1
|
Li G, Srinivasan V, Tooker NB, Wang D, Yan Y, Onnis-Hayden A, Gu AZ. Distinct microdiversity of phosphate accumulating organisms (PAOs) between side-stream and conventional enhanced biological phosphorus removal (EBPR) systems with performance implications. WATER RESEARCH 2024; 266:122280. [PMID: 39213686 DOI: 10.1016/j.watres.2024.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Polyphosphate Accumulating Organisms (PAOs) microdiversity is a key factor to elucidate the mechanisms involved in the side-stream enhanced biological phosphorus removal (S2EBPR) systems, which has been shown to improve the process stability over conventional EBPR. However, fast, effective and cost-efficient methods to resolve PAO microdiversity in real-world activate sludge samples is still in absence. In this study, we applied oligotyping analysis following the regular 16S rRNA gene amplicon sequencing standard operation pipeline (SOP) to resolve subgenus-level PAO oligotypes, which cannot be achieved using traditional 16S rRNA sequencing SOP. The identified oligotype profiles of PAO-containing genera Ca. Accumulibacter, Tetrasphaera and Comamonas showed distinguished community-level differences across 12 water resource recovery facilities (WRRFs), which would not be revealed at the genus level. The WRRF-level differences were observed larger than the temporal differences in the same WRRF, indicating intrinsic sub-genus level microdiversity fingerprint between EBPR/S2EBPR systems. The identified oligotypes can be associated with known PAO clades phylogenetically, suggesting that oligotyping can suffice as a fast and cost-efficient approach for PAO microdiversity profiling. In addition, network analysis can be used to identify coexistence patterns between oligotypes with respect to EBPR/S2EBPR configurations and performance, enabling more detailed analysis between EBPR system performance and PAOs microdiversity. Correlation analyses between oligotype profiles and key EBPR performance parameters revealed potential different biological functional traits among these PAO species with P-removal performance implications.
Collapse
Affiliation(s)
- Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Varun Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Dongqi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
2
|
Askari SS, Giri BS, Basheer F, Izhar T, Ahmad SA, Mumtaz N. Enhancing sequencing batch reactors for efficient wastewater treatment across diverse applications: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 260:119656. [PMID: 39034021 DOI: 10.1016/j.envres.2024.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
This review explores recent progress in sequencing batch reactors (SBRs) and hybrid systems for wastewater treatment, emphasizing their adaptability and effectiveness in managing diverse wastewater compositions. Through extensive literature analysis from 1985 to 2024, the integration of advanced technologies like photocatalysis within hybrid systems is highlighted, showing promise for improved pollutant removal efficiencies. Insights into operational parameters, reactor design, and microbial communities influencing SBR performance are discussed. Sequencing batch biofilm reactors (SBBRs) demonstrate exceptional efficiency in Chemical Oxygen Demand, nitrogen, and phosphorus removal, while innovative anaerobic-aerobic-anoxic sequencing batch reactors (AOA-SBRs) offer effective nutrient removal strategies. Hybrid systems, particularly photocatalytic sequencing batch reactors (PSBRs), show potential for removing persistent pollutants like antibiotics and phenols, underscoring the significance of advanced oxidation processes. However, research gaps persist, including the need for comparative studies between different SBR types and comprehensive evaluations of long-term performance, environmental variability, and economic viability. Addressing these gaps will be vital for the practical deployment of SBRs and hybrid systems. Further exploration of synergies, economic considerations, and reactor stability will enhance the sustainability and scalability of these technologies for efficient and eco-friendly wastewater treatment.
Collapse
Affiliation(s)
- Syed Shuja Askari
- Department of Civil Engineering, Integral University, Lucknow, 226026, India
| | - Balendu Shekher Giri
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Farrukh Basheer
- Department of Civil Engineering, Aligarh Muslim University, Aligarh, 202002, India
| | - Tabish Izhar
- Department of Civil Engineering, Integral University, Lucknow, 226026, India
| | - Syed Aqeel Ahmad
- Department of Civil Engineering, Integral University, Lucknow, 226026, India
| | - Neha Mumtaz
- Department of Civil Engineering, Integral University, Lucknow, 226026, India.
| |
Collapse
|
3
|
Kwok ACM, Yan KTH, Wen S, Sun S, Li C, Wong JTY. Dinochromosome Heterotermini with Telosomal Anchorages. Int J Mol Sci 2024; 25:11312. [PMID: 39457094 PMCID: PMC11508785 DOI: 10.3390/ijms252011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (A.C.M.K.); (K.T.H.Y.); (S.W.); (S.S.); (C.L.)
| |
Collapse
|
4
|
Ruiz-Haddad L, Ali M, Pronk M, van Loosdrecht MC, Saikaly PE. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment: A review of their phylogeny, metabolism, and detection. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100387. [PMID: 38322240 PMCID: PMC10845257 DOI: 10.1016/j.ese.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.
Collapse
Affiliation(s)
- Lucia Ruiz-Haddad
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, 2629 HZ, the Netherlands
| | | | - Pascal E. Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Schoeppe R, Waldmann M, Jessen HJ, Renné T. An Update on Polyphosphate In Vivo Activities. Biomolecules 2024; 14:937. [PMID: 39199325 PMCID: PMC11352482 DOI: 10.3390/biom14080937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Polyphosphate (polyP) is an evolutionary ancient inorganic molecule widespread in biology, exerting a broad range of biological activities. The intracellular polymer serves as an energy storage pool and phosphate/calcium ion reservoir with implications for basal cellular functions. Metabolisms of the polymer are well understood in procaryotes and unicellular eukaryotic cells. However, functions, regulation, and association with disease states of the polymer in higher eukaryotic species such as mammalians are just beginning to emerge. The review summarises our current understanding of polyP metabolism, the polymer's functions, and methods for polyP analysis. In-depth knowledge of the pathways that control polyP turnover will open future perspectives for selective targeting of the polymer.
Collapse
Affiliation(s)
- Robert Schoeppe
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, D-79105 Freiburg, Germany;
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Center for Thrombosis and Haemostasis (CTH), Johannes Gutenberg University Medical Center, D-55131 Mainz, Germany
| |
Collapse
|
6
|
Li X, Cai Y, Qiu Q, Wu J, Wang J, Qiu J. Monitoring Ammonium Polyphosphate (APP) Biodegradation by Acinetobacter nosocomialis D-3 Using DAPI. Molecules 2024; 29:2667. [PMID: 38893541 PMCID: PMC11173948 DOI: 10.3390/molecules29112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.
Collapse
Affiliation(s)
- Xiangxiang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yule Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiqing Qiu
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, China
| | - Jiamin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Wang
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, China
| | - Jieqiong Qiu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Endo R, Karasawa S, Aoyagi H. Simultaneous removal of caesium and strontium using different removal mechanisms of probiotic bacteria. Sci Rep 2024; 14:7630. [PMID: 38561437 PMCID: PMC10984957 DOI: 10.1038/s41598-024-57678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
When radioactive materials are released into the environment due to nuclear power plant accidents, they may enter into the body, and exposing it to internal radiation for long periods of time. Although several agents have been developed that help excrete radioactive elements from the digestive tract, only one type of radioactive element can be removed using a single agent. Therefore, we considered the simultaneous removal of caesium (Cs) and strontium (Sr) by utilising the multiple metal removal mechanisms of probiotic bacteria. In this study, the Cs and Sr removal capacities of lactobacilli and bifidobacteria were investigated. Observation using an electron probe micro analyser suggested that Cs was accumulated within the bacterial cells. Since Sr was removed non metabolically, it is likely that it was removed by a mechanism different from that of Cs. The amount of Cs and Sr that the cells could simultaneously retain decreased when compared to that for each element alone, but some strains showed only a slight reduction in removal. For example, Bifidobacterium adolescentis JCM1275 could simultaneously retain 55.7 mg-Cs/g-dry cell and 8.1 mg-Sr/g-dry cell. These results demonstrated the potentials of utilizing complex biological system in simultaneous removal of multiple metal species.
Collapse
Affiliation(s)
- Rin Endo
- Division of Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Satoshi Karasawa
- Division of Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Division of Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
8
|
Ballesteros N, Páez L, Luna N, Reina A, Urrea V, Sánchez C, Ramírez A, Ramirez JD, Muñoz M. Characterization of microbial communities in seven wetlands with different anthropogenic burden using Next Generation Sequencing in Bogotá, Colombia. Sci Rep 2023; 13:16973. [PMID: 37813873 PMCID: PMC10562456 DOI: 10.1038/s41598-023-42970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
Wetlands represent key ecosystems due to their remarkable biodiversity, ecological functions and multiple ecosystem services provided. In Colombia, there are 31,702 wetlands, 13 of which are in Bogotá, capital of the country. Despite the fundamental socioecological support of these aquatic ecosystems, a tremendous loss and degradation of these ecosystems has been observed due to anthropogenic perturbations. Therefore, the aim of this study was to describe the status of seven Bogotá wetlands with variable anthropogenic interventions by measuring organoleptic, physicochemical, and microbiological parameters, using commercial kits, highly sensitive equipment, and next-generation sequencing of the 16S- and 18S-rRNA genes. Our findings describe the status of seven wetlands with different anthropogenic burden in Bogotá-Colombia where physicochemical and microbiology signals of contamination were observed. Additionally, some profiles in the composition of the microbial communities, together with certain physicochemical characteristics, may represent an insight into the environmental dynamics, where Beta Proteobacteria such as Malikia represent a potential keystone in aquatic ecosystems impacted by wastewater effluent discharges; the presence of nitrates and phosphates explain the abundance of bacteria capable of oxidizing these compounds, such as Polynucleobacter. Moreover, the presence of specific prokaryotic and eukaryotic organisms, such as Clostridium, Cryptococcus, Candida, and Naegleria, reported in one or more of the wetlands assessed here, could represent a possible pathogenic risk for human and animal health. This study performed a complete evaluation of seven Bogotá wetlands with different anthropogenic impacts for the first time, and our findings emphasize the importance of maintaining continuous monitoring of these water bodies given their remarkable ecological importance and potential spill-over of several pathogens to humans and animals.
Collapse
Affiliation(s)
- Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Ariana Reina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Catalina Sánchez
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
9
|
Lin S, Ke Z, Lu M, Zhou Y, Tang W, Zhu S, Zhang Y, Li Z, Yin H, Chen Z. Specific labeling and identification of bacteria based on concentration-dependent carbon dot staining combined with hyperspectral imaging. JOURNAL OF BIOPHOTONICS 2023; 16:e202200237. [PMID: 36308004 DOI: 10.1002/jbio.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Concentration-dependent carbon dot (CD) fluorescence was developed and utilized alongside hyperspectral microscopy as a specific labeling and identification technique for bacteria. Staining revealed that the CD concentration within cells depended on the characteristic intracellular environment of the species. Therefore, based on the concentration dependence of the CD fluorescence, different bacterial species were specifically labeled. Hyperspectral microscopy captured subtle fluorescence variations to identify bacteria. Method validation using Bacillus subtilis and Bacillus licheniformis succeeded with an identification accuracy of 99%. As a simple, rapid method for labeling and identifying bacterial species in mixtures, this technique has excellent potential for bacterial community studies.
Collapse
Affiliation(s)
- Sifan Lin
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Ze Ke
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Mingwei Lu
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Yanzhong Zhou
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Wenrui Tang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Siqi Zhu
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
| | - Yongqiang Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
| | - Hao Yin
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
| | - Zhenqiang Chen
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Phosphorus Removal from Aerobic Granular Sludge: Proliferation of Polyphosphate-Accumulating Organisms (PAOs) under Different Feeding Strategies. Processes (Basel) 2022. [DOI: 10.3390/pr10071399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aerobic granular sludge (AGS) is known for high phosphorus removal from wastewaters, and phosphorus can be recovered from high phosphorus-containing waste sludge granules. This study aimed at determining the feeding strategy that provides the best performance in terms of the proliferation of polyphosphate-accumulating organisms (PAOs) and phosphorus removal. Using three AGS bioreactors, this study compared phosphorus removal and the proliferation dynamics of PAOs under three different feeding strategies: anaerobic slow feeding (R1), pulse feeding + anaerobic mixing (R2), and pulse feeding (R3). Results indicate that R1 and R2 achieved significantly higher phosphorus removal (97.6 ± 3% for R1 and 98.3 ± 1% for R2) than R3 (55 ± 11%). The anaerobic slow feeding procedure (R1) achieved the highest specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) as compared to the other two feeding conditions. 16S ribosomal ribonucleic acid (rRNA) gene sequencing assay of the microbial community for the three feeding strategies indicated that although the feeding strategy impacted reactor performance, it did not significantly alter the microbial community. The bacteria community composition maintained a similar degree of diversity. Proteobacteria, Bacteroidetes, and Verrucomicrobia were the dominant bacterial phyla in the system. Dominant PAOs were from the class Betaproteobacteria and the genera Paracoccus and Thauera. Glycogen-accumulating organisms were significantly inhibited while other less-known bacteria such as Wandonia and Hyphomonas were observed in all three reactors.
Collapse
|
11
|
Zhang Y, Tang W, Wang Y, Nian M, Jiang F, Zhang J, Chen Q. Environmental antibiotics exposure in school-age children in Shanghai and health risk assessment: A population-based representative investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153859. [PMID: 35176387 DOI: 10.1016/j.scitotenv.2022.153859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The widespread use of antibiotics has left extensive residues in the environment and food. Antibiotics can accumulate in human body. As the potential health risks of antibiotic exposure in children are of a great concern in recent years, our study aimed to describe the status of antibiotic exposure in primary school students in Shanghai, China, and to explore the relationships of dietary patterns with internal antibiotic levels. METHODS The Shanghai Children's Health, Education, and Lifestyle Evaluation (SCHEDULE) Survey was a cross-sectional study with a staged, cluster random sample of all primary school students in Shanghai, China. In the present study, we randomly selected 2199 children aged 6-12 years old. A total of 10 antibiotics in urine samples were measured by liquid chromatography-tandem mass spectrometry. Multivariable survey logistic regression models were used to investigate dietary patterns associated with detection rates of antibiotics. RESULTS The detection rates of individual antibiotics ranged from 4.3% to 30.7%. 68.7% of children were exposed to at least one antibiotic. There was a significant difference in child exposure to overall antibiotics by residential locations (60.9% in urban vs. 71.1% in suburban areas). Principal component analyses suggested that higher unhealthy dietary pattern scores were significantly associated with increased detection rates of tetracyclines [1.27 (95% CI: 1.18, 1.38)] and sulfonamides [1.20 (95% CI: 1.05, 1.36)]. In addition, 9.05% of children had a hazard index (HI) value greater than 1, which was mainly contributed by ciprofloxacin. CONCLUSIONS School-age children were widely exposed to antibiotics in Shanghai. Unhealthy diet was associated with a higher level of antibiotic exposure.
Collapse
Affiliation(s)
- Yu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Jan G, Tarnaud F, Rosa do Carmo FL, Illikoud N, Canon F, Jardin J, Briard-Bion V, Guyomarc'h F, Gagnaire V. The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk. Food Microbiol 2022; 106:104042. [DOI: 10.1016/j.fm.2022.104042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022]
|
13
|
Microbial storage and its implications for soil ecology. THE ISME JOURNAL 2022; 16:617-629. [PMID: 34593996 PMCID: PMC8857262 DOI: 10.1038/s41396-021-01110-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organisms. Evidence is drawn from various systems, but we pay particular attention to soils, where microorganisms play crucial roles in global element cycles. An assembly of genus-level data demonstrates the likely prevalence of storage traits in soil. We provide a theoretical basis for microbial storage ecology by distinguishing a spectrum of storage strategies ranging from surplus storage (storage of abundant resources that are not immediately required) to reserve storage (storage of limited resources at the cost of other metabolic functions). This distinction highlights that microorganisms can invest in storage at times of surplus and under conditions of scarcity. We then align storage with trait-based microbial life-history strategies, leading to the hypothesis that ruderal species, which are adapted to disturbance, rely less on storage than microorganisms adapted to stress or high competition. We explore the implications of storage for soil biogeochemistry, microbial biomass, and element transformations and present a process-based model of intracellular carbon storage. Our model indicates that storage can mitigate against stoichiometric imbalances, thereby enhancing biomass growth and resource-use efficiency in the face of unbalanced resources. Given the central roles of microbes in biogeochemical cycles, we propose that microbial storage may be influential on macroscopic scales, from carbon cycling to ecosystem stability.
Collapse
|
14
|
Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime. Appl Microbiol Biotechnol 2022; 106:1313-1324. [PMID: 35032186 PMCID: PMC8816403 DOI: 10.1007/s00253-022-11759-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Abstract Wastewater treatment using aerobic granular sludge has gained increasing interest due to its advantages compared to conventional activated sludge. The technology allows simultaneous removal of organic carbon, nitrogen, and phosphorus in a single reactor system and is independent of space-intensive settling tanks. However, due to the microscale, an analysis of processes and microbial population along the radius of granules is challenging. Here, we introduce a model system for aerobic granular sludge on a small scale by using a machine-assisted microfluidic cultivation platform. With an implemented logic module that controls solenoid valves, we realized alternating oxic hunger and anoxic feeding phases for the biofilms growing within. Sampling during ongoing anoxic cultivation directly from the cultivation channel was achieved with a robotic sampling device. Analysis of the biofilms was conducted using optical coherence tomography, fluorescence in situ hybridization, and amplicon sequencing. Using this setup, it was possible to significantly enrich the percentage of polyphosphate-accumulating organisms (PAO) belonging to the family Rhodocyclaceae in the community compared to the starting inoculum. With the aid of this miniature model system, it is now possible to investigate the influence of a multitude of process parameters in a highly parallel way to understand and efficiently optimize aerobic granular sludge-based wastewater treatment systems.Key points• Development of a microfluidic model to study EBPR.• Feast-famine regime enriches polyphosphate-accumulating organisms (PAOs).• Microfluidics replace sequencing batch reactors for aerobic granular sludge research.
Collapse
|
15
|
Petriglieri F, Singleton C, Peces M, Petersen JF, Nierychlo M, Nielsen PH. "Candidatus Dechloromonas phosphoritropha" and "Ca. D. phosphorivorans", novel polyphosphate accumulating organisms abundant in wastewater treatment systems. THE ISME JOURNAL 2021; 15:3605-3614. [PMID: 34155336 PMCID: PMC8630035 DOI: 10.1038/s41396-021-01029-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic-aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
16
|
Status and advances in technologies for phosphorus species detection and characterization in natural environment- A comprehensive review. Talanta 2021; 233:122458. [PMID: 34215099 DOI: 10.1016/j.talanta.2021.122458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Poor recovery of phosphorus (P) across natural environment (water, soil, sediment, and biological sources) is causing rapid depletion of phosphate rocks and continuous accumulation of P in natural waters, resulting in deteriorated water quality and aquatic lives. Accurate detection and characterization of various P species using suitable analytical methods provide a comprehensive understanding of the biogeochemical cycle of P and thus help its proper management in the environment. This paper aims to provide a comprehensive review of the analytical methods used for P speciation in natural environment by dividing them into five broad categories (i.e., chemical, biological, molecular, staining microscopy, and sensors) and highlighting the suitability (i.e., targeted species, sample matrix), detection limit, advantages-limitations, and reference studies of all methods under each category. This can be useful in designing studies involving P detection and characterization across environmental matrices by providing insights about a wide range of analytical methods based on the end user application needs of individual studies.
Collapse
|
17
|
Mu R, Jia Y, Ma G, Liu L, Hao K, Qi F, Shao Y. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1217-1230. [PMID: 33305497 DOI: 10.1002/wer.1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The rise in living standards has generated a demand for higher aquatic environmental quality. The microalgal community and the surrounding organic molecules, environmental factors, and microorganisms, such as bacteria, are together defined as the phycosphere. The bacteria in the phycosphere can form consortia with microalgae through various forms of interaction. The study of the species in these consortia and their relative proportions is of great significance in determining the species and strains of stable algae that can be used in sewage treatment. This article summarizes the following topics: the interactions between microalgae and bacteria that are required to establish consortia; how symbiosis between algae and bacteria is established; microalgal competition with bacteria through inhibition and anti-inhibition strategies; the influence of environmental factors on microalgal-bacterial aggregates, such as illumination conditions, pH, dissolved oxygen, temperature, and nutrient levels; the application of algal-bacterial aggregates to enhance biomass production and nutrient reuse; and techniques for studying the community structure and interactions of algal-bacterial consortia, such as microscopy, flow cytometry, and omics. PRACTITIONER POINTS: Community structures in microalgal-bacterial consortia in wastewater treatment. Interactions between algae and bacteria in wastewater treatment. Effects of ecological factors on the algal-bacterial community in wastewater treatment. Economically recycling resources from algal-bacterial consortia based on wastewater. Technologies for studying microalgal-bacterial consortia in wastewater treatment.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | | | - Kaixuan Hao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
18
|
Denitrifying phosphorus removal and microbial community characteristics of two-sludge DEPHANOX system: Effects of COD/TP ratio. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Liu B, Nan J, Zu X, Zhang X, Xiao Q. Identification of Genome Sequences of Polyphosphate-Accumulating Organisms by Machine Learning. Front Cell Dev Biol 2021; 8:626221. [PMID: 33537313 PMCID: PMC7848102 DOI: 10.3389/fcell.2020.626221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the field of sewage treatment, the identification of polyphosphate-accumulating organisms (PAOs) usually relies on biological experiments. However, biological experiments are not only complicated and time-consuming, but also costly. In recent years, machine learning has been widely used in many fields, but it is seldom used in the water treatment. The present work presented a high accuracy support vector machine (SVM) algorithm to realize the rapid identification and prediction of PAOs. We obtained 6,318 genome sequences of microorganisms from the publicly available microbial genome database for comparative analysis (MBGD). Minimap2 was used to compare the genomes of the obtained microorganisms in pairs, and read the overlap. The SVM model was established using the similarity of the genome sequences. In this SVM model, the average accuracy is 0.9628 ± 0.019 with 10-fold cross-validation. By predicting 2,652 microorganisms, 22 potential PAOs were obtained. Through the analysis of the predicted potential PAOs, most of them could be indirectly verified their phosphorus removal characteristics from previous reports. The SVM model we built shows high prediction accuracy and good stability.
Collapse
Affiliation(s)
- Bohan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xuehui Zu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xinhui Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiliang Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
20
|
Rangaswamy C, Englert H, Deppermann C, Renné T. Polyanions in Coagulation and Thrombosis: Focus on Polyphosphate and Neutrophils Extracellular Traps. Thromb Haemost 2020; 121:1021-1030. [PMID: 33307564 DOI: 10.1055/a-1336-0526] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neutrophil extracellular traps (NETs) and polyphosphates (polyP) have been recognized as procoagulant polyanions. This review summarizes the activities and regulation of the two procoagulant mediators and compares their functions. NETs are composed of DNA which like polyP is built of phosphate units linked by high-energy phosphoanhydride bonds. Both NETs and polyP form insoluble particulate surfaces composed of a DNA/histone meshwork or Ca2+-rich nanoparticles, respectively. These polyanionic molecules modulate coagulation involving an array of mechanisms and trigger thrombosis via activation of the factor XII-driven procoagulant and proinflammatory contact pathway. Here, we outline the current knowledge on NETs and polyP with respect to their procoagulant and prothrombotic nature, strategies for interference of their activities in circulation, as well as the crosstalk between these two molecules. A better understanding of the underlying, cellular mechanisms will shed light on the therapeutic potential of targeting NETs and polyP in coagulation and thrombosis.
Collapse
Affiliation(s)
- Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Deppermann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Usage of textile dyes BB41 and BR46 for microscopic examination of filamentous bacteria in activated sludge reactor: a new staining method. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The existence of certain filamentous organisms may indicate one or more operation and control problems in activated sludge reactors. Microscopic evaluation of these filamentous organisms needs staining methods that can be achieved after some steps. This study is the first to show that textile dyes such as Astrazon Blue FGGL (BB41) and Astrazon Red FBL (BR46) can be used to identify filamentous organisms. Both dyes were used as a new, effective, and easy method for detecting the presence of filamentous bacteria. When contacted with BB41 and BR46, the filamentous bacteria and their characteristics were easily observed under the microscope. According to sources, textile dyes used in this study have not been used to diagnose filamentous bacteria before. According to the findings of this study, important morphological properties of filamentous bacteria were easily observed using BB41 and BR46. “Attached growth, branching, septa, and granules of various nutrients” were clearly seen by the stains (BB41 and BR46) with the help of this method. This method may allow the examiners to examine the specimens of filamentous bacteria in the activated sludge reactors. Detailed information has been presented in this paper.
Collapse
|
22
|
Roots P, Rosenthal A, Wang Y, Sabba F, Jia Z, Yang F, Zhang H, Kozak J, Wells G. Pushing the limits of solids retention time for enhanced biological phosphorus removal: process characteristics and Accumulibacter population structure. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1614-1627. [PMID: 33107855 DOI: 10.2166/wst.2020.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reducing the solids retention time (SRT) of the enhanced biological phosphorus removal (EBPR) process can increase organic carbon diversion to the sidestream for energy recovery, thereby realizing some of the benefits of the high rate activated sludge (HRAS) process. Determining the washout (i.e. minimum) SRT of polyphosphate accumulating organisms (PAOs), therefore, allows for simultaneous phosphorus and carbon diversion for energy recovery from EBPR systems. However, few studies have investigated the washout SRT of PAOs in real wastewater, and little is known of the diversity of PAOs in high rate EBPR systems. Here we demonstrate efficient phosphorus removal (83% orthophosphate removal) in a high rate EBPR sequencing batch reactor fed real primary effluent and operated at 20 °C. Stable operation was achieved at a total SRT of 1.8 ± 0.2 days and hydraulic retention time of 3.7-4.8 hours. 16S rRNA gene sequencing data demonstrated that Accumulibacter were the dominant PAO throughout the study, with a washout aerobic SRT between 0.8 and 1.4 days. qPCR targeting the polyphosphate kinase gene revealed that Accumulibacter clades IIA, IIB and IID dominated the PAO community at low SRT operation, while clade IA was washed out at the lowest SRT values.
Collapse
Affiliation(s)
- Paul Roots
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Alex Rosenthal
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Zhen Jia
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Fenghua Yang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA
| | - Heng Zhang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA
| | - Joseph Kozak
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA
| | - George Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| |
Collapse
|
23
|
Wang B, Jiao E, Guo Y, Zhang L, Meng Q, Zeng W, Peng Y. Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37877-37886. [PMID: 32617817 DOI: 10.1007/s11356-020-09912-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous chemical phosphorus removal (SCPR) process has been widely applied in wastewater treatment plants (WWTPs) due to the high phosphorus removal efficiency through the synergy of biological and chemical phosphorus removal (BPR and CPR). However, phosphorus removal reagents could affect the bacterial community structure in the SCPR system and further affect the BPR process. The BPR phenotypes and community structures in the SCPR system, especially the population of polyphosphate-accumulating organisms (PAOs), are not completely clear. In order to clarify these problems, the phosphorus removal performance and the PAO population in a full-scale SCPR system were investigated. Results showed that diverse PAOs still existed in the SCPR system though the BPR phenotypes were not observed. However, the relative abundances of Accumulibacter and Tetrasphaera, the two most important genera of PAOs, were only 0.59% and 0.20%, respectively, while the relative abundances of Competibacter and Defluviicoccus, two genera of glycogen-accumulating organisms (GAOs), were as high as 5.77% and 1.28%, respectively. Batch tests showed that PAOs in the SCPR system still had a certain polyphosphate accumulating metabolic activity, which could gradually recover after stopping the addition of chemical reagents. This study provided a microbiological basis for the SCPR system to recover the enhanced biological phosphorus removal (EBPR) performance under suitable conditions, which could reduce the dosage of chemical reagents and the operational cost.
Collapse
Affiliation(s)
- Baogui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Erlong Jiao
- Beijing Drainage Group Co., Ltd., Beijing, 100037, China
| | - Yu Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Lifang Zhang
- Beijing Drainage Group Co., Ltd., Beijing, 100037, China
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| |
Collapse
|
24
|
Seasonal Dynamics of the Activated Sludge Microbiome in Sequencing Batch Reactors, Assessed Using 16S rRNA Transcript Amplicon Sequencing. Appl Environ Microbiol 2020; 86:AEM.00597-20. [PMID: 32709723 DOI: 10.1128/aem.00597-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Activated sludge is comprised of diverse microorganisms which remediate wastewater. Previous research has characterized activated sludge using 16S rRNA gene amplicon sequencing, which can help to address questions on the relative abundance of microorganisms. In this study, we used 16S rRNA transcript sequencing in order to characterize "active" populations (via protein synthesis potential) and gain a deeper understanding of microbial activity patterns within activated sludge. Seasonal abundances of individual populations in activated sludge change over time, yet a persistent group of core microorganisms remains throughout the year which are traditionally classified on presence or absence without monitoring of their activity or growth. The goal of this study was to further our understanding of how the activated sludge microbiome changes between seasons with respect to population abundance, activity, and growth. Triplicate sequencing batch reactors were sampled at 10-min intervals throughout reaction cycles during all four seasons. We quantified the gene and transcript copy numbers of 16S rRNA amplicons using real-time PCR and sequenced the products to reveal community abundance and activity changes. We identified 108 operational taxonomic units (OTUs) with stable abundance, activity, and growth throughout the year. Nonproliferating OTUs were commonly human health related, while OTUs that showed seasonal abundance changes have previously been identified as being associated with floc formation and bulking. We observed significant differences in 16S rRNA transcript copy numbers, particularly at lower temperatures in winter and spring. The study provides an analysis of the seasonal dynamics of microbial activity variations in activated sludge based on quantifying and sequencing 16S rRNA transcripts.IMPORTANCE Sequencing batch reactors are a common design for wastewater treatment plants, particularly in smaller municipalities, due to their low footprint and ease of operations. However, like for most treatment plants in temperate/continental climates, the microbial community involved in water treatment is highly seasonal and its biological processes can be sensitive to cold temperatures. The seasonality of these microbial communities has been explored primarily in conventional treatment plants and not in sequencing batch reactors. Furthermore, most studies often only address which organisms are present. However, the activated sludge microbial community is very diverse, and it is often hard to discern which organisms are active and which organisms are simply present. In this study, we applied additional sequencing techniques to also address the issues of which organisms are active and which organisms are growing. By addressing these issues, we gained new insights into seasonal microbial populations dynamics and activity patterns affecting wastewater treatment.
Collapse
|
25
|
Terashima M, Kamagata Y, Kato S. Rapid Enrichment and Isolation of Polyphosphate-Accumulating Organisms Through 4'6-Diamidino-2-Phenylindole (DAPI) Staining With Fluorescence-Activated Cell Sorting (FACS). Front Microbiol 2020; 11:793. [PMID: 32425914 PMCID: PMC7203516 DOI: 10.3389/fmicb.2020.00793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Screening for bacteria with abilities to accumulate valuable intracellular compounds from an environmental community is difficult and requires strategic methods. Combining the experimental procedure for phenotyping living cells in a microbial community with the cell recovery necessary for further cultivation will allow for an efficient initial screening process. In this study, we developed a strategy for the isolation of polyphosphate-accumulating organisms (PAOs) by combining (i) nontoxic fluorescence staining of polyphosphate granules in viable microbial cells and (ii) fluorescence-activated cell sorting (FACS) for the rapid detection and collection of target cells. To implement this screening approach, cells from wastewater sludge samples were stained with 4’6-diamidino-2-phenylindole (DAPI) to target cells with high polyphosphate (polyP) accumulation. We found a staining procedure (10 μg/ml of DAPI for 30 min) that can visualize polyP granules while maintaining viability for the majority of the cells (>60%). The polyP positive cells were recovered by FACS, purified by colony isolation and phylogenetically identified by 16S rRNA gene sequencing. Follow-up analysis confirmed that these isolates accumulate polyP, indicating that DAPI can be implemented in staining living cells and FACS can effectively and rapidly screen and isolate individual cells from a complex microbial community.
Collapse
Affiliation(s)
- Mia Terashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Christ JJ, Willbold S, Blank LM. Methods for the Analysis of Polyphosphate in the Life Sciences. Anal Chem 2020; 92:4167-4176. [PMID: 32039586 DOI: 10.1021/acs.analchem.9b05144] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is the polymer of orthophosphate and can be found in all living organisms. For polyP characterization, one or more of six parameters are of interest: the molecular structure (linear, cyclic, or branched), the concentration, the average chain length, the chain length distribution, the cellular localization, and the cation composition. Here, the merits, limitations, and critical parameters of the state-of-the-art methods for the analysis of the six parameters from the life sciences are discussed. With this contribution, we aim to lower the entry barrier into the analytics of polyP, a molecule with prominent, yet often incompletely understood, contributions to cellular function.
Collapse
Affiliation(s)
- Jonas Johannes Christ
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
27
|
Huang J, Xiao J, Guo Y, Guan W, Cao C, Yan C, Wang M. Long-term effects of silver nanoparticles on performance of phosphorus removal in a laboratory-scale vertical flow constructed wetland. J Environ Sci (China) 2020; 87:319-330. [PMID: 31791505 DOI: 10.1016/j.jes.2019.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used in many fields, which raised concerns about potential threats to biological sewage treatment systems. In this study, the phosphorus removal performance, enzymatic activity and microbial population dynamics in constructed wetlands (CWs) were evaluated under a long-term exposure to AgNPs (0, 50, and 200 μg/L) for 450 days. Results have shown that AgNPs inhibited the phosphorus removal efficiency in a short-term exposure, whereas caused no obviously negative effects from a long-term perspective. Moreover, in the coexisting CW system of AgNPs and phosphorus, competition exhibited in the initial exposure phase, however, cooperation between them was observed in later phase. Enzymatic activity of acid-phosphatase at the moderate temperature (10-20°C) was visibly higher than that at the high temperature (20-30°C) and CWs with AgNPs addition had no appreciable differences compared with the control. High-throughput sequencing results indicated that the microbial richness, diversity and composition of CWs were distinctly affected with the extension of exposure time at different AgNPs levels. However, the phosphorus removal performance of CWs did not decline with the decrease of polyphosphate accumulating organisms (PAOs), which also confirmed that adsorption precipitation was the main way of phosphorus removal in CWs. The study suggested that AgNPs and phosphorus could be removed synergistically in the coexistence system. This work has some reference for evaluating the influences of AgNPs on the phosphorus removal and the interrelation between them in CWs.
Collapse
Affiliation(s)
- Juan Huang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yang Guo
- Security Support Center for Urban Water Supply of Jiangsu Province, Nanjing 210036, China
| | - Wenzu Guan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Chong Cao
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Chunni Yan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
28
|
Wang HG, Huang H, Liu RL, Mao YP, Biswal BK, Chen GH, Wu D. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater. WATER RESEARCH 2019; 167:115138. [PMID: 31585382 DOI: 10.1016/j.watres.2019.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the polyphosphates accumulation rate in a novel sulfur transformation-centric enhanced biological phosphorus removal (SEBPR) process. The SEBPR system was continuously operated over 120 days in a sequencing batch reactor (SBR) that alternated between the anaerobic mode and the anoxic mode of operation (temperature: 30 °C and salinity: 6000 mg/L Cl-). In addition to the SBR, batch experiments were carried out to test the effect of two different sulfate concentrations on the system performance and sulfur-phosphorus transformations. The key intercellular polymers of polyphosphates and polysulfur (poly-S) were identified by employing advanced microscopes. Metagenomic analysis was performed to characterize the diversity of microbes and their functions enriched in the SEBPR system. Finally, several molecular techniques including flow cytometry cell sorting and 16S DNA high-throughput sequencing were applied to identify the phosphorus-accumulating organisms (PAOs). The amounts of P release and P uptake in the SEBPR increased gradually to nearly 18 ± 6.4 mg P/L and 26.5 ± 6.7 mg P/L respectively, yielding a net P removal efficiency of 84 ± 25%. Batch tests indicated no polyhydroxyalkanate (PHA) synthesis, but P uptake was observed and it was correlated with the intracellular poly-S consumption, suggesting that the poly-S could act as an intracellular energy source for P uptake and polyphosphates formation. Moreover, CLSM and TEM micrographs clearly showed the presence of intercellular polyphosphates and poly-S respectively. Metagenomic analysis revealed that Proteobacteria (36.5%), Bacteroidetes (23.3%), Thermotogae (7.1%), Chloroflexi (4.5%) and Firmicutes (2.3%) were the dominant phyla in Bacteria. The conventional PAO of Candidatus Accumulibacter was found at a low abundance of 0.32% only; and an uncultured genus close to Rhodobacteraceae at the family level is speculated to be the putative sulfur PAO (SPAO). Finally, this research suggests that poly-S considerably impacts on polyphosphates accumulation in the SEBPR system when no PHAs are formed.
Collapse
Affiliation(s)
- Hai-Guang Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ru-Long Liu
- Department of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Yan-Ping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, FYT Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, FYT Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
29
|
A High Throughput Isolation Method for Phosphate-Accumulating Organisms. Sci Rep 2019; 9:18083. [PMID: 31792245 PMCID: PMC6888830 DOI: 10.1038/s41598-019-53429-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022] Open
Abstract
Hyperphosphatemia is a secondary issue associated with chronic kidney disorder. Use of phosphate binders and dialysis are the treatments for hyperphosphatemia, albeit with harmful side effects and high cost, respectively. A safer and healthier approach is attempted to administer phosphate-accumulating organisms (PAOs) from probiotics to prevent hyperphosphatemia. However, screening and isolation of PAOs are limited by inefficient enrichment of relevant metabolism and contamination. Therefore, we devised a novel strategy to isolate elite PAOs from Lactobacillus casei JCM 1134 and Bifidobacterium adolescentis JCM 1275 (previously reported PAOs). PAOs were first enriched for phosphate uptake and incubated in low-pH phosphate-free media to dormant non-PAOs, and then purified using Percoll density gradient centrifugation. Subsequently, elite PAOs were isolated from centrifuged pellet on a toluidine blue O-supplemented agar-based media. Using this technique, elite PAOs could not only be isolated, but also semi-quantitatively scored for their phosphate accumulation capabilities. Additionally, these scores correlated well with their accumulated phosphate values. The elite PAOs isolated from L. casei and B. adolescentis showed 0.81 and 0.70 [mg-phosphate/mg-dry cell], respectively (23- and 4.34-fold increase, respectively). Thus, our method can be used to successfully isolate elite PAOs, which might be of use to prevent hyperphosphatemia at early stages.
Collapse
|
30
|
Huang J, Xiao J, Chen M, Cao C, Yan C, Ma Y, Huang M, Wang M. Fate of silver nanoparticles in constructed wetlands and its influence on performance and microbiome in the ecosystems after a 450-day exposure. BIORESOURCE TECHNOLOGY 2019; 281:107-117. [PMID: 30807995 DOI: 10.1016/j.biortech.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 05/25/2023]
Abstract
Great controversy still exists on the ecological effects of silver nanoparticles (AgNPs) especially at relatively low concentrations. The performance, fate of AgNPs and microbiome in CWs were evaluated under a long-term exposure to AgNPs (0, 50 and 200 µg/L) for 450 days. Results showed that AgNPs (50, 200 µg/L) caused no obviously negative effects on COD removal whereas nitrogen and phosphorus removals were slightly stimulated. AgNPs could be removed efficiently from wastewater attributed to the accumulations of soil and plant tissues. Mass balance of AgNPs was analysed and soil layer of CWs was the major sink of nanoparticles. High-throughput sequencing further revealed the impact of AgNPs on the ecological structure of CWs. Moreover, the presence of AgNPs altered the relative abundances of key functional bacteria. The ecological risks of persistent exposure to low concentrations AgNPs should not be ignored, even though it did not result in deterioration of the CWs' operating performance in our studies.
Collapse
Affiliation(s)
- Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ming Chen
- Nanjing Research Institute of Environmental Protection, Nanjing, Jiangsu 210042, PR China
| | - Chong Cao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Chunni Yan
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yixuan Ma
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Minjie Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
31
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 2019; 39:709-731. [PMID: 30971144 DOI: 10.1080/07388551.2019.1597828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential. In this direction, specific analytical tools and techniques play a significant role in studying these consortia. This review presents a critical perspective on physical, biochemical and molecular techniques such as microscopy, flow cytometry with cell sorting, nanoSIMS and omics approaches used for systematic investigations of the structure and function, particularly nutrient removal potential of bacteria‒cyanobacteria/microalgae consortia. In particular, the use of specific molecular techniques of genomics, transcriptomics, proteomics metabolomics and genetic engineering to develop more stable consortia of bacteria and cyanobacteria/microalgae with their improved biotechnological capabilities in wastewater treatment has been highlighted.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Kadiyala Venkateswarlu
- c Formerly Department of Microbiology , Sri Krishnadevaraya University , Anantapuramu , Andhra Pradesh , India
| | - Ravi Naidu
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
32
|
Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman-FISH. ISME JOURNAL 2019; 13:1933-1946. [PMID: 30894691 PMCID: PMC6776032 DOI: 10.1038/s41396-019-0399-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/02/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is a globally important biotechnological process and relies on the massive accumulation of phosphate within special microorganisms. Candidatus Accumulibacter conform to the classical physiology model for polyphosphate accumulating organisms and are widely believed to be the most important player for the process in full-scale EBPR systems. However, it was impossible till now to quantify the contribution of specific microbial clades to EBPR. In this study, we have developed a new tool to directly link the identity of microbial cells to the absolute quantification of intracellular poly-P and other polymers under in situ conditions, and applied it to eight full-scale EBPR plants. Besides Ca. Accumulibacter, members of the genus Tetrasphaera were found to be important microbes for P accumulation, and in six plants they were the most important. As these Tetrasphaera cells did not exhibit the classical phenotype of poly-P accumulating microbes, our entire understanding of the microbiology of the EBPR process has to be revised. Furthermore, our new single-cell approach can now also be applied to quantify storage polymer dynamics in individual populations in situ in other ecosystems and might become a valuable tool for many environmental microbiologists.
Collapse
|
33
|
Abstract
Phosphate binders and dialysis can have harmful side-effects during the treatments of hyperphosphatemia. Therefore, we evaluated the capability of intestinal bacteria (lactic acid bacteria and bifidobacteria) as phosphate-accumulating organisms (PAOs) for phosphate accumulation, with the aim of determining whether PAO-formulated food can prevent hyperphosphatemia in the early stages. However, methods for estimating microbial phosphate-accumulation capacities require significant improvements regarding specificity, cost, and simplicity. The presented method analyzed cell-free broth to assess the phosphate accumulation capability of cells. Active cells and the constructed phosphate-deficient cells were incubated in assay salt media. After incubation, phosphate-deficient cell-free broth was taken as sample and the blank was the active cell-free broth. Therefore, effects of interfering agents and other metabolites were avoided and enhanced the specificity remarkably. Phosphate contents were assessed by reactions with toluidine blue O. In contrast to the case in previous studies, the shift in the first absorbance peak was found to be inversely proportional to the phosphate concentration. The minimum detectable phosphate concentrations for the 11th isolate of Lactobacillus casei JCM 1134 and 8th isolate of Bifidobacterium adolescentis JCM 1275 were determined to be 1.24 and 0.4 mg/L, respectively. Further, the validation results were found to be significant (p-value < 0.05).
Collapse
|
34
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
35
|
Qiu G, Zuniga-Montanez R, Law Y, Thi SS, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. WATER RESEARCH 2019; 149:496-510. [PMID: 30476778 DOI: 10.1016/j.watres.2018.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/17/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temperatures above 25 °C. Yet limited information is available on the PAO community and the metabolic capabilities in full-scale EBPR systems operating at high temperature. We studied the composition of the key functional PAO communities in three full-scale wastewater treatment plants (WWTPs) with high in-situ EBPR activity in Singapore, their EBPR-associated carbon usage characteristics, and the relationship between carbon usage and community composition. Each plant had a signature community composed of diverse putative PAOs with multiple operational taxonomic units (OTUs) affiliated to Ca. Accumulibacter, Tetrasphaera spp., Dechloromonas and Ca. Obscuribacter. Despite the differences in community composition, ex-situ anaerobic phosphorus (P)-release tests with 24 organic compounds from five categories (including four sugars, three alcohols, three volatile fatty acids (VFAs), eight amino acids and six other carboxylic acids) showed that a wide range of organic compounds could potentially contribute to EBPR. VFAs induced the highest P release (12.0-18.2 mg P/g MLSS for acetate with a P release-to-carbon uptake (P:C) ratio of 0.35-0.66 mol P/mol C, 9.4-18.5 mg P/g MLSS for propionate with a P:C ratio of 0.38-0.60, and 9.5-17.3 mg P/g MLSS for n-butyrate), followed by some carboxylic acids (10.1-18.1 mg P/g MLSS for pyruvate, 4.5-11.7 mg P/g MLSS for lactate and 3.7-12.4 mg P/g MLSS for fumarate) and amino acids (3.66-7.33 mg P/g MLSS for glutamate with a P:C ratio of 0.16-0.43 mol P/mol C, and 4.01-7.37 mg P/g MLSS for aspartate with a P:C ratio of 0.17-0.48 mol P/mol C). P-release profiles (induced by different carbon sources) correlated closely with PAO community composition. High micro-diversity was observed within the Ca. Accumulibacter lineage, which represented the most abundant PAOs. The total population of Ca. Accumulibacter taxa was highly correlated with P-release induced by VFAs, highlighting the latter's importance in tropical EBPR systems. There was a strong link between the relative abundance of individual Ca. Accumulibacter OTUs and the extent of P release induced by distinct carbon sources (e.g., OTU 81 and amino acids, and OTU 246 and ethanol), suggesting niche differentiation among Ca. Accumulibacter taxa. A diverse PAO community and the ability to use numerous organic compounds are considered key factors for stable EBPR in full-scale plants at elevated temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA, 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
36
|
Shen J, Huang G, An C, Song P, Xin X, Yao Y, Zheng R. Biophysiological and factorial analyses in the treatment of rural domestic wastewater using multi-soil-layering systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:83-94. [PMID: 30114576 DOI: 10.1016/j.jenvman.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Multi-soil-layering (MSL) system was developed as an attractive alternative to traditional land-based treatment techniques. Within MSL system, the environmental cleanup capability of soil is maximized, while the soil microbial communities may also change during operation. This study aimed to reveal the nature of biophysiological changes in MSL systems during operation. The species diversity in soil mixture blocks was analyzed using Illumina HiSeq sequencing of the 16S rRNA gene. The interactive effects of operating factors on species richness, community diversity and bacteria abundance correlated with COD, N and P removal were revealed through factorial analysis. The results indicated the main factors, aeration, bottom submersion and microbial amendment, had different significant effects on microbial responses. The surface area and porosity of zeolites in permeable layers decreased due to the absorption of extracellular polymeric substances. The findings were applied for the design and building of a full-size MSL system in field and satisfied removal efficiency was achieved. The results of this study can help better understand the mechanisms of pollutant reduction within MSL systems from microbial insights. It will have important implications for developing appropriate strategies for operating MSL systems with high efficiency and less risks.
Collapse
Affiliation(s)
- Ju Shen
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Pei Song
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yao Yao
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Rubing Zheng
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
37
|
Nguyen HN, Rodrigues DF. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:200-207. [PMID: 28961500 DOI: 10.1016/j.jhazmat.2017.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the chronic toxicity of graphene (G) and graphene oxide (GO) in activated sludge. Sequencing batch bioreactors were fed with influents containing 0, 1 and 5mgL-1 of GO or G (12h cycles) for ten days. Reduction in performance of the bioreactors in relation to chemical oxygen demand, ammonia and phosphate removals was observed after three days in the bioreactors fed with 5mgL-1 of nanomaterials. After about eight days, these reactors reached a steady state nutrient removal, which corresponded to recovery of certain groups of ammonia oxidizing bacteria and phosphate accumulating bacteria despite the increasing accumulation of nanomaterials in the sludge. These results suggested that biological treatment can be affected transiently by initial exposure to the nanomaterials, but certain groups of microorganisms, less sensitive to these nanomaterials, can potentially strive in the presence of these nanomaterials. Results of 16S rRNA gene deep sequencing showed that G and GO affected differently the microbial communities in the activated sludge. Between the two nanomaterials investigated, GO presented the highest impact in nutrient removal, gene abundance and changes in microbial population structures.
Collapse
Affiliation(s)
- Hang N Nguyen
- Department of Civil and Environmental Engineering, Room N136 Engineering Building 1, University of Houston, TX 77204-4003, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, Room N136 Engineering Building 1, University of Houston, TX 77204-4003, USA.
| |
Collapse
|
38
|
Koch C, Müller S. Personalized microbiome dynamics – Cytometric fingerprints for routine diagnostics. Mol Aspects Med 2018; 59:123-134. [DOI: 10.1016/j.mam.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
39
|
Frindte K, Maarastawi SA, Lipski A, Hamacher J, Knief C. Characterization of the first rice paddy cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and amended description of Methylomagnum ishizawai. Int J Syst Evol Microbiol 2017; 67:4507-4514. [PMID: 28984554 DOI: 10.1099/ijsem.0.002319] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three gammaproteobacterial methanotrophic strains (73aT, 175 and 114) were isolated from stems of rice plants. All strains are Gram-negative, motile and grow on methane or methanol as sole carbon sources. They oxidize methane using the particulate methane monooxygenase. Strains 114 and 175 possess additionally a soluble methane monooxygenase. All strains contain significant amounts of the cellular fatty acids C16 : 0, C16 : 1ω6c and C16 : 1ω7c, typical for type Ib methanotrophs. Characteristic for strains 114 and 175 are high amounts of C14 : 0 and C16 : 1ω6c , while strain 73aT contains high quantities of C16 : 1ω5c. 16S rRNA gene sequence analyses showed that strains 114 and 175 are most closely related to Methylomagnum ishizawai (≥99.6 % sequence identity). Strain 73aT is representing a new genus within the family Methylococcaceae, most closely related to Methylococcus capsulatus (94.3 % sequence identity). Phylogenetic analysis of the PmoA sequence indicates that strain 73aT represents rice paddy cluster I (RPCI), which has almost exclusively been detected in rice ecosystems. The G+C content of strain 73aT is 61.0 mol%, while strains 114 and 175 have a G+C content of 63.3 mol%. Strain 73aT (=LMG 29185T, =VKM B-2986T) represents the type strain of a novel species and genus, for which the name Methyloterricola oryzae gen. nov., sp. nov. is proposed and a description is provided. Strains 175 (=LMG 28717, VKM B-2989) and 114 are members of the species Methylomagnum ishizawai. This genus was so far only represented by one isolate, so an amended description of the species is given.
Collapse
Affiliation(s)
- Katharina Frindte
- Molecular Biology of the Rhizosphere, Institute of Crop Science and Resource Conservation, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Sarah A Maarastawi
- Molecular Biology of the Rhizosphere, Institute of Crop Science and Resource Conservation, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - André Lipski
- Food Microbiology and Hygiene, Institute of Nutritional and Food Sciences, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Joachim Hamacher
- Plant Diseases and Crop Protection, Institute of Crop Science and Resource Conservation, University of Bonn, Nussallee 9, 53115 Bonn, Germany
| | - Claudia Knief
- Molecular Biology of the Rhizosphere, Institute of Crop Science and Resource Conservation, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| |
Collapse
|
40
|
Tian Q, Zhuang L, Ong SK, Wang Q, Wang K, Xie X, Zhu Y, Li F. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal. WATER RESEARCH 2017; 119:267-275. [PMID: 28477542 DOI: 10.1016/j.watres.2017.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Under decreasing C/N (from 8.8 to 3.5) conditions, an alternating anaerobic/aerobic biofilter (AABF) was used to remove nitrogen and accumulate/recover phosphorus (P) from synthetic wastewater. The AABF was periodically (every 10 days) fed with an additional carbon source (10 L, chemical oxygen demand (COD) = 900 mg L-1 sodium acetate (NaAC) solution) in the anaerobic phase to induce the release of P sequestered in the biofilm. An increase in PHA storage in the biofilm was observed and characterized with TEM and a GC-MS method. The accumulation of P and removal of total nitrogen occurred primarily in the aerobic phase. As the NH4+-N loading rate increased from 0.095 to 0.238 kg m-3 d-1 at a total empty bed retention time (EBRT) of 4.6 h, the TN removal in AABF was reduced from 91.2% to 43.4%, while the P removal or recovery rate remained unaffected. The high-throughput community sequencing analysis indicated that the relative abundance of Candidatus Competibacter, Nitrospira and Arcobacter increased while the Accumulibacter phosphatis decreased with an increase of ammonium loading rate within a short operational period (30 days). A putative N and P removal pattern via simultaneous nitrification and PHA-based denitrification, as well as P accumulation in the biofilm was proposed. The research demonstrated that an efficient N removal and P recovery process, i.e., simultaneous nitrification and denitrification, P accumulation and carbon source-regulated P recovery can be achieved by the symbiotic functional groups in a single biofilm reactor.
Collapse
Affiliation(s)
- Qing Tian
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Linjie Zhuang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, IA, 50011, USA.
| | - Qi Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Kangwei Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Xuehui Xie
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Yanbin Zhu
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Fang Li
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| |
Collapse
|
41
|
Kostanjšek R, Vittori M, Srot V, van Aken PA, Štrus J. Polyphosphate-accumulating bacterial community colonizing the calcium bodies of terrestrial isopod crustaceans Titanethes albus and Hyloniscus riparius. FEMS Microbiol Ecol 2017; 93:3753549. [PMID: 28449118 DOI: 10.1093/femsec/fix053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/17/2017] [Indexed: 11/13/2022] Open
Abstract
Terrestrial isopods from the group Trichoniscidae accumulate calcium in specialized organs, known as the calcium bodies. These consist of two pairs of epithelial sacs located alongside the digestive system. These organs contain various forms of calcium and constantly present bacteria. To elucidate their origin and role, we analyzed the bacteria of the calcium bodies in the cave-dwelling isopod Titanethes albus and the epigean species Hyloniscus riparius, by microscopy, histochemistry, energy dispersive X-ray spectrometry, 16S rRNA analysis and in situ hybridization. The calcium bodies of both species comprise numerous and diverse bacterial communities consisting of known soil bacteria. Despite their diversity, these bacteria share the polyphosphate-accumulation ability. We present the model of phosphorous dynamics in the calcium bodies during the molting cycle and potentially beneficial utilization of the symbiotic phosphate by the host in cyclic regeneration of the cuticle. Although not fully understood, this unique symbiosis represents the first evidence of polyphosphate-accumulating bacterial symbionts in the tissue of a terrestrial animal.
Collapse
Affiliation(s)
- Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Vesna Srot
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peter A van Aken
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Jasna Štrus
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front Microbiol 2017; 8:718. [PMID: 28496434 PMCID: PMC5406452 DOI: 10.3389/fmicb.2017.00718] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Collapse
Affiliation(s)
- Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
43
|
Terashima M, Yama A, Sato M, Yumoto I, Kamagata Y, Kato S. Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant. Microbes Environ 2016; 31:449-455. [PMID: 27867159 PMCID: PMC5158118 DOI: 10.1264/jsme2.me16097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process.
Collapse
Affiliation(s)
- Mia Terashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | |
Collapse
|
44
|
Tian J, Yu C, Liu J, Ye C, Zhou X, Chen L. Performance of an Ultraviolet Mutagenetic Polyphosphate-Accumulating Bacterium PZ2 and Its Application for Wastewater Treatment in a Newly Designed Constructed Wetland. Appl Biochem Biotechnol 2016; 181:735-747. [PMID: 27659999 DOI: 10.1007/s12010-016-2245-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
Total phosphorus (TP) removal performance and application for wastewater treatment of polyphosphate-accumulating bacteria (PAB) in constructed wetlands (CWs) were investigated. In this study, a novel isolated ultraviolet (UV) mutant PZ2 with phosphate-accumulating ability was screened from domestic wastewater and identified as Pseudomonas putida by 16S ribosomal DNA (rDNA) sequencing analysis. The TP removal performance of PZ2 in the synthetic wastewater reached the highest of 93.95 % within 45 h. Two vertical subsurface flow CWs planted with two aquatic macrophytes Canna indica and Acorus calamus were newly designed. After inoculating PZ2 into two CWs within 45 h, the average chemical oxygen demand (COD), TP, and ammonia-nitrogen (NH3-N) removal efficiencies reached 68.50, 60.22, and 66.81 %, respectively. Vegetation type and filter size significantly influenced the TP removal capability of PZ2 in CWs. Meanwhile, considerable qualitative differences were found in the pollutant removal efficiencies of PZ2 with and without CWs in synthetic wastewater. These results could also indicate potential applications of the UV mutagenesis in PAB isolation and the newly designed CWs in wastewater treatments.
Collapse
Affiliation(s)
- Jiang Tian
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Chenlei Yu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Jiafeng Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Chaoran Ye
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Xiangjun Zhou
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, Hubei Province, People's Republic of China.
| |
Collapse
|
45
|
Hyperconcentrated Sweet Whey, a New Culture Medium That Enhances Propionibacterium freudenreichii Stress Tolerance. Appl Environ Microbiol 2016; 82:4641-4651. [PMID: 27235433 DOI: 10.1128/aem.00748-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/15/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Propionibacterium freudenreichii is used as a cheese-ripening starter and as a probiotic. Its reported physiological effects at the gut level, including modulation of bifidobacteria, colon epithelial cell proliferation and apoptosis, and intestinal inflammation, rely on active metabolism in situ Survival and activity are thus key factors determining its efficacy, creating stress adaptation and tolerance bottlenecks for probiotic applications. Growth media and growth conditions determine tolerance acquisition. We investigated the possibility of using sweet whey, a dairy by-product, to sustain P. freudenreichii growth. It was used at different concentrations (dry matter) as a culture medium. Using hyperconcentrated sweet whey led to enhanced multistress tolerance acquisition, overexpression of key stress proteins, and accumulation of intracellular storage molecules and compatible solutes, as well as enhanced survival upon spray drying. A simplified process from growth to spray drying of propionibacteria was developed using sweet whey as a 2-in-1 medium to both culture P. freudenreichii and protect it from heat and osmotic injury without harvesting and washing steps. As spray drying is far cheaper and more energy efficient than freeze-drying, this work opens new perspectives for the sustainable development of new starter and probiotic preparations with enhanced robustness. IMPORTANCE In this study, we demonstrate that sweet whey, a dairy industry by-product, not only allows the growth of probiotic dairy propionibacteria, but also triggers a multitolerance response through osmoadaptation and general stress response. We also show that propionibacteria accumulate compatible solutes under these culture conditions, which might account for the limited loss of viability after spray drying. This work opens new perspectives for more energy-efficient production of dairy starters and probiotics.
Collapse
|
46
|
Tarayre C, Nguyen HT, Brognaux A, Delepierre A, De Clercq L, Charlier R, Michels E, Meers E, Delvigne F. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2016; 16:E797. [PMID: 27258275 PMCID: PMC4934223 DOI: 10.3390/s16060797] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.
Collapse
Affiliation(s)
- Cédric Tarayre
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Huu-Thanh Nguyen
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Alison Brognaux
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Anissa Delepierre
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Lies De Clercq
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Raphaëlle Charlier
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Evi Michels
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Erik Meers
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Frank Delvigne
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| |
Collapse
|
47
|
Tian Q, Ong SK, Xie X, Li F, Zhu Y, Wang FR, Yang B. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter. CHEMOSPHERE 2016; 144:1797-1806. [PMID: 26524149 DOI: 10.1016/j.chemosphere.2015.10.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.
Collapse
Affiliation(s)
- Qing Tian
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Iowa 50011, USA.
| | - Xuehui Xie
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Fang Li
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Yanbin Zhu
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Feng Rui Wang
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Bo Yang
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| |
Collapse
|
48
|
Formation of polyphosphate by polyphosphate kinases and its relationship to poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16. Appl Environ Microbiol 2015; 81:8277-93. [PMID: 26407880 DOI: 10.1128/aem.02279-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/16/2015] [Indexed: 12/25/2022] Open
Abstract
A protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion of phaX resulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs. In vivo colocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of the Ralstonia eutropha ppk (ppkReu) genes in an Escherichia coli Δppk background and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds.
Collapse
|
49
|
|
50
|
Ge H, Batstone DJ, Keller J. Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. WATER RESEARCH 2015; 69:173-182. [PMID: 25481076 DOI: 10.1016/j.watres.2014.11.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Recent increases in global phosphorus costs, together with the need to remove phosphorus from wastewater to comply with water discharge regulations, make phosphorus recovery from wastewater economically and environmentally attractive. Biological phosphorus (Bio-P) removal process can effectively capture the phosphorus from wastewater and concentrate it in a form that is easily amendable for recovery in contrast to traditional (chemical) phosphorus removal processes. However, Bio-P removal processes have historically been operated at medium to long solids retention times (SRTs, 10-20 days typically), which inherently increases the energy consumption while reducing the recoverable carbon fraction and hence makes it incompatible with the drive towards energy self-sufficient wastewater treatment plants. In this study, a novel high-rate Bio-P removal process has been developed as an energy efficient alternative for phosphorus removal from wastewater through operation at an SRT of less than 4 days. The process was most effective at an SRT of 2-2.5 days, achieving >90% phosphate removal. Further reducing the SRT to 1.7 days resulted in a loss of Bio-P activity. 16S pyrotag sequencing showed the community changed considerably with changes in the SRT, but that Comamonadaceae was consistently abundant when the Bio-P activity was evident. FISH analysis combined with DAPI staining confirmed that bacterial cells of Comamonadaceae arranged in tetrads contained polyphosphate, identifying them as the key polyphosphate accumulating organisms at these low SRT conditions. Overall, this paper demonstrates a novel, high-rate phosphorus removal process that can be effectively integrated with short SRT, energy-efficient carbon removal and recovery processes.
Collapse
Affiliation(s)
- Huoqing Ge
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Queensland, Australia
| | - Damien J Batstone
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Queensland, Australia
| | - Jürg Keller
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Queensland, Australia.
| |
Collapse
|