1
|
Schauberger C, Thamdrup B, Lemonnier C, Trouche B, Poulain J, Wincker P, Arnaud-Haond S, Glud RN, Maignien L. Metagenome-assembled genomes of deep-sea sediments: changes in microbial functional potential lag behind redox transitions. ISME COMMUNICATIONS 2024; 4:ycad005. [PMID: 38282644 PMCID: PMC10809760 DOI: 10.1093/ismeco/ycad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
Hadal sediments are hotspots of microbial activity in the deep sea and exhibit strong biogeochemical gradients. But although these gradients are widely assumed to exert selective forces on hadal microbial communities, the actual relationship between biogeochemistry, functional traits, and microbial community structure remains poorly understood. We tested whether the biogeochemical conditions in hadal sediments select for microbes based on their genomic capacity for respiration and carbohydrate utilization via a metagenomic analysis of over 153 samples from the Atacama Trench region (max. depth = 8085 m). The obtained 1357 non-redundant microbial genomes were affiliated with about one-third of all known microbial phyla, with more than half belonging to unknown genera. This indicated that the capability to withstand extreme hydrostatic pressure is a phylogenetically widespread trait and that hadal sediments are inhabited by diverse microbial lineages. Although community composition changed gradually over sediment depth, these changes were not driven by selection for respiratory or carbohydrate degradation capability in the oxic and nitrogenous zones, except in the case of anammox bacteria and nitrifying archaea. However, selection based on respiration and carbohydrate degradation capacity did structure the communities of the ferruginous zone, where aerobic and nitrogen respiring microbes declined exponentially (half-life = 125-419 years) and were replaced by subsurface communities. These results highlight a delayed response of microbial community composition to selective pressure imposed by redox zonation and indicated that gradual changes in microbial composition are shaped by the high-resilience and slow growth of microbes in the seafloor.
Collapse
Affiliation(s)
- Clemens Schauberger
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Bo Thamdrup
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Clarisse Lemonnier
- Microbiology of Extreme Environments Laboratory, CNRS, IFREMER, Univ Brest, F-29280 Plouzané, France
| | - Blandine Trouche
- Microbiology of Extreme Environments Laboratory, CNRS, IFREMER, Univ Brest, F-29280 Plouzané, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS,University of Évry, Université Paris-Saclay, 91057 Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS,University of Évry, Université Paris-Saclay, 91057 Evry, France
| | - Sophie Arnaud-Haond
- MARBEC, CNRS, IRD, Institut Français de Recherche pour L'Exploitation de la Mer, Univ Montpellier, 34200 Sète, France
| | - Ronnie N Glud
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Lois Maignien
- Microbiology of Extreme Environments Laboratory, CNRS, IFREMER, Univ Brest, F-29280 Plouzané, France
| |
Collapse
|
2
|
Wu P, Liu Y, Li C, Zheng Q, Hong Y, Wu J, Xu S, Lin L, Xiao Y, Wang T, Liu Y. Distribution and co-occurrence networks of the bacterial community in sediment cores from the subtropical Daya Bay, China. MARINE POLLUTION BULLETIN 2023; 196:115580. [PMID: 37801799 DOI: 10.1016/j.marpolbul.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
The bacterial community plays an important role in biogeochemical cycles in marine sediment. However, little is known about the vertical profiles and co-occurrence patterns of bacterial community in sediment cores from the marine environment. In this study, five sediment cores were taken from a subtropical bay in China, heavily impacted by anthropogenic activities. The bacterial composition in sediment cores was investigated by using high-throughput sequencing of the 16S rRNA gene. A principal coordinates analysis and an adonis analysis of the operational taxonomic unit (OTU) compositions showed that spatial variation, rather than vertical variation, determined the bacterial structure in sediment cores. The bacterial complexity varied greatly across the five sediment cores, and the rare taxa played an important role in supporting the stability of the bacterial network. This study revealed that sediment properties and anthropogenic activities may induce a shift in the bacterial composition in sediment cores of a subtropical bay.
Collapse
Affiliation(s)
- Peng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China.
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China.
| | - Qiushi Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shannan Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Lin Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Teng Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Yu Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| |
Collapse
|
3
|
Lu M, Luo X, Jiao JJ, Li H, Kuang X, Wang X, Feng Y, Zheng C. Uncovering the processes of microbial community assembly in the near-surface sediments of a climate-sensitive glacier-fed lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118714. [PMID: 37542806 DOI: 10.1016/j.jenvman.2023.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Glacier-fed lakes are characterized by cold temperatures, high altitudes, and nutrient-poor conditions. Despite these challenging conditions, near-surface sediments of glacier-fed lakes harbor rich microbial communities that are critical for ecosystem functioning and serve as a bridge between aquatic ecology and the deep subsurface biosphere. However, there is limited knowledge regarding the microbial communities and their assembly processes in these sediments, which are highly vulnerable to climate change. To fill this knowledge gap, this study systematically analyzed environmental variables, microbial communities, diversity, co-occurrence relationships, and community assembly processes in the near-surface sediments of a glacier-fed lake in the Tibetan Plateau. The results revealed distinct vertical gradients in microbial diversity and subcommunities, highlighting the significant influence of selection processes and adaptive abilities on microbial communities. Specifically, specialists played a crucial role within the overall microbial communities. Microbial assembly was primarily driven by homogeneous selection, but its influence declined with increasing depth. In contrast, homogenizing dispersal showed an opposite pattern, and the bottom layer exhibited heterogeneous selection and undominated processes. These patterns of microbial assembly were primarily driven by environmental gradients, with significant contributions from processes associated to ammonium and organic matter deposition, as well as chemical precipitation in response to a warming climate. This study enhances our understanding of the microbial communities and assembly processes in the near-surface sediments of glacier-fed lakes and sheds light on geo-microbiological processes in climate-sensitive lacustrine sediments.
Collapse
Affiliation(s)
- Meiqing Lu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China.
| | - Hailong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingxing Kuang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuejing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqing Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Zhou X, Lennon JT, Lu X, Ruan A. Anthropogenic activities mediate stratification and stability of microbial communities in freshwater sediments. MICROBIOME 2023; 11:191. [PMID: 37626433 PMCID: PMC10464086 DOI: 10.1186/s40168-023-01612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/04/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Freshwater sediment microbes are crucial decomposers that play a key role in regulating biogeochemical cycles and greenhouse gas emissions. They often exhibit a highly ordered structure along depth profiles. This stratification not only reflects redox effects but also provides valuable insights into historical transitions, as sediments serve as important archives for tracing environmental history. The Anthropocene, a candidate geological epoch, has recently garnered significant attention. However, the human impact on sediment zonation under the cover of natural redox niches remains poorly understood. Dam construction stands as one of the most far-reaching anthropogenic modifications of aquatic ecosystems. Here we attempted to identify the ecological imprint of damming on freshwater sediment microbiome. RESULTS We conducted a year-round survey on the sediment profiles of Lake Chaohu, a large shallow lake in China. Through depth-discrete shotgun metagenomics, metataxonomics, and geophysiochemical analyses, we unveiled a unique prokaryotic hierarchy shaped by the interplay of redox regime and historical damming (labeled by the 137Cs peak in AD 1963). Dam-induced initial differentiation was further amplified by nitrogen and methane metabolism, forming an abrupt transition governing nitrate-methane metabolic interaction and gaseous methane sequestration depth. Using a random forest algorithm, we identified damming-sensitive taxa that possess distinctive metabolic strategies, including energy-saving mechanisms, unique motility behavior, and deep-environment preferences. Moreover, null model analysis showed that damming altered microbial community assembly, from a selection-oriented deterministic process above to a more stochastic, dispersal-limited one below. Temporal investigation unveiled the rapid transition zone as an ecotone, characterized by high species richness, low community stability, and emergent stochasticity. Path analysis revealed the observed emergent stochasticity primarily came from the high metabolic flexibility, which potentially contributed to both ecological and statistical neutralities. CONCLUSIONS We delineate a picture in which dam-induced modifications in nutrient availability and sedimentation rates impact microbial metabolic activities and generate great changes in the community structure, assembly, and stability of the freshwater sediment microbiome. These findings reflect profound ecological and biogeochemical ramifications of human-Earth system interactions and help re-examine the mainstream views on the formation of sediment microbial stratification. Video Abstract.
Collapse
Affiliation(s)
- Xiaotian Zhou
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Xiang Lu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China.
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
5
|
Jaussi M, Jørgensen BB, Kjeldsen KU, Lomstein BA, Pearce C, Seidenkantz MS, Røy H. Cell-specific rates of sulfate reduction and fermentation in the sub-seafloor biosphere. Front Microbiol 2023; 14:1198664. [PMID: 37555068 PMCID: PMC10405931 DOI: 10.3389/fmicb.2023.1198664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Microorganisms in subsurface sediments live from recalcitrant organic matter deposited thousands or millions of years ago. Their catabolic activities are low, but the deep biosphere is of global importance due to its volume. The stability of deeply buried sediments provides a natural laboratory where prokaryotic communities that live in steady state with their environments can be studied over long time scales. We tested if a balance is established between the flow of energy, the microbial community size, and the basal power requirement needed to maintain cells in sediments buried meters below the sea floor. We measured rates of carbon oxidation by sulfate reduction and counted the microbial cells throughout ten carefully selected sediment cores with ages from years to millions of years. The rates of carbon oxidation were converted to power (J s-1 i.e., Watt) using the Gibbs free energy of the anaerobic oxidation of complex organic carbon. We separated energy dissipation by fermentation from sulfate reduction. Similarly, we separated the community into sulfate reducers and non-sulfate reducers based on the dsrB gene, so that sulfate reduction could be related to sulfate reducers. We found that the per-cell sulfate reduction rate was stable near 10-2 fmol C cell-1 day-1 right below the zone of bioturbation and did not decrease with increasing depth and sediment age. The corresponding power dissipation rate was 10-17 W sulfate-reducing cell-1. The cell-specific power dissipation of sulfate reducers in old sediments was similar to the slowest growing anaerobic cultures. The energy from mineralization of organic matter that was not dissipated by sulfate reduction was distributed evenly to all cells that did not possess the dsrB gene, i.e., cells operationally defined as fermenting. In contrast to sulfate reducers, the fermenting cells had decreasing catabolism as the sediment aged. A vast difference in power requirement between fermenters and sulfate reducers caused the microbial community in old sediments to consist of a minute fraction of sulfate reducers and a vast majority of fermenters.
Collapse
Affiliation(s)
- Marion Jaussi
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | | | | | - Christof Pearce
- Department of Geoscience, Aarhus University, Aarhus, Denmark
| | | | - Hans Røy
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Fan K, Wang W, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Recent Advances in Biotechnologies for the Treatment of Environmental Pollutants Based on Reactive Sulfur Species. Antioxidants (Basel) 2023; 12:antiox12030767. [PMID: 36979016 PMCID: PMC10044940 DOI: 10.3390/antiox12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The definition of reactive sulfur species (RSS) is inspired by the reactivity and variable chemical valence of sulfur. Sulfur is an essential element for life and is a part of global geochemical cycles. Wastewater treatment bioreactors can be divided into two major categories: sulfur reduction and sulfur oxidation. We review the origins of the definition of RSS and related biotechnological processes in environmental management. Sulfate reduction, sulfide oxidation, and sulfur-based redox reactions are key to driving the coupled global carbon, nitrogen, and sulfur co-cycles. This shows the coupling of the sulfur cycle with the carbon and nitrogen cycles and provides insights into the global material-chemical cycle. We also review the biological classification and RSS metabolic mechanisms of functional microorganisms involved in the biological processes, such as sulfate-reducing and sulfur-oxidizing bacteria. Developments in molecular biology and genomic technologies have allowed us to obtain detailed information on these bacteria. The importance of RSS in environmental technologies requires further consideration.
Collapse
Affiliation(s)
- Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Zhang C, Atashgahi S, Bosma TNP, Peng P, Smidt H. Organohalide respiration potential in marine sediments from Aarhus Bay. FEMS Microbiol Ecol 2022; 98:fiac073. [PMID: 35689665 PMCID: PMC9303371 DOI: 10.1093/femsec/fiac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Organohalide respiration (OHR), catalysed by reductive dehalogenases (RDases), plays an important role in halogen cycling. Natural organohalides and putative RDase-encoding genes have been reported in Aarhus Bay sediments, however, OHR has not been experimentally verified. Here we show that sediments of Aarhus Bay can dehalogenate a range of organohalides, and different organohalides differentially affected microbial community compositions. PCE-dechlorinating cultures were further examined by 16S rRNA gene-targeted quantitative PCR and amplicon sequencing. Known organohalide-respiring bacteria (OHRB) including Dehalococcoides, Dehalobacter and Desulfitobacterium decreased in abundance during transfers and serial dilutions, suggesting the importance of yet uncharacterized OHRB in these cultures. Switching from PCE to 2,6-DBP led to its complete debromination to phenol in cultures with and without sulfate. 2,6-DBP debrominating cultures differed in microbial composition from PCE-dechlorinating cultures. Desulfobacterota genera recently verified to include OHRB, including Desulfovibrio and Desulfuromusa, were enriched in all microcosms, whereas Halodesulfovibrio was only enriched in cultures without sulfate. Hydrogen and methane were detected in cultures without sulfate. Hydrogen likely served as electron donor for OHR and methanogenesis. This study shows that OHR can occur in marine environments mediated by yet unknown OHRB, suggesting their role in natural halogen cycling.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom N P Bosma
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peng Peng
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
8
|
Response to substrate limitation by a marine sulfate-reducing bacterium. THE ISME JOURNAL 2022; 16:200-210. [PMID: 34285365 PMCID: PMC8692349 DOI: 10.1038/s41396-021-01061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.
Collapse
|
9
|
Trouche B, Brandt MI, Belser C, Orejas C, Pesant S, Poulain J, Wincker P, Auguet JC, Arnaud-Haond S, Maignien L. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria and Archaea Along a Mediterranean-Atlantic Gradient. Front Microbiol 2021; 12:702016. [PMID: 34790173 PMCID: PMC8591283 DOI: 10.3389/fmicb.2021.702016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Seafloor sediments cover the majority of planet Earth and microorganisms inhabiting these environments play a central role in marine biogeochemical cycles. Yet, description of the biogeography and distribution of sedimentary microbial life is still too sparse to evaluate the relative contribution of processes driving this distribution, such as the levels of drift, connectivity, and specialization. To address this question, we analyzed 210 archaeal and bacterial metabarcoding libraries from a standardized and horizon-resolved collection of sediment samples from 18 stations along a longitudinal gradient from the eastern Mediterranean to the western Atlantic. Overall, we found that biogeographic patterns depended on the scale considered: while at local scale the selective influence of contemporary environmental conditions appeared strongest, the heritage of historic processes through dispersal limitation and drift became more apparent at regional scale, and ended up superseding contemporary influences at inter-regional scale. When looking at environmental factors, the structure of microbial communities was correlated primarily with water depth, with a clear transition between 800 and 1,200 meters below sea level. Oceanic basin, water temperature, and sediment depth were other important explanatory parameters of community structure. Finally, we propose increasing dispersal limitation and ecological drift with sediment depth as a probable factor for the enhanced divergence of deeper horizons communities.
Collapse
Affiliation(s)
- Blandine Trouche
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory (LM2E), Plouzané, France
| | | | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Evry, France
| | - Covadonga Orejas
- Centro Oceanográfico de Baleares, Instituto Español de Oceanografía, Palma de Mallorca, Spain
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Evry, France
| | | | | | - Loïs Maignien
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory (LM2E), Plouzané, France.,Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States
| |
Collapse
|
10
|
Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. THE ISME JOURNAL 2021; 15:3159-3180. [PMID: 33981000 PMCID: PMC8528874 DOI: 10.1038/s41396-021-00992-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.
Collapse
Affiliation(s)
- Mathias Flieder
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Division of Natural Sciences, Maryville College, Maryville, TN, USA
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
11
|
Wu J, Hong Y, Liu X, Hu Y. Variations in nitrogen removal rates and microbial communities over sediment depth in Daya Bay, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117267. [PMID: 33965803 DOI: 10.1016/j.envpol.2021.117267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Depth-related variations in the activities, abundances, and community composition of denitrification and anaerobic ammonia oxidation (anammox) bacteria in coastal sediment cores remain poorly understood. In this study, we used 15N-labelled incubation, quantitative polymerase chain reaction (qPCR), and high-throughput sequencing techniques to reveal the structure and function of denitrifiers and anammox bacteria in sediment cores (almost 100 cm depth) collected in winter and summer from four locations in Daya Bay. The results indicated that the activities and abundances of both denitrifiers and anammox bacteria were detected even in deeper sediments with low concentrations of dissolved inorganic nitrogen (DIN). The potential rates, abundances, and community compositions of denitrifiers and anammox bacteria only varied spatially. In the surface sediment (top 2 cm), denitrifiers had significantly higher activities and abundances than anammox bacteria, but the relative contribution of anammox bacteria to nitrogen loss increased to >60% in the subsurface sediments. Phylogenetic analysis revealed that nirS-type denitrifiers were affiliated to 10 different clusters and Candidatus Scalindua dominated the anammox community in the whole sediments. Furthermore, both denitrification and anammox bacterial communities in the subsurface sediments were distinct from those in the surface sediments. Coupled nitrification and denitrification or anammox may play significant roles in removing fixed N, and the availability of electronic acceptors (e.g. nitrite and nitrate) strongly influenced the N loss activities in the subsurface sediment, emphasising its role as a sink for buried N.
Collapse
Affiliation(s)
- Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaohan Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yaohao Hu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
12
|
Mori F, Umezawa Y, Kondo R, Nishihara GN, Wada M. Potential oxygen consumption and community composition of sediment bacteria in a seasonally hypoxic enclosed bay. PeerJ 2021; 9:e11836. [PMID: 34434647 PMCID: PMC8362671 DOI: 10.7717/peerj.11836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
The dynamics of potential oxygen consumption at the sediment surface in a seasonally hypoxic bay were monitored monthly by applying a tetrazolium dye (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride [INT]) reduction assay to intact sediment core samples for two consecutive years (2012–2013). Based on the empirically determined correlation between INT reduction (INT-formazan formation) and actual oxygen consumption of sediment samples, we inferred the relative contribution of biological and non-biological (chemical) processes to the potential whole oxygen consumption in the collected sediment samples. It was demonstrated that both potentials consistently increased and reached a maximum during summer hypoxia in each year. For samples collected in 2012, amplicon sequence variants (ASVs) of the bacterial 16S rRNA genes derived from the sediment surface revealed a sharp increase in the relative abundance of sulfate reducing bacteria toward hypoxia. In addition, a notable shift in other bacterial compositions was observed before and after the INT assay incubation. It was Arcobacter (Arcobacteraceae, Campylobacteria), a putative sulfur-oxidizing bacterial genus, that increased markedly during the assay period in the summer samples. These findings have implications not only for members of Delta- and Gammaproteobacteria that are consistently responsible for the consumption of dissolved oxygen (DO) year-round in the sediment, but also for those that might grow rapidly in response to episodic DO supply on the sediment surface during midst of seasonal hypoxia.
Collapse
Affiliation(s)
- Fumiaki Mori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan.,Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Nagasaki, Japan.,Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi, Japan
| | - Yu Umezawa
- Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Fukui, Japan
| | - Gregory N Nishihara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan.,Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Minoru Wada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
| |
Collapse
|
13
|
Bacterial community structure and functional profiling of high Arctic fjord sediments. World J Microbiol Biotechnol 2021; 37:133. [PMID: 34255189 DOI: 10.1007/s11274-021-03098-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Kongsfjorden, an Arctic fjord is significantly affected by the glacier melt and Atlantification, both the processes driven by accelerated warming in the Arctic. This has lead to changes in primary production, carbon pool and microbial communities, especially that in the sediment. In this study, we have examined the bacterial community structure of surface (0-2 cm) and subsurface (3-9 cm) sediments of Kongsfjorden using the high throughput sequencing analysis. Results revealed that bacterial community structure of Kongsfjorden sediments were dominated by phylum Proteobacteria followed by Bacteroidetes and Epsilonbacteraeota. While α- and γ-Proteobacterial class were dominant in surface sediments; δ-Proteobacteria were found to be predominant in subsurface sediments. The bacterial community structure in the surface and subsurface sediments showed significant variations (p ≤ 0.05). Total organic carbon could be one of the major parameters controlling the bacterial diversity in the surface and subsurface sediments. Functional prediction analysis indicated that the bacterial community could be involved in the degradation of complex organic compounds such as glycans, glycosaminoglycans, polycyclic aromatic hydrocarbons and also in the biosynthesis of secondary metabolites.
Collapse
|
14
|
Sánchez-Soto MF, Cerqueda-García D, Alcántara-Hernández RJ, Falcón LI, Pech D, Árcega-Cabrera F, Aguirre-Macedo ML, García-Maldonado JQ. Assessing the Diversity of Benthic Sulfate-Reducing Microorganisms in Northwestern Gulf of Mexico by Illumina Sequencing of dsrB Gene. MICROBIAL ECOLOGY 2021; 81:908-921. [PMID: 33196853 DOI: 10.1007/s00248-020-01631-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the community composition, structure, and abundance of sulfate-reducing microorganisms (SRM) in surficial sediments of the Northwestern Gulf of Mexico (NWGoM) along a bathymetric gradient. For these purposes, Illumina sequencing and quantitative PCR (qPCR) of the dissimilatory sulfite reductase gene beta subunit (dsrB gene) were performed. Bioinformatic analyses indicated that SRM community was predominantly composed by members of Proteobacteria and Firmicutes across all the samples. However, Actinobacteria, Thermodesulfobacteria, and Chlorobi were also detected. Phylogenetic analysis indicated that unassigned dsrB sequences were related to Deltaproteobacteria and Nitrospirota superclusters, Euryarchaeota, and to environmental clusters. PCoA ordination revealed that samples clustered in three different groups. PERMANOVA indicated that water depth, temperature, redox, and nickel and cadmium content were the main environmental drivers for the SRM communities in the studied sites. Alpha diversity and abundance of SRM were lower for deeper sites, suggesting decreasing sulfate reduction activity with respect to water depth. This study contributes with the understanding of distribution and composition of dsrAB-containing microorganisms involved in sulfur transformations that may contribute to the resilience and stability of the benthic microbial communities facing metal and hydrocarbon pollution in the NWGoM, a region of recent development for oil and gas drilling.
Collapse
Affiliation(s)
- Ma Fernanda Sánchez-Soto
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, Mexico
| | - Daniel Cerqueda-García
- Consorcio de Investigación del Golfo de México (CIGOM), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, Mexico
| | | | - Luisa I Falcón
- Instituto de Ecología, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal, Mexico
| | - Daniel Pech
- Laboratorio de Biodiversidad Marina y Cambio Climático, El Colegio de la Frontera Sur, Campeche, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Ma Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, Mexico.
| | - José Q García-Maldonado
- CONACYT-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México.
| |
Collapse
|
15
|
Abstract
How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum "Candidatus Atribacteria," which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. "Ca. Atribacteria" dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing "Ca. Atribacteria" also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+ Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor "Ca Atribacteria," as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the "Ca Atribacteria" can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments.IMPORTANCE The deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial phylum "Candidatus Atribacteria" dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year-old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial microcompartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that "Ca Atribacteria" can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.
Collapse
|
16
|
Evidence for a Growth Zone for Deep-Subsurface Microbial Clades in Near-Surface Anoxic Sediments. Appl Environ Microbiol 2020; 86:AEM.00877-20. [PMID: 32709727 DOI: 10.1128/aem.00877-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Global marine sediments harbor a large and highly diverse microbial biosphere, but the mechanism by which this biosphere is established during sediment burial is largely unknown. During burial in marine sediments, concentrations of easily metabolized organic compounds and total microbial cell abundance decrease. However, it is unknown whether some microbial clades increase with depth. We show total population increases in 38 microbial families over 3 cm of sediment depth in the upper 7.5 cm of White Oak River (WOR) estuary sediments. Clades that increased with depth were more often associated with one or more of the following: anaerobes, uncultured, or common in deep marine sediments relative to those that decreased. Maximum doubling times (in situ steady-state growth rates could be faster to balance cell decay) were estimated as 2 to 25 years by combining sedimentation rate with either quantitative PCR (qPCR) or the product of the fraction read abundance of 16S rRNA genes and total cell counts (FRAxC). Doubling times were within an order of magnitude of each other in two adjacent cores, as well as in two laboratory enrichments of Cape Lookout Bight (CLB), NC, sediments (average difference of 28% ± 19%). qPCR and FRAxC in sediment cores and laboratory enrichments produced similar doubling times for key deep subsurface uncultured clades Bathyarchaeota (8.7 ± 1.9 years) and Thermoprofundales/MBG-D (4.1 ± 0.7 years). We conclude that common deep subsurface microbial clades experience a narrow zone of growth in shallow sediments, offering an opportunity for selection of long-term subsistence traits after resuspension events.IMPORTANCE Many studies show that the uncultured microbes that dominate global marine sediments do not actually increase in population size as they are buried in marine sediments; rather, they exist in a sort of prolonged torpor for thousands of years. This is because, although studies have shown biomass turnover in these clades, no evidence has ever been found that deeper sediments have larger populations for specific clades than shallower layers. We discovered that they actually do increase population sizes during burial, but only in the upper few centimeters. This suggests that marine sediments may be a vast repository of mostly nongrowing microbes with a thin and relatively rapid area of cell abundance increase in the upper 10 cm, offering a chance for subsurface organisms to undergo natural selection.
Collapse
|
17
|
Zhang K, Zheng X, He Z, Yang T, Shu L, Xiao F, Wu Y, Wang B, Li Z, Chen P, Yan Q. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments. Microb Biotechnol 2020; 13:1597-1610. [PMID: 32940416 PMCID: PMC7415356 DOI: 10.1111/1751-7915.13622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial sulfate reduction and sulfur oxidation are vital processes to enhance organic matter degradation in sediments. However, the diversity and composition of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their environmental driving factors are still poorly understood in aquaculture ponds, which received mounting of organic matter. In this study, bacterial communities, SRB and SOB from sediments of aquaculture ponds with different sizes of grass carp (Ctenopharyngodon idellus) were analysed using high-throughput sequencing and quantitative real-time PCR (qPCR). The results indicated that microbial communities in aquaculture pond sediments of large juvenile fish showed the highest richness and abundance of SRB and SOB, potentially further enhancing microbial sulfur cycling. Specifically, SRB were dominated by Desulfobulbus and Desulfovibrio, whereas SOB were dominated by Dechloromonas and Leptothrix. Although large juvenile fish ponds had relatively lower concentrations of sulfur compounds (i.e. total sulfur, acid-volatile sulfide and elemental sulfur) than those of larval fish ponds, more abundant SRB and SOB were found in the large juvenile fish ponds. Further redundancy analysis (RDA) and linear regression indicated that sulfur compounds and sediment suspension are the major environmental factors shaping the abundance and community structure of SRB and SOB in aquaculture pond sediments. Findings of this study expand our current understanding of microbial driving sulfur cycling in aquaculture ecosystems and also provide novel insights for ecological and green aquaculture managements.
Collapse
Affiliation(s)
- Keke Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiafei Zheng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
- College of AgronomyHunan Agricultural UniversityChangsha410128China
| | - Tony Yang
- Swift Current Research and Development CentreAgriculture & Agri‐Food CanadaSwift CurrentSKCanada
| | - Longfei Shu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Fanshu Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yongjie Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Binhao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhou Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Pubo Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
18
|
Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. THE ISME JOURNAL 2020; 14:1233-1246. [PMID: 32042102 PMCID: PMC7174387 DOI: 10.1038/s41396-020-0607-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/08/2022]
Abstract
Cable bacteria are filamentous members of the Desulfobulbaceae family that oxidize sulfide with oxygen or nitrate by transferring electrons over centimeter distances in sediments. Recent studies show that freshwater sediments can support populations of cable bacteria at densities comparable to those found in marine environments. This is surprising since sulfide availability is presumably low in freshwater sediments due to sulfate limitation of sulfate reduction. Here we show that cable bacteria stimulate sulfate reduction in freshwater sediment through promotion of sulfate availability. Comparing experimental freshwater sediments with and without active cable bacteria, we observed a three- to tenfold increase in sulfate concentrations and a 4.5-fold increase in sulfate reduction rates when cable bacteria were present, while abundance and community composition of sulfate-reducing microorganisms (SRM) were unaffected. Correlation and ANCOVA analysis supported the hypothesis that the stimulation of sulfate reduction activity was due to relieve of the kinetic limitations of the SRM community through the elevated sulfate concentrations in sediments with cable bacteria activity. The elevated sulfate concentration was caused by cable bacteria-driven sulfide oxidation, by sulfate production from an indigenous sulfide pool, likely through cable bacteria-mediated dissolution and oxidation of iron sulfides, and by enhanced retention of sulfate, triggered by an electric field generated by the cable bacteria. Cable bacteria in freshwater sediments may thus be an integral component of a cryptic sulfur cycle and provide a mechanism for recycling of the scarce resource sulfate, stimulating sulfate reduction. It is possible that this stimulation has implication for methanogenesis and greenhouse gas emissions.
Collapse
Affiliation(s)
- Tobias Sandfeld
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Ugo Marzocchi
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
- Department of Chemistry, Vrije Universiteit Brussel, Brussel, Belgium
| | - Caitlin Petro
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Nils Risgaard-Petersen
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark.
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark.
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
19
|
Ozuolmez D, Moore EK, Hopmans EC, Sinninghe Damsté JS, Stams AJM, Plugge CM. Butyrate Conversion by Sulfate-Reducing and Methanogenic Communities from Anoxic Sediments of Aarhus Bay, Denmark. Microorganisms 2020; 8:microorganisms8040606. [PMID: 32331369 PMCID: PMC7232339 DOI: 10.3390/microorganisms8040606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/29/2022] Open
Abstract
The conventional perception that the zone of sulfate reduction and methanogenesis are separated in high- and low-sulfate-containing marine sediments has recently been changed by studies demonstrating their co-occurrence in sediments. The presence of methanogens was linked to the presence of substrates that are not used by sulfate reducers. In the current study, we hypothesized that both groups can co-exist, consuming common substrates (H2 and/or acetate) in sediments. We enriched butyrate-degrading communities in sediment slurries originating from the sulfate, sulfate–methane transition, and methane zone of Aarhus Bay, Denmark. Sulfate was added at different concentrations (0, 3, 20 mM), and the slurries were incubated at 10 °C and 25 °C. During butyrate conversion, sulfate reduction and methanogenesis occurred simultaneously. The syntrophic butyrate degrader Syntrophomonas was enriched both in sulfate-amended and in sulfate-free slurries, indicating the occurrence of syntrophic conversions at both conditions. Archaeal community analysis revealed a dominance of Methanomicrobiaceae. The acetoclastic Methanosaetaceae reached high relative abundance in the absence of sulfate, while presence of acetoclastic Methanosarcinaceae was independent of the sulfate concentration, temperature, and the initial zone of the sediment. This study shows that there is no vertical separation of sulfate reducers, syntrophs, and methanogens in the sediment and that they all participate in the conversion of butyrate.
Collapse
Affiliation(s)
- Derya Ozuolmez
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (D.O.); (A.J.M.S.)
| | - Elisha K. Moore
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; (E.K.M.); (E.C.H.); (J.S.S.D.)
- Department of Environmental Science, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; (E.K.M.); (E.C.H.); (J.S.S.D.)
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; (E.K.M.); (E.C.H.); (J.S.S.D.)
- Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (D.O.); (A.J.M.S.)
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (D.O.); (A.J.M.S.)
- Correspondence: ; Tel.: +31-317-483116
| |
Collapse
|
20
|
Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions. Microorganisms 2020; 8:microorganisms8030394. [PMID: 32168975 PMCID: PMC7143418 DOI: 10.3390/microorganisms8030394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 11/17/2022] Open
Abstract
The relationship between predominant physiological types of prokaryotes in marine sediments and propionate degradation through sulfate reduction, fermentation, and methanogenesis was studied in marine sediments. Propionate conversion was assessed in slurries containing sediment from three different biogeochemical zones of Aarhus Bay, Denmark. Sediment slurries were amended with 0, 3, or 20 mM sulfate and incubated at 25 °C and 10 °C for 514-571 days. Methanogenesis in the sulfate zone and sulfate reduction in the methane zone slurries was observed. Both processes occurred simultaneously in enrichments originating from samples along the whole sediment. Bacterial community analysis revealed the dominance of Desulfobacteraceae and Desulfobulbaceae members in sulfate-amended slurries incubated at 25°C and 10°C. Cryptanaerobacter belonging to the Peptococcaceae family dominated sulfate-free methanogenic slurries at 25°C, whereas bacteria related to Desulfobacteraceae were dominant at 10°C. Archaeal community analysis revealed the prevalence of different genera belonging to Methanomicrobiales in slurries incubated at different temperatures and amended with different sulfate concentrations. Methanosarcinaceae were only detected in the absence of sulfate. In summary, Aarhus Bay sediment zones contain sulfate reducers, syntrophs, and methanogens interacting with each other in the conversion of propionate. Our results indicate that in Aarhus Bay sediments, Cryptanaerobacter degraded propionate in syntrophic association with methanogens.
Collapse
|
21
|
Chen Y, Shen L, Huang T, Chu Z, Xie Z. Transformation of sulfur species in lake sediments at Ardley Island and Fildes Peninsula, King George Island, Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135591. [PMID: 31767317 DOI: 10.1016/j.scitotenv.2019.135591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
In Antarctica, penguins transport sulfur and other bio-elements in the form of guano from marine to terrestrial environments where they become deposited in ornithogenic soils and sediments, including lake or pond systems. Transformation of sulfur species in these terrestrial and aquatic deposits, however, has rarely been studied. Here, we used the cold diffusion method to analyze various sulfur species in a lake deposit of ornithogenic sediment core (C1) and a pristine lake sediment core (C2), collected from Ardley Island and Fildes Peninsula, Antarctic Peninsula, respectively. The total organic carbon, total phosphorus, total nitrogen and various sulfur species in C1 were more fluctuant and much higher than those in C2, indicating a primary source from penguin guano. In core C1, organic sulfur (Org-S) was the main form of sulfur, and sulfate (SO42-) was the main form of inorganic sulfur. The acid volatile sulfur (AVS) in C1 was much higher than pyrite sulfur (CRS). In the pristine lake sediment core C2, Org-S and SO42- were the main sulfur species. CRS was the primary form of reduced inorganic sulfur in C2 sediments in contrast to the AVS in C1, indicating that AVS had been effectively transformed into CRS in C1. Our results demonstrate that the high levels of organic matter in C1 likely limited the transformation of AVS to CRS.
Collapse
Affiliation(s)
- Yuanqing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Lili Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China.
| | - Zhuding Chu
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
22
|
Jørgensen BB, Andrén T, Marshall IPG. Sub-seafloor biogeochemical processes and microbial life in the Baltic Sea. Environ Microbiol 2020; 22:1688-1706. [PMID: 31970880 DOI: 10.1111/1462-2920.14920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
Abstract
The post-glacial Baltic Sea has experienced extreme changes that are archived today in the deep sediments. IODP Expedition 347 retrieved cores down to 100 m depth and studied the climate history and the deep biosphere. We here review the biogeochemical and microbiological highlights and integrate these with other studies from the Baltic seabed. Cell numbers, endospore abundance and organic matter mineralization rates are extremely high. A 100-fold drop in cell numbers with depth results from a small difference between growth and mortality in the ageing sediment. Evidence for growth derives from a D:L amino acid racemization model, while evidence for mortality derives from the abundance and potential activity of lytic viruses. The deep communities assemble at the bottom of the bioturbated zone from the founding surface community by selection of organisms suited for life under deep sediment conditions. The mean catabolic per-cell rate of microorganisms drops steeply with depth to a life in slow-motion, typical for the deep biosphere. The subsurface life under extreme energy limitation is facilitated by exploitation of recalcitrant substrates, by biochemical protection of nucleic acids and proteins and by repair mechanisms for random mismatches in DNA or damaged amino acids in proteins.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Thomas Andrén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Ian P G Marshall
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Center for Electromicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Pelikan C, Jaussi M, Wasmund K, Seidenkrantz MS, Pearce C, Kuzyk ZZA, Herbold CW, Røy H, Kjeldsen KU, Loy A. Glacial Runoff Promotes Deep Burial of Sulfur Cycling-Associated Microorganisms in Marine Sediments. Front Microbiol 2019; 10:2558. [PMID: 31787951 PMCID: PMC6853847 DOI: 10.3389/fmicb.2019.02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments and subsequent microbial mineralization. Here, we investigated controls on microbial community assembly in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the Godthåbsfjord region, south-western Greenland. We used a correlative approach integrating 16S rRNA gene and dissimilatory sulfite reductase (dsrB) amplicon sequence data over six meters of depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were characterized by comparably high sedimentation rates and had "young" sediment ages of <500 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates (SRR), and C/N ratios were strongly correlated with differences in microbial community composition between GI and NGI sediments, indicating that age and diagenetic state were key drivers of microbial community assembly in subsurface sediments. Similar bacterial and archaeal communities were present in the surface sediments of all stations, whereas only in GI sediments were many surface taxa also abundant through the whole sediment core. The relative abundance of these taxa, including diverse Desulfobacteraceae members, correlated positively with SRRs, indicating their active contributions to sulfur-cycling processes. In contrast, other surface community members, such as Desulfatiglans, Atribacteria, and Chloroflexi, survived the slow sediment burial at NGI stations and dominated in the deepest sediment layers. These taxa are typical for the energy-limited marine deep biosphere and their relative abundances correlated positively with sediment age. In conclusion, our data suggests that high rates of sediment accumulation caused by glacier runoff and associated changes in biogeochemistry, promote persistence of sulfur-cycling activity and burial of a larger fraction of the surface microbial community into the deep subsurface.
Collapse
Affiliation(s)
- Claus Pelikan
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Marion Jaussi
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Marit-Solveig Seidenkrantz
- Palaeoceanography and Palaeoclimate Group, Arctic Research Centre, and iClimate Interdisciplinary Centre for Climate Change, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Christof Pearce
- Palaeoceanography and Palaeoclimate Group, Arctic Research Centre, and iClimate Interdisciplinary Centre for Climate Change, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Zou Zou Anna Kuzyk
- Department of Geological Sciences, Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB, Canada
| | - Craig W. Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hans Røy
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
24
|
Colangelo-Lillis J, Pelikan C, Herbold CW, Altshuler I, Loy A, Whyte LG, Wing BA. Diversity decoupled from sulfur isotope fractionation in a sulfate-reducing microbial community. GEOBIOLOGY 2019; 17:660-675. [PMID: 31328364 DOI: 10.1111/gbi.12356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
The extent of fractionation of sulfur isotopes by sulfate-reducing microbes is dictated by genomic and environmental factors. A greater understanding of species-specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur-metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell-specific sulfate reduction rates < 0.3 × 10-15 moles cell-1 day-1 . Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰-45‰) net isotope fractionation (ε34 Ssulfide-sulfate ). Measured ε34 S values could be reproduced in a mechanistic fractionation model if 1%-2% of the microbial community (10%-60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate-reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.
Collapse
Affiliation(s)
- Jesse Colangelo-Lillis
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
- Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
- Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
| | - Claus Pelikan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Ianina Altshuler
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
- Department of Natural Resource Science, McGill University, Montreal, Quebec, Canada
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Lyle G Whyte
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
- Department of Natural Resource Science, McGill University, Montreal, Quebec, Canada
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
- Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Lucaciu R, Pelikan C, Gerner SM, Zioutis C, Köstlbacher S, Marx H, Herbold CW, Schmidt H, Rattei T. A Bioinformatics Guide to Plant Microbiome Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1313. [PMID: 31708944 PMCID: PMC6819368 DOI: 10.3389/fpls.2019.01313] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Rameez MJ, Pyne P, Mandal S, Chatterjee S, Alam M, Bhattacharya S, Mondal N, Sarkar J, Ghosh W. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST. Microbiol Res 2019; 230:126345. [PMID: 31585234 DOI: 10.1016/j.micres.2019.126345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 02/02/2023]
Abstract
Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy involves direct oxidation of thiosulfate (S2O32-) to sulfate (SO42-) without any free intermediate. This pathway mediated by SoxXAYZBCD is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate(S4O62-)-oxidizing alphaproteobacterium Paracoccus thiocyanatus SST, and compare them with the prototypical Sox process of Paracoccus pantotrophus. Our results reveal a unique case where an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation converting ∼10% of the thiosulfate supplied, whilst ∼90% of the substrate is oxidized via a pathway that produces tetrathionate as an intermediate. Sulfur oxidation kinetics of a deletion mutant showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which in turn is also less efficient than the P. pantotrophus Sox. Deletion of soxB abolished sulfate-formation from thiosulfate/tetrathionate, while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the insertional mutation of a thiol dehydrotransferase (thdT) homolog, together with the absence of sulfite as an intermediate, indicated that SST tetrathionate oxidation is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. The present findings highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.
Collapse
Affiliation(s)
- Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Prosenjit Pyne
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | | | - Nibendu Mondal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
27
|
Qin H, Wang S, Feng K, He Z, Virta MPJ, Hou W, Dong H, Deng Y. Unraveling the diversity of sedimentary sulfate-reducing prokaryotes (SRP) across Tibetan saline lakes using epicPCR. MICROBIOME 2019; 7:71. [PMID: 31054577 PMCID: PMC6500586 DOI: 10.1186/s40168-019-0688-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 05/07/2023]
Abstract
Sulfate reduction is an important biogeochemical process in the ecosphere; however, the major taxa of sulfate reducers have not been fully identified. Here, we used epicPCR (Emulsion, Paired Isolation, and Concatenation PCR) technology to identify the phylogeny of sulfate-reducing prokaryotes (SRP) in sediments from Tibetan Plateau saline lakes. A total of 12,519 OTUs and 883 SRP-OTUs were detected in ten lakes by sequencing of 16S rRNA gene PCR amplicons and epicPCR products of fused 16S rRNA plus dsrB gene, respectively, with Proteobacteria, Firmicutes, and Bacteroidetes being the dominant phyla in both datasets. The 120 highly abundant SRP-OTUs (> 1% in at least one sample) were affiliated with 17 described phyla, only 7 of which are widely recognized as SRP phyla. The majority of OTUs from both the whole microbial communities and the SRPs were not detected in more than one specific lake, suggesting high levels of endemism. The α-diversity of the entire microbial community and SRP sub-community showed significant positive correlations. The pH value and mean water temperature of the month prior to sampling were the environmental determinants for the whole microbial community, while the mean water temperature and total nitrogen were the major environmental drivers for the SRP sub-community. This study revealed there are still many undocumented SRP in Tibetan saline lakes, many of which could be endemic and adapted to specific environmental conditions.
Collapse
Affiliation(s)
- Huayu Qin
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian, Beijing, 100085, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhili He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Marko P J Virta
- Department of Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, United States
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian, Beijing, 100085, China.
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Jørgensen BB, Findlay AJ, Pellerin A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front Microbiol 2019. [DOI: 10.10.3389/fmicb.2019.00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Jørgensen BB, Findlay AJ, Pellerin A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front Microbiol 2019; 10:849. [PMID: 31105660 PMCID: PMC6492693 DOI: 10.3389/fmicb.2019.00849] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
30
|
Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, Røy H, Kjeldsen KU, Schramm A. Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay. Front Microbiol 2019; 10:758. [PMID: 31031732 PMCID: PMC6474314 DOI: 10.3389/fmicb.2019.00758] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022] Open
Abstract
Analyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark). Sequencing and qPCR were combined to determine the depth distributions of bacterial and archaeal taxa (16S rRNA genes) and sulfate-reducing microorganisms (SRM) (dsrB gene). Mapping of radionuclides throughout the sediment revealed a region of intense bioturbation at 0-6 cm depth. The transition from bioturbated sediment to the subsurface below (7 cm depth) was marked by a shift from dominant surface populations to common deep biosphere taxa (e.g., Chloroflexi and Atribacteria). Changes in community composition occurred in parallel to drops in microbial activity and abundance caused by reduced energy availability below the mixed sediment surface. These results offer direct evidence for the hypothesis that deep subsurface microbial communities present in Aarhus Bay mainly assemble already centimeters below the sediment surface, below the bioturbation zone.
Collapse
Affiliation(s)
- Caitlin Petro
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Birthe Zäncker
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Piotr Starnawski
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lara M. Jochum
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Timothy G. Ferdelman
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U. Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME JOURNAL 2019; 13:1920-1932. [PMID: 30894690 DOI: 10.1038/s41396-019-0387-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Recent work has shown that subsurface microbial communities assemble by selective survival of surface community members during sediment burial, but it remains unclear to what extent the compositions of the subsurface communities are a product of their founding population at the sediment surface or of the changing geochemical conditions during burial. Here we investigate this question for communities of sulfate-reducing microorganisms (SRMs). We collected marine sediment samples from the upper 3-5 m at four geochemically contrasting sites in the Skagerrak and Baltic Sea and measured SRM abundance (quantitative PCR of dsrB), metabolic activity (radiotracer rate measurements), and community composition (Illumina sequencing of dsrB amplicons). These data showed that SRM abundance, richness, and phylogenetic clustering as determined by the nearest taxon index peaked below the bioturbation zone and above the depth of sulfate depletion. Minimum cell-specific rates of sulfate reduction did not vary substantially between sites. SRM communities at different sites were best distinguished based on their composition of amplicon sequence variants (ASVs), while communities in different geochemical zones were best distinguished based on their composition of SRM families. This demonstrates environmental filtering of SRM communities in sediment while a site-specific fingerprint of the founding community is retained.
Collapse
|
32
|
Quantifying population-specific growth in benthic bacterial communities under low oxygen using H 218O. ISME JOURNAL 2019; 13:1546-1559. [PMID: 30783213 PMCID: PMC6776007 DOI: 10.1038/s41396-019-0373-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 01/09/2023]
Abstract
The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of "microbial dark matter", validating hypotheses put forth by earlier metagenomic studies.
Collapse
|
33
|
Mori F, Umezawa Y, Kondo R, Wada M. Dynamics of Sulfate-Reducing Bacteria Community Structure in Surface Sediment of a Seasonally Hypoxic Enclosed Bay. Microbes Environ 2018; 33:378-384. [PMID: 30449831 PMCID: PMC6308007 DOI: 10.1264/jsme2.me18092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We herein report on the dynamics of a sulfate-reducing bacteria (SRB) community structure in the surface sediment of a seasonally hypoxic enclosed bay for two consecutive years (2012 and 2013). The uppermost (0–5 mm) and subsurface (5–10 mm) layers of sediment were examined with a terminal-restriction fragment length polymorphism (T-RFLP) analysis based on the dissimilatory sulfite reductase (dsrA) gene. The SRB community significantly differed between the two sediment layers over the sampling period. This difference was mainly attributed to operational taxonomic units (OTUs) that were unique to either of the sediment layers. However, nearly 70% of total OTUs were shared between the two layers, with a few predominating. Therefore, no significant shift was observed in the SRB community structure under varying dissolved oxygen (DO) conditions in bottom water overlying the sediment surface. An additional analysis of 16S rRNA gene amplicon sequences, conducted for three uppermost sediment samples (July, August, and September in 2012), revealed that Desulfococcus, a member of SRB with high tolerance to oxygen, was the predominant Deltaproteobacteria across the uppermost sediment samples. Based on the predominance of shared OTUs across the SRB community in the sediment (0–10 mm) regardless of bottom-water DO, some SRB that are physiologically tolerant of a wide range of DO conditions may have dominated and masked changes in responsive SRB to DO concentrations. These results suggest that the SRB community structure in the enclosed bay became stable under repeated cycles of seasonal hypoxia, but may be compromised if the severity of hypoxia increases in the future.
Collapse
Affiliation(s)
- Fumiaki Mori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Yu Umezawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University
| | - Minoru Wada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| |
Collapse
|
34
|
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Front Microbiol 2018; 9:2038. [PMID: 30233524 PMCID: PMC6129605 DOI: 10.3389/fmicb.2018.02038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.
Collapse
Affiliation(s)
- Lara M Jochum
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|