twelve days postinfection, Photorhabdus shared the cadaver with Stenotrophomonas species. Consistent with this result, Stenotrophomonas strains isolated from infected cadavers were resistant to Photorhabdus-mediated toxicity in solid coculture assays. We isolated and characterized a Photorhabdus-produced antibiotic from G. mellonella cadavers, produced it synthetically, and demonstrated that both the natural and synthetic compounds decreased G. mellonella-associated Enterococcus growth, but not Stenotrophomonas growth, in vitro Finally, we showed that the Stenotrophomonas strains described here negatively affected Photorhabdus growth in vitro Our results add an important dimension to a broader understanding of Heterorhabditis-Photorhabdus biology and also demonstrate that interspecific bacterial competition likely characterizes even a theoretically monoxenic environment, such as a Heterorhabditis-Photorhabdus-parasitized insect cadaver. IMPORTANCE Understanding, and eventually manipulating, both human and environmental health depends on a complete accounting of the forces that act on and shape microbial communities. One of these underlying forces is hypothesized to be resource competition. A resource that has received little attention in the general microbiological literature, but likely has ecological and evolutionary importance, is dead/decaying multicellular organisms. Metazoan cadavers, including those of insects, are ephemeral and nutrient-rich environments, where resource competition might shape interspecific macrobiotic and microbiotic interactions. This study is the first to use a next-generation sequencing approach to study the community dynamics of bacteria within a model insect cadaver system: insect larvae parasitized by entomopathogenic nematodes and their bacterial symbionts. By integrating bioinformatic, biochemical, and classic in vitro microbiological approaches, we have provided mechanistic insight into how antibiotic-mediated bacterial interactions may shape community dynamics within insect cadavers.
Collapse
|
36
|
Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep 2016; 6:29505. [PMID: 27389097 PMCID: PMC4937375 DOI: 10.1038/srep29505] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023] Open
Abstract
Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa, their microbial symbionts are little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate but undergo a structural “metamorphosis” in tandem with its host. Enterococcus, Pantoea and Citrobacter were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-associated microbial symbionts may assist the development of novel pest-management strategies.
Collapse
|
37
|
Vilanova C, Baixeras J, Latorre A, Porcar M. The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp. Front Microbiol 2016; 7:1005. [PMID: 27446044 PMCID: PMC4923067 DOI: 10.3389/fmicb.2016.01005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Some specialist insects feed on plants rich in secondary compounds, which pose a major selective pressure on both the phytophagous and the gut microbiota. However, microbial communities of toxic plant feeders are still poorly characterized. Here, we show the bacterial communities of the gut of two specialized Lepidoptera, Hyles euphorbiae and Brithys crini, which exclusively feed on latex-rich Euphorbia sp. and alkaloid-rich Pancratium maritimum, respectively. A metagenomic analysis based on high-throughput sequencing of the 16S rRNA gene revealed that the gut microbiota of both insects is dominated by the phylum Firmicutes, and especially by the common gut inhabitant Enterococcus sp. Staphylococcus sp. are also found in H. euphorbiae though to a lesser extent. By scanning electron microscopy, we found a dense ring-shaped bacterial biofilm in the hindgut of H. euphorbiae, and identified the most prominent bacterium in the biofilm as Enterococcus casseliflavus through molecular techniques. Interestingly, this species has previously been reported to contribute to the immobilization of latex-like molecules in the larvae of Spodoptera litura, a highly polyphagous lepidopteran. The E. casseliflavus strain was isolated from the gut and its ability to tolerate natural latex was tested under laboratory conditions. This fact, along with the identification of less frequent bacterial species able to degrade alkaloids and/or latex, suggest a putative role of bacterial communities in the tolerance of specialized insects to their toxic diet.
Collapse
Affiliation(s)
- Cristina Vilanova
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València Valencia, Spain
| | - Amparo Latorre
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain; Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud PúblicaValencia, Spain
| | - Manuel Porcar
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain
| |
Collapse
|
38
|
Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J Microbiol Biotechnol 2016; 32:115. [PMID: 27263010 DOI: 10.1007/s11274-016-2066-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a stemborer pest that attacks maize (Zea mays) throughout sub-Saharan Africa. Genetically modified maize has been shown to be effective against B. fusca. However, resistance of B. fusca against Bt-maize has developed and spread throughout South Africa. Previous studies suggested that gut microbiota contribute to mortality across a range of Lepidoptera. To fully assess the role of microbiota within the gut, it is essential to understand the microbiota harboured by natural B. fusca populations. This study aimed to identify the gut-associated bacteria by 16S rRNA gene sequencing. A total of 78 bacterial strains were characterised from the midgut of B. fusca larvae that were collected from 30 sites across the maize producing region of South Africa. Molecular phylogenetic analyses revealed bacteria affiliated to Proteobacteria, Actinobacteria, and Firmicutes. Taxonomic distribution placed these isolates into 15 different genera representing 20 species. The majority of bacteria identified belong to the genera Bacillus, Enterococcus, and Klebsiella. The B. fusca gut represents an intriguing and unexplored niche for analysing microbial ecology. The study could provide opportunities for developing new targets for pest management and contribute to understanding the phenomenon of resistance evolution of this species.
Collapse
|
39
|
Staudacher H, Kaltenpoth M, Breeuwer JAJ, Menken SBJ, Heckel DG, Groot AT. Variability of Bacterial Communities in the Moth Heliothis virescens Indicates Transient Association with the Host. PLoS One 2016; 11:e0154514. [PMID: 27139886 PMCID: PMC4854476 DOI: 10.1371/journal.pone.0154514] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens.
Collapse
Affiliation(s)
- Heike Staudacher
- University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | | | - Steph B. J. Menken
- University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - David G. Heckel
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Astrid T. Groot
- University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
40
|
Staudacher H, Kaltenpoth M, Breeuwer JAJ, Menken SBJ, Heckel DG, Groot AT. Variability of Bacterial Communities in the Moth Heliothis virescens Indicates Transient Association with the Host. PLoS One 2016. [PMID: 27139886 DOI: 10.5061/dryad.dv35j.funding] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens.
Collapse
Affiliation(s)
- Heike Staudacher
- University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | | | - Steph B J Menken
- University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Astrid T Groot
- University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
41
|
Ocvirk S, Sava IG, Lengfelder I, Lagkouvardos I, Steck N, Roh JH, Tchaptchet S, Bao Y, Hansen JJ, Huebner J, Carroll IM, Murray BE, Sartor RB, Haller D. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels. PLoS Pathog 2015; 11:e1004911. [PMID: 26067254 PMCID: PMC4466351 DOI: 10.1371/journal.ppat.1004911] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/24/2015] [Indexed: 12/22/2022] Open
Abstract
The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/-) mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN) were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC) were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2) in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05) and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001). Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ-free Manduca sexta larvae and impaired penetration into the colonic mucus layer of IL-10-/- mice. Lipoprotein-deficient E. faecalis exhibited an impaired TLR2-mediated activation of BMDCs in vitro despite their ability to fully reactivate MLN cells as well as MLN-derived colitogenic T cells ex vivo. E. faecalis virulence factors accounting for bacterial adhesion to mucosal surfaces as well as intestinal barrier disruption partially contribute to colitogenic activity of E. faecalis. Beyond their well-known role in infections, cell surface-associated lipoproteins are essential structures for colitogenic activity of E. faecalis by mediating innate immune cell activation. Enterococcus faecalis is a commensal of the human intestinal core microbiota harboring several putative virulence factors, which highlight its role as opportunistic pathogen. This dualistic character is supported by recent evidence linking Enterococcus spp. to the pathogenesis of inflammatory bowel diseases (IBD). Although several studies suggest a crucial role for opportunistic pathogens in IBD pathogenesis targeting genetically susceptible individuals, the dynamic relationship between disease-relevant host compartments and specific bacterial structures able to trigger intestinal inflammation remain unclear. Here, we report that cell surface-associated lipoproteins and the enterococcal polysaccharide antigen, which are relevant for E. faecalis virulence in invertebrate infection models, but whose expression is minimally affected by the intestinal inflammatory milieu, exhibit colitogenic activity in a mouse model susceptible for chronic colitis. Bacterial lipoproteins trigger innate immune cell activation and are a critical prerequisite for E. faecalis-induced colitis. The enterococcal polysaccharide antigen mediates bacterial mucus penetration and adhesion to mucosal surfaces, promotes the formation of biofilm and contributes to E. faecalis colitogenic activity. Using E. faecalis as a model organism, we demonstrate that colitogenic activity of opportunistic pathogens can be assigned to specific bacterial structures, a finding that may help to identify the most essential steps in IBD-related microbe-host interactions.
Collapse
Affiliation(s)
- Soeren Ocvirk
- Technische Universität München, Chair of Nutrition and Immunology, ZIEL–Research Center for Nutrition and Food Sciences, Freising-Weihenstephan, Germany
| | - Irina G. Sava
- Technische Universität München, Chair of Nutrition and Immunology, ZIEL–Research Center for Nutrition and Food Sciences, Freising-Weihenstephan, Germany
| | - Isabella Lengfelder
- Technische Universität München, Chair of Nutrition and Immunology, ZIEL–Research Center for Nutrition and Food Sciences, Freising-Weihenstephan, Germany
| | - Ilias Lagkouvardos
- Technische Universität München, Chair of Nutrition and Immunology, ZIEL–Research Center for Nutrition and Food Sciences, Freising-Weihenstephan, Germany
| | - Natalie Steck
- Technische Universität München, Chair of Nutrition and Immunology, ZIEL–Research Center for Nutrition and Food Sciences, Freising-Weihenstephan, Germany
| | - Jung H. Roh
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School, Houston, Texas, United States of America
| | - Sandrine Tchaptchet
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yinyin Bao
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Jonathan J. Hansen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Ian M. Carroll
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School, Houston, Texas, United States of America
| | - R. Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk Haller
- Technische Universität München, Chair of Nutrition and Immunology, ZIEL–Research Center for Nutrition and Food Sciences, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
42
|
Thakur A, Dhammi P, Saini HS, Kaur S. Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. J Invertebr Pathol 2015; 127:38-46. [DOI: 10.1016/j.jip.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 10/24/2022]
|
43
|
Lin XL, Pan QJ, Tian HG, Douglas AE, Liu TX. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. INSECT SCIENCE 2015; 22:375-385. [PMID: 26013400 DOI: 10.1111/1744-7917.12079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 06/04/2023]
Abstract
Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella.
Collapse
Affiliation(s)
- Xiao-Li Lin
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin-Jian Pan
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
44
|
Dantur KI, Enrique R, Welin B, Castagnaro AP. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 2015; 5:15. [PMID: 25852992 PMCID: PMC4385043 DOI: 10.1186/s13568-015-0101-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
As a strategy to find efficient lignocellulose degrading enzymes/microorganisms for sugarcane biomass pretreatment purposes, 118 culturable bacterial strains were isolated from intestines of sugarcane-fed larvae of the moth Diatraea saccharalis. All strains were tested for cellulolytic activity using soluble carboxymethyl cellulose (CMC) degrading assays or by growing bacteria on sugarcane biomass as sole carbon sources. Out of the 118 strains isolated thirty eight were found to possess cellulose degrading activity and phylogenetic studies of the 16S rDNA sequence revealed that all cellulolytic strains belonged to the phyla γ-Proteobacteria, Actinobacteria and Firmicutes. Within the three phyla, species belonging to five different genera were identified (Klebsiella, Stenotrophomonas, Microbacterium, Bacillus and Enterococcus). Bacterial growth on sugarcane biomass as well as extracellular endo-glucanase activity induced on soluble cellulose was found to be highest in species belonging to genera Bacillus and Klebsiella. Good cellulolytic activity correlated with high extracellular protein concentrations. In addition, scanning microscopy studies revealed attachment of cellulolytic strains to different sugarcane substrates. The results of this study indicate the possibility to find efficient cellulose degrading enzymes and microorganisms from intestines of insect larvae feeding on sugarcane and their possible application in industrial processing of sugarcane biomass such as second generation biofuel production.
Collapse
Affiliation(s)
- Karina I Dantur
- Estación Experimental Agroindustrial Obispo Colombres (EEAOC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), 3150 William Cross Av., Las Talitas, PC T4101XAC Tucumán Argentina
| | - Ramón Enrique
- Estación Experimental Agroindustrial Obispo Colombres (EEAOC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), 3150 William Cross Av., Las Talitas, PC T4101XAC Tucumán Argentina
| | - Björn Welin
- Estación Experimental Agroindustrial Obispo Colombres (EEAOC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), 3150 William Cross Av., Las Talitas, PC T4101XAC Tucumán Argentina
| | - Atilio P Castagnaro
- Estación Experimental Agroindustrial Obispo Colombres (EEAOC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), 3150 William Cross Av., Las Talitas, PC T4101XAC Tucumán Argentina
| |
Collapse
|
45
|
Enterococcus faecalis 6-phosphogluconolactonase is required for both commensal and pathogenic interactions with Manduca sexta. Infect Immun 2014; 83:396-404. [PMID: 25385794 DOI: 10.1128/iai.02442-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecalis is a commensal and pathogen of humans and insects. In Manduca sexta, E. faecalis is an infrequent member of the commensal gut community, but its translocation to the hemocoel results in a commensal-to-pathogen switch. To investigate E. faecalis factors required for commensalism, we identified E. faecalis genes that are upregulated in the gut of M. sexta using recombinase-based in vivo expression technology (RIVET). The RIVET screen produced 113 clones, from which we identified 50 genes that are more highly expressed in the insect gut than in culture. The most frequently recovered gene was locus OG1RF_11582, which encodes a 6-phosphogluconolactonase that we designated pglA. A pglA deletion mutant was impaired in both pathogenesis and gut persistence in M. sexta and produced enhanced biofilms compared with the wild type in an in vitro polystyrene plate assay. Mutation of four other genes identified by RIVET did not affect persistence in caterpillar guts but led to impaired pathogenesis. This is the first identification of genetic determinants for E. faecalis commensal and pathogenic interactions with M. sexta. Bacterial factors identified in this model system may provide insight into colonization or persistence in other host-associated microbial communities and represent potential targets for interventions to prevent E. faecalis infections.
Collapse
|
46
|
Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl Environ Microbiol 2014; 80:4277-85. [PMID: 24814780 DOI: 10.1128/aem.00768-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus nematophila engages in a mutualistic association with the nematode Steinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects. X. nematophila is released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen. X. nematophila produces diverse antimicrobials in laboratory cultures. The natural competitors that X. nematophila encounters in the hemolymph and the role of antimicrobials in interspecies competition in the host are poorly understood. We show that gut microbes translocate into the hemolymph when the nematode penetrates the insect intestine. During natural infection, Staphylococcus saprophyticus was initially present and subsequently disappeared from the hemolymph, while Enterococcus faecalis proliferated. S. saprophyticus was sensitive to X. nematophila antibiotics and was eliminated from the hemolymph when coinjected with X. nematophila. In contrast, E. faecalis was relatively resistant to X. nematophila antibiotics. When injected by itself, E. faecalis persisted (~10(3) CFU/ml), but when coinjected with X. nematophila, it proliferated to ~10(9) CFU/ml. Injection of E. faecalis into the insect caused the upregulation of an insect antimicrobial peptide, while the transcript levels were suppressed when E. faecalis was coinjected with X. nematophila. Its relative antibiotic resistance together with suppression of the host immune system by X. nematophila may account for the growth of E. faecalis. At higher injected levels (10(6) CFU/insect), E. faecalis could kill insects, suggesting that it may contribute to virulence in an X. nematophila infection. These findings provide new insights into the competitive events that occur early in infection after S. carpocapsae invades the host hemocoel.
Collapse
|
47
|
In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS One 2014; 9:e85948. [PMID: 24475063 PMCID: PMC3903505 DOI: 10.1371/journal.pone.0085948] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is of crucial importance for the host with considerable metabolic activity. Although great efforts have been made toward characterizing microbial diversity, measuring components' metabolic activity surprisingly hasn't kept pace. Here we combined pyrosequencing of amplified 16S rRNA genes with in vivo stable isotope probing (Pyro-SIP) to unmask metabolically active bacteria in the gut of cotton leafworm (Spodoptera littoralis), a polyphagous insect herbivore that consumes large amounts of plant material in a short time, liberating abundant glucose in the alimentary canal as a most important carbon and energy source for both host and active gut bacteria. With (13)C glucose as the trophic link, Pyro-SIP revealed that a relatively simple but distinctive gut microbiota co-developed with the host, both metabolic activity and composition shifting throughout larval stages. Pantoea, Citrobacter and Clostridium were particularly active in early-instar, likely the core functional populations linked to nutritional upgrading. Enterococcus was the single predominant genus in the community, and it was essentially stable and metabolically active in the larval lifespan. Based on that Enterococci formed biofilm-like layers on the gut epithelium and that the isolated strains showed antimicrobial properties, Enterococcus may be able to establish a colonization resistance effect in the gut against potentially harmful microbes from outside. Not only does this establish the first in-depth inventory of the gut microbiota of a model organism from the mostly phytophagous Lepidoptera, but this pilot study shows that Pyro-SIP can rapidly gain insight into the gut microbiota's metabolic activity with high resolution and high precision.
Collapse
|
48
|
Hammer TJ, McMillan WO, Fierer N. Metamorphosis of a butterfly-associated bacterial community. PLoS One 2014; 9:e86995. [PMID: 24466308 PMCID: PMC3900687 DOI: 10.1371/journal.pone.0086995] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023] Open
Abstract
Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
49
|
Nai YH, Zemb O, Gutierrez-Zamora ML, Manefield M, Powell SM, Breadmore MC. Capillary electrophoresis ribosomal RNA single-stranded conformation polymorphism: a new approach for characterization of low-diversity microbial communities. Anal Bioanal Chem 2012; 404:1897-906. [PMID: 22865007 DOI: 10.1007/s00216-012-6268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
Capillary electrophoresis (CE) has been the principle system for nucleic acid analysis since the early 1990s due to its inherent advantages such as fast analysis time, high resolution and efficiency, minimal sample requirement, high detection sensitivity, and automation. In the past few decades, microbial community fingerprinting methods such as terminal restriction fragment length polymorphism and single-stranded conformation polymorphism (SSCP) have migrated to CE to utilize its advantages over conventional slab gel electrophoresis. Recently, a gel-based direct rRNA fingerprint method was demonstrated. Different from other existing microbial community characterization approaches, this novel approach is polymerase chain reaction free and capable of providing information on the relative abundance of rRNA from individual phylotypes in low-diversity samples. As a gel-based method, it has a long analysis time and relatively large reagent and sample requirements. Here, we addressed these limitations by transferring the RNA fingerprint approach to the CE platform. Analysis time significantly improved from 24 h to 60 min, and the use of a fluorescently labeled hybridization probe as the detection strategy decreased the sample requirement by ten-fold. The combination of fast analysis time, low sample requirement, and sensitive fluorescence detection makes CE-RNA-SSCP an appealing new approach for characterizing low-diversity microbial communities.
Collapse
Affiliation(s)
- Yi H Nai
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart, TAS, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 2012; 7:e36978. [PMID: 22815679 PMCID: PMC3398904 DOI: 10.1371/journal.pone.0036978] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/10/2012] [Indexed: 01/14/2023] Open
Abstract
Background The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. Methods/Principal Findings To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. Conclusions Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.
Collapse
Affiliation(s)
- Xiaoshu Tang
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dalial Freitak
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| | - Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| | - Yongqi Shao
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erika Arias Cordero
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gary Andersen
- Center for Environmental Biology and Molecular Microbial Ecology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Martin Westermann
- Centre of Electron Microscopy, The University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| |
Collapse
|