1
|
Yu F, Shen Y, Chen S, Fan H, Pang Y, Liu M, Peng J, Pei X, Liu X. Analysis of the Genomic Sequences and Metabolites of Bacillus velezensis YA215. Biochem Genet 2024; 62:5073-5091. [PMID: 38386213 DOI: 10.1007/s10528-024-10710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.
Collapse
Affiliation(s)
- FuTian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YuanYuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - ShangLi Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - HeLiang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YiYang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - MingYuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - JingJing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoDong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoLing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
2
|
Robertz S, Philipp M, Schipper K, Richter P, Miebach K, Magnus J, Pauly M, Ramírez V. Monitoring corn stover processing by the fungus Ustilago maydis. BIORESOUR BIOPROCESS 2024; 11:87. [PMID: 39276241 PMCID: PMC11401804 DOI: 10.1186/s40643-024-00802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
A key aspect of sustainable bioeconomy is the recirculation of renewable, agricultural waste streams as substrates for microbial production of high-value compounds. One approach is the bioconversion of corn stover, an abundant maize crop byproduct, using the fungal maize pathogen Ustilago maydis. U. maydis is already used as a unicellular biocatalyst in the production of several industrially-relevant compounds using plant biomass hydrolysates. In this study, we demonstrate that U. maydis can grow using untreated corn stover as its sole carbon source. We developed a small-scale bioreactor platform to investigate U. maydis processing of corn stover, combining online monitoring of fungal growth and metabolic activity profiles with biochemical analyses of the pre- and post-fermentation residues. Our results reveal that U. maydis primarily utilizes soluble sugars i.e., glucose, sucrose and fructose present in corn stover, with only limited exploitation of the abundant lignocellulosic carbohydrates. Thus, we further explored the biotechnological potential of enhancing U. maydis´ lignocellulosic utilization. Additive performance improvements of up to 120 % were achieved when using a maize mutant with increased biomass digestibility, co-fermentation with a commercial cellulolytic enzyme cocktail, and exploiting engineered fungal strains expressing diverse lignocellulose-degrading enzymes. This work represents a key step towards scaling up the production of sustainable compounds from corn stover using U. maydis and provides a tool for the detailed monitoring of the fungal processing of plant biomass substrates.
Collapse
Affiliation(s)
- Stefan Robertz
- Institute for Plant Cell Biology and Biotechnology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
| | - Magnus Philipp
- Institute for Microbiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
- Institute for Biotechnology and Foodscience, Norwegian University of Science and Technology, 7034, Gløshaugen, Trondheim, Norway
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
| | - Paul Richter
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
| | - Katharina Miebach
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
| | - Jorgen Magnus
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 53435, Jülich, Germany.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
4
|
Ruan Z, Jiao J, Zhao J, Liu J, Liang C, Yang X, Sun Y, Tang G, Li P. Genome sequencing and comparative genomics reveal insights into pathogenicity and evolution of Fusarium zanthoxyli, the causal agent of stem canker in prickly ash. BMC Genomics 2024; 25:502. [PMID: 38773367 PMCID: PMC11110190 DOI: 10.1186/s12864-024-10424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. RESULTS In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. CONCLUSION This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.
Collapse
Affiliation(s)
- Zhao Ruan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiahui Jiao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Junchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chaoqiong Liang
- Shaanxi Academy of Forestry, Xi'an, Shaanxi, 710082, People's Republic of China
| | - Xia Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Sun
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peiqin Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
5
|
Zhao H, Karppi J, Mototsune O, Poshina D, Svartström J, Nguyen TTM, Vo TM, Tsang A, Master E, Tenkanen M. Substrate specificity mapping of fungal CAZy AA3_2 oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:47. [PMID: 38539167 PMCID: PMC10967070 DOI: 10.1186/s13068-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 11/11/2024]
Abstract
BACKGROUND Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities. However, limited numbers of enzymes in the AA3_2 subfamily are currently biochemically characterized, which limits the homology-based mining of new AA3_2 oxidoreductases. Importantly, novel enzyme activities may be discovered from the uncharacterized parts of this large subfamily. RESULTS In this study, phylogenetic analyses employing a sequence similarity network (SSN) and maximum likelihood trees were used to cluster AA3_2 sequences. A total of 27 AA3_2 proteins representing different clusters were selected for recombinant production. Among them, seven new AA3_2 oxidoreductases were successfully produced, purified, and characterized. These enzymes included two glucose dehydrogenases (TaGdhA and McGdhA), one glucose oxidase (ApGoxA), one aryl alcohol oxidase (PsAaoA), two aryl alcohol dehydrogenases (AsAadhA and AsAadhB), and one novel oligosaccharide (gentiobiose) dehydrogenase (KiOdhA). Notably, two dehydrogenases (TaGdhA and KiOdhA) were found with the ability to utilize phenoxy radicals as an electron acceptor. Interestingly, phenoxy radicals were found to compete with molecular oxygen in aerobic environments when serving as an electron acceptor for two oxidases (ApGoxA and PsAaoA), which sheds light on their versatility. Furthermore, the molecular determinants governing their diverse enzymatic functions were discussed based on the homology model generated by AlphaFold. CONCLUSIONS The phylogenetic analyses and biochemical characterization of AA3_2s provide valuable guidance for future investigation of AA3_2 sequences and proteins. A clear correlation between enzymatic function and SSN clustering was observed. The discovery and biochemical characterization of these new AA3_2 oxidoreductases brings exciting prospects for biotechnological applications and broadens our understanding of their biological functions.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Johanna Karppi
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Owen Mototsune
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Daria Poshina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jenny Svartström
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Tri Minh Vo
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Maija Tenkanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Molinelli L, Drula E, Gaillard JC, Navarro D, Armengaud J, Berrin JG, Tron T, Tarrago L. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay. Appl Environ Microbiol 2024; 90:e0193123. [PMID: 38376171 PMCID: PMC10952391 DOI: 10.1128/aem.01931-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.
Collapse
Affiliation(s)
- Lise Molinelli
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
- Centrale Marseille, CNRS, ISM2, Aix Marseille Université, Marseille, France
| | - Elodie Drula
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - David Navarro
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean-Guy Berrin
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| | - Thierry Tron
- Centrale Marseille, CNRS, ISM2, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| |
Collapse
|
7
|
Liu S, Chen L, Qiao X, Ren J, Zhou C, Yang Y. Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. J Fungi (Basel) 2024; 10:109. [PMID: 38392781 PMCID: PMC10890082 DOI: 10.3390/jof10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Citrus target spot, caused by Pseudofabraea citricarpa, was formerly considered a cold-tolerant fungal disease. However, it has now spread from high-latitude regions to warmer low-latitude regions. Here, we conducted physiological observations on two different strains of the fungus collected from distinct regions, and evaluated their pathogenicity. Interestingly, the CQWZ collected from a low-latitude orchard, exhibited higher temperature tolerance and pathogenicity when compared to the SXCG collected from a high-latitude orchard. To further understand the evolution of temperature tolerance and virulence in these pathogens during the spread process, as well as the mechanisms underlying these differences, we performed genomic comparative analysis. The genome size of CQWZ was determined to be 44,004,669 bp, while the genome size of SXCG was determined to be 45,377,339 bp. Through genomic collinearity analysis, we identified two breakpoints and rearrangements during the evolutionary process of these two strains. Moreover, gene annotation results revealed that the CQWZ possessed 376 annotated genes in the "Xenobiotics biodegradation and metabolism" pathway, which is 79 genes more than the SXCG. The main factor contributing to this difference was the presence of salicylate hydroxylase. We also observed variations in the oxidative stress pathways and core pathogenic genes. The CQWZ exhibited the presence of a heat shock protein (HSP SSB), a catalase (CAT2), and 13 core pathogenic genes, including a LysM effector, in comparison to the SXCG. Furthermore, there were significant disparities in the gene clusters responsible for the production of seven metabolites, such as Fumonisin and Brefeldin. Finally, we identified the regulatory relationship, with the HOG pathway at its core, that potentially contributes to the differences in thermotolerance and virulence. As the global climate continues to warm, crop pathogens are increasingly expanding to new territories. Our findings will enhance understanding of the evolution mechanisms of pathogens under climate change.
Collapse
Affiliation(s)
- Saifei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| | - Li Chen
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Xinghua Qiao
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Jiequn Ren
- The Chongqing Three Gorges Academy of Agricultural Sciences, Chongqing 404150, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
8
|
Yao RA, Reyre JL, Tamburrini KC, Haon M, Tranquet O, Nalubothula A, Mukherjee S, Le Gall S, Grisel S, Longhi S, Madhuprakash J, Bissaro B, Berrin JG. The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin. Appl Environ Microbiol 2023; 89:e0057323. [PMID: 37702503 PMCID: PMC10617569 DOI: 10.1128/aem.00573-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/14/2023] [Indexed: 09/14/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and β-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.
Collapse
Affiliation(s)
- Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Lou Reyre
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- IFP Energies Nouvelles, Rueil-Malmaison, France
| | - Ketty C. Tamburrini
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Olivier Tranquet
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Akshay Nalubothula
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sophie Le Gall
- INRAE, UR1268 BIA, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, Nantes, France
| | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Sonia Longhi
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| |
Collapse
|