1
|
Ji T, Liaqat F, Khazi MI, Liaqat N, Nawaz MZ, Zhu D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118759. [DOI: 10.1016/j.indcrop.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
2
|
Tsagogiannis E, Asimakoula S, Drainas AP, Marinakos O, Boti VI, Kosma IS, Koukkou AI. Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in Pseudarthrobacter phenanthrenivorans Sphe3. Int J Mol Sci 2024; 25:843. [PMID: 38255919 PMCID: PMC10815724 DOI: 10.3390/ijms25020843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the β-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Alexandros P. Drainas
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Orfeas Marinakos
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Vasiliki I. Boti
- Unit of Environmental, Organic and Biochemical High-Resolution Analysis-Orbitrap-LC-MS, University of Ioannina, 451110 Ioannina, Greece;
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Sector of Industrial Chemistry and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| |
Collapse
|
3
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Diao J, Hu Y, Tian Y, Carr R, Moon TS. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Rep 2023; 42:111908. [PMID: 36640302 DOI: 10.1016/j.celrep.2022.111908] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
More than 70 million tons of poly(ethylene terephthalate) (PET) are manufactured worldwide every year. The accumulation of PET waste has become a global pollution concern, motivating the urgent development of technologies to valorize post-consumer PET. The development of chemocatalytic and enzymatic approaches for depolymerizing PET to its corresponding monomers opens up new opportunities for PET upcycling through biological transformation. Here, we identify Rhodococcus jostii strain PET (RPET) that can directly use PET hydrolysate as a sole carbon source. We also investigate the potential of RPET to upcycle PET into value-added chemicals, using lycopene as a proof-of-concept product. Through rational metabolic engineering, we improve lycopene production by more than 500-fold over that of the wild type. In addition, we demonstrate the production of approximately 1,300 μg/L lycopene from PET by cascading this strain with PET alkaline hydrolysis. This work highlights the great potential of biological conversion as a means of achieving PET upcycling.
Collapse
Affiliation(s)
- Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Rhiannon Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Li H, Wang X, Peng S, Lai Z, Mai Y. Seasonal variation of temperature affects HMW-PAH accumulation in fishery species by bacterially mediated LMW-PAH degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158617. [PMID: 36084776 DOI: 10.1016/j.scitotenv.2022.158617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, the specific mechanism generating seasonal variation in polycyclic aromatic hydrocarbons (PAHs) via bacterial biodegradation remains unclear, and whether this alteration affects PAH bioaccumulation is unknown. Therefore, we performed a study between 2015 and 2020 to investigate the effects of seasonal variation on bacterial communities and PAH bioaccumulation in the Pearl River Estuary. Significantly high PAH concentrations in both aquatic and fishery species were determined in dry seasons (the mean ∑16PAH concentration: water, 37.24 ng/L (2015), 30.83 ng/L (2020); fish, 51.01 ng/L (2015) and 72.60 ng/L (2020)) compared to wet seasons (the mean ∑16PAH concentration: water, 22.38 ng/L (2015), 19.40 ng/L(2020); fish, 25.28 ng/L (2015) and 32.59 ng/L (2020)). Distinct differences in taxonomic and functional composition of bacterial communities related to biodegradation of low molecular weight PAHs (LMW-PAHs) were observed between seasons, and the concentrations of PAHs were negatively correlated with seasonal variation in temperature. Temperature-related specific bacterial taxa (e.g., Stenotrophomonas) directly or indirectly participated in LMW-PAH degradation via encoding PAH degradation enzymes (e.g., protocatechuate 4,5-dioxygenase) that subsequently led to bioaccumulation of high molecular weight PAHs (HMW-PAHs) in wild and fishery species due to LMW-PAHs in the water. Based on this alteration, the ecological risk posed by PAHs decreased in wet seasons, and an unbalanced spatio-temporal distribution of PAHs was observed in this estuary. These results suggest that seasonal variation of temperature affects HMW-PAH accumulation in fishery species via bacterially mediated LMW-PAH biodegradation.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yongzhan Mai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
6
|
Li F, Zhao Y, Xue L, Ma F, Dai SY, Xie S. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 2022; 40:1469-1487. [PMID: 36307230 DOI: 10.1016/j.tibtech.2022.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiquan Zhao
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Xue
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College station, TX 77843, USA.
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Baek JH, Kim KH, Lee Y, Jeong SE, Jin HM, Jia B, Jeon CO. Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118890. [PMID: 35085657 DOI: 10.1016/j.envpol.2022.118890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A new bacterium, Rhodococcus sp. S2-17, which could completely degrade an emerging organic pollutant, benzophenone-3 (BP-3), was isolated from contaminated sediment through an enrichment procedure, and its BP-3 catabolic pathway and genes were identified through metabolic intermediate and transcriptomic analyses and biochemical and genetic studies. Metabolic intermediate analysis suggested that strain S2-17 may degrade BP-3 using a catabolic pathway progressing via the intermediates BP-1, 2,4,5-trihydroxy-benzophenone, 3-hydroxy-4-benzoyl-2,4-hexadienedioic acid, 4-benzoyl-3-oxoadipic acid, 3-oxoadipic acid, and benzoic acid. A putative BP-3 catabolic gene cluster including cytochrome P450, flavin-dependent oxidoreductase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, and α/β hydrolase genes was identified through genomic and transcriptomic analyses. Genes encoding the cytochrome P450 complex that demethylates BP-3 to BP-1 were functionally verified through protein expression, and the functions of the other genes were also verified through knockout mutant construction and intermediate analysis. This study suggested that strain S2-17 might have acquired the ability to catabolize BP-3 by recruiting the cytochrome P450 complex and α/β hydrolase, which hydrolyzes 4-benzoyl-3-oxoadipic acid to benzoic acid and 3-oxoadipic acid, genes, providing insights into the recruitment of genes of for the catabolism of emerging organic pollutants.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Hyun Mi Jin
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
8
|
|
9
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Bilal M, Qamar SA, Yadav V, Cheng H, Khan M, Adil SF, Taherzadeh MJ, Iqbal HM. Exploring the potential of ligninolytic armory for lignin valorization – A way forward for sustainable and cleaner production. JOURNAL OF CLEANER PRODUCTION 2021. [DOI: 10.1016/j.jclepro.2021.129420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Lubbers RJM, Dilokpimol A, Nousiainen PA, Cioc RC, Visser J, Bruijnincx PCA, de Vries RP. Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories. Microb Cell Fact 2021; 20:151. [PMID: 34344380 PMCID: PMC8336404 DOI: 10.1186/s12934-021-01643-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. RESULTS Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. CONCLUSIONS This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Paula A Nousiainen
- Department of Chemistry, University of Helsinki, A. I. Virtasen Aukio 1, P.O. Box 55, 00014, Helsinki, Finland
| | - Răzvan C Cioc
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Pieter C A Bruijnincx
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Physiological Role of the Previously Unexplained Benzenetriol Dioxygenase Homolog in the Burkholderia sp. Strain SJ98 4-Nitrophenol Catabolism Pathway. Appl Environ Microbiol 2021; 87:e0000721. [PMID: 33990303 DOI: 10.1128/aem.00007-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
4-Nitrophenol, a priority pollutant, is degraded by Gram-positive and Gram-negative bacteria via 1,2,4-benzenetriol (BT) and hydroquinone (HQ), respectively. All enzymes involved in the two pathways have been functionally identified. So far, all Gram-negative 4-nitrophenol utilizers are from the genera Pseudomonas and Burkholderia. But it remains a mystery why pnpG, an apparently superfluous BT 1,2-dioxygenase-encoding gene, always coexists in the catabolic cluster (pnpABCDEF) encoding 4-nitrophenol degradation via HQ. Here, the physiological role of pnpG in Burkholderia sp. strain SJ98 was investigated. Deletion and complementation experiments established that pnpG is essential for strain SJ98 growing on 4-nitrocatechol rather than 4-nitrophenol. During 4-nitrophenol degradation by strain SJ98 and its two variants (pnpG deletion and complementation strains), 1,4-benzoquinone and HQ were detected, but neither 4-nitrocatechol nor BT was observed. When the above-mentioned three strains (the wild type and complementation strains with 2,2'-dipyridyl) were incubated with 4-nitrocatechol, BT was the only intermediate detected. The results established the physiological role of pnpG that encodes BT degradation in vivo. Biotransformation analyses showed that the pnpA-deleted strain was unable to degrade both 4-nitrophenol and 4-nitrocatechol. Thus, the previously characterized 4-nitrophenol monooxygenase PnpASJ98 is also essential for the conversion of 4-nitrocatechol to BT. Among 775 available complete genomes for Pseudomonas and Burkholderia, as many as 89 genomes were found to contain the putative pnpBCDEFG genes. The paucity of pnpA (3 in 775 genomes) implies that the extension of BT and HQ pathways enabling the degradation of 4-nitrophenol and 4-nitrocatechol is rarer, more recent, and likely due to the release of xenobiotic nitroaromatic compounds. IMPORTANCE An apparently superfluous gene (pnpG) encoding BT 1,2-dioxygenase is always found in the catabolic clusters involved in 4-nitrophenol degradation via HQ by Gram-negative bacteria. Our experiments reveal that pnpG is not essential for 4-nitrophenol degradation in Burkholderia sp. strain SJ98 but instead enables its degradation of 4-nitrocatechol via BT. The presence of pnpG genes broadens the range of growth substrates to include 4-nitrocatechol or BT, intermediates from the microbial degradation of many aromatic compounds in natural ecosystems. In addition, the existence of pnpCDEFG in 11.6% of the above-mentioned two genera suggests that the ability to degrade BT and HQ simultaneously is ancient. The extension of BT and HQ pathways including 4-nitrophenol degradation seems to be an adaptive evolution for responding to synthetic nitroaromatic compounds entering the environment since the industrial revolution.
Collapse
|
13
|
Spence EM, Calvo-Bado L, Mines P, Bugg TDH. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb Cell Fact 2021; 20:15. [PMID: 33468127 PMCID: PMC7814577 DOI: 10.1186/s12934-020-01504-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic modification of Rhodococcus jostii RHA1 was carried out in order to optimise the production of pyridine-2,4-dicarboxylic acid and pyridine-2,5-dicarboxylic acid bioproducts from lignin or lignocellulose breakdown, via insertion of either the Sphingobium SYK-6 ligAB genes or Paenibacillus praA gene respectively. Insertion of inducible plasmid pTipQC2 expression vector containing either ligAB or praA genes into a ΔpcaHG R. jostii RHA1 gene deletion strain gave 2–threefold higher titres of PDCA production from lignocellulose (200–287 mg/L), compared to plasmid expression in wild-type R. jostii RHA1. The ligAB genes were inserted in place of the chromosomal pcaHG genes encoding protocatechuate 3,4-dioxygenase, under the control of inducible Picl or PnitA promoters, or a constitutive Ptpc5 promoter, producing 2,4-PDCA products using either wheat straw lignocellulose or commercial soda lignin as carbon source. Insertion of Amycolatopsis sp. 75iv2 dyp2 gene on a pTipQC2 expression plasmid led to enhanced titres of 2,4-PDCA products, due to enhanced rate of lignin degradation. Growth in minimal media containing wheat straw lignocellulose led to the production of 2,4-PDCA in 330 mg/L titre in 40 h, with > tenfold enhanced productivity, compared with plasmid-based expression of ligAB genes in wild-type R. jostii RHA1. Production of 2,4-PDCA was also observed using several different polymeric lignins as carbon sources, and a titre of 240 mg/L was observed using a commercially available soda lignin as feedstock.![]()
Collapse
Affiliation(s)
- Edward M Spence
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Paul Mines
- Biome Bioplastics Ltd, North Road, Marchwood, Southampton, SO40 4BL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|