1
|
Duron O. Nutritional symbiosis in ticks: singularities of the genus Ixodes. Trends Parasitol 2024; 40:696-706. [PMID: 38942646 DOI: 10.1016/j.pt.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Symbiosis with intracellular bacteria is essential for the nutrition of ticks, particularly through the biosynthesis of B vitamins. Yet, ticks of the genus Ixodes, which include major vectors of human pathogens, lack the nutritional symbionts usually found in other tick genera. This paradox raises questions about the mechanisms that Ixodes ticks use to prevent nutritional deficiencies. Nonetheless, Ixodes ticks commonly harbor other symbionts belonging to the order Rickettsiales. Although these obligate intracellular bacteria are primarily known as human pathogens, Rickettsiales symbionts often dominate the Ixodes microbial community without causing diseases. They also significantly influence Ixodes physiology, synthesize key B vitamins, and are crucial for immatures. These findings underscore unique associations between Rickettsiales and Ixodes ticks distinct from other tick genera.
Collapse
Affiliation(s)
- Olivier Duron
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Montpellier, France.
| |
Collapse
|
2
|
Wang XR, Cull B, Oliver JD, Kurtti TJ, Munderloh UG. The role of autophagy in tick-endosymbiont interactions: insights from Ixodes scapularis and Rickettsia buchneri. Microbiol Spectr 2024; 12:e0108623. [PMID: 38038450 PMCID: PMC10783069 DOI: 10.1128/spectrum.01086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Ticks are second only to mosquitoes in their importance as vectors of disease agents; however, tick-borne diseases (TBDs) account for the majority of all vector-borne disease cases in the United States (approximately 76.5%), according to Centers for Disease Control and Prevention reports. Newly discovered tick species and their associated disease-causing pathogens, and anthropogenic and demographic factors also contribute to the emergence and re-emergence of TBDs. Thus, incorporating different tick control approaches based on a thorough knowledge of tick biology has great potential to prevent and eliminate TBDs in the future. Here we demonstrate that replication of a transovarially transmitted rickettsial endosymbiont depends on the tick's autophagy machinery but not on apoptosis. Our findings improve our understanding of the role of symbionts in tick biology and the potential to discover tick control approaches to prevent or manage TBDs.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
- SUNY Center for Vector-Borne Diseases, Upstate Medical University, Syracuse, New York, USA
- Institute for Global Health and Translational Sciences, Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Benjamin Cull
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
3
|
Zhang YK, Li SS, Yang C, Zhang YF, Liu JZ. Mechanism of the toxic effects of tetracycline on blood meal digestion in Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:681-695. [PMID: 37987890 DOI: 10.1007/s10493-023-00858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The extensive utilization of antibiotics in the field of animal husbandry gives rise to various concerns pertaining to the environment and human health. Here, we demonstrate that the administration of tetracycline impedes blood meal digestion in the tick Haemaphysalis longicornis. Tissue sectioning, 16S rRNA high-throughput sequencing, and transcriptome sequencing of the midgut were employed to elucidate the mechanism underlying tetracycline toxicity. The treatment group consisted of engorged female ticks that were subjected to tetracycline microinjections (75 µg per tick), whereas the control group received sterile water injections. On days 2 and 4 following the injections, the tick body weight changes were assessed and the midguts were dissected and processed. Change in tick body weight in tetracycline-treated group was less than in the control group. In tetracycline-treated ticks, midgut epithelial cells were loosely connected and blood meal digestion was impaired compared to the control group. There was no significant change in midgut bacterial diversity after tetracycline treatment. On day 2 following treatment, the relative abundance of Escherichia-Shigella was significantly decreased, whereas the relative abundance of Allorhizobium was significantly increased compared to the control group. On day 4 following treatment, the relative abundance of Escherichia-Shigella, Allorhizobium, Ochrobactrum, and Acidibacter decreased significantly, whereas the relative abundance of Paraburkholderia and Pelomonas increased significantly. Tetracycline treatment also affected midgut gene expression, producing a cumulative effect wherein the differentially expressed genes (DEGs) were mostly down-regulated. KEGG enrichment pathway analysis revealed that on day 2 the up-regulated DEGs were significantly enriched in 21 pathways, including apoptosis and phagosome. Comparatively, the down-regulated DEGs were significantly enriched in 26 pathways, including N-glycan biosynthesis, lysosome, and autophagy. In contrast, on day 4 the up-regulated DEGs were significantly enriched in 10 pathways including aminoacyl-tRNA biosynthesis, ribosome biogenesis, RNA transport, and DNA replication, whereas the down-regulated differential genes were significantly enriched in 11 pathways including lysosome, peroxisome, N-glycan biosynthesis, and fatty acid synthesis. This indicates that tetracycline injection inhibited blood meal digestion by affecting midgut digestive cells, gut flora diversity, and gene expression. These findings could contribute to tick control by inhibiting blood meal digestion.
Collapse
Affiliation(s)
- Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, 053000, Hebei, China
| | - Chen Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yu-Fan Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
4
|
Hajdusek O, Kopacek P, Perner J. Experimental platforms for functional genomics in ticks. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101102. [PMID: 37586557 DOI: 10.1016/j.cois.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Ticks are blood-feeding ectoparasites that devastate cattle farming and are an omnipresent nuisance to pets and humans, posing a threat of pathogen transmission. Laboratory experimental models can be instrumental in the search for molecular targets of novel acaricides or vaccines. Mainly, though, the experimental models represent invaluable tools for broadening our basic understanding of key processes of tick blood-feeding physiology and vector competence. In order to understand the function of a single component within the full complexity of a feeding tick, genetic or biochemical interventions are used for systemic phenotypisation. In this work, we summarise current experimental modalities that represent powerful approaches for determining biological functions of tick molecular components.
Collapse
Affiliation(s)
- Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
5
|
Garcia Guizzo M, Meneses C, Amado Cecilio P, Hessab Alvarenga P, Sonenshine D, Ribeiro JM. Optimizing tick artificial membrane feeding for Ixodes scapularis. Sci Rep 2023; 13:16170. [PMID: 37758795 PMCID: PMC10533868 DOI: 10.1038/s41598-023-43200-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Artificial membrane feeding (AMF) is a powerful and versatile technique with a wide range of applications in the study of disease vectors species. Since its first description, AMF has been under constant optimization and standardization for different tick species and life stages. In the USA, Ixodes scapularis is the main vector of tick-borne zoonoses including the pathogens causing Lyme disease in humans and animals. Seeking to improve the overall fitness of I. scapularis adult females fed artificially, here, we have optimized the AMF technique, considerably enhancing attachment rate, engorgement success, egg laying, and egg hatching compared to those described in previous studies. Parameters such as the membrane thickness and the light/dark cycle to which the ticks were exposed were refined to more closely reflect the tick's natural behavior and life cycle. Additionally, ticks were fed on blood only, blood + ATP or blood + ATP + gentamicin. The artificial feeding of ticks on blood only was successful and generated a progeny capable of feeding naturally on a host, i.e., mice. Adding ATP as a feeding stimulant did not improve tick attachment or engorgement. Notably, the administration of gentamicin, an antibiotic commonly used in tick AMF to prevent microbial contamination, negatively impacted Rickettsia buchneri endosymbiont levels in the progeny of artificially fed ticks. In addition, gentamicin-fed ticks showed a reduction in oviposition success compared to ticks artificially fed on blood only, discouraging the use of antibiotics in AMF. Overall, our data suggest that the AMF of adult females on blood only, in association with the natural feeding of their progeny on mice, might be used as an integrated approach in tick rearing, eliminating the use of protected species under the Animal Welfare Act (AWA). Of note, although optimized for I. scapularis adult ticks, I. scapularis nymphs, other tick species, and sand flies could also be fed using the membrane described in this study, indicating that it might be a suitable alternative for the artificial feeding of a variety of hematophagous species.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pedro Amado Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Patricia Hessab Alvarenga
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Daniel Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jose M Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
6
|
Tsamir-Rimon M, Borenstein E. A Manifold-Based Framework for Studying the Dynamics of the Vaginal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556518. [PMID: 37732273 PMCID: PMC10508760 DOI: 10.1101/2023.09.06.556518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The vaginal bacterial community plays a crucial role in preventing infections. The composition of this community can be classified into five main groups, termed community state types (CSTs). Four of these CSTs, which are primarily consisted of Lactobacillus species, are considered healthy, while the fifth, which is composed of non-Lactobacillus populations, is considered less protective. This latter CST is often considered to represent a state termed Bacterial vaginosis (BV) - a common disease condition associated with unpleasant symptoms and increased susceptibility to sexually transmitted diseases. However, the exact mechanisms underlying BV development are not yet fully understood, including specifically, the dynamics of the vaginal microbiome in BV, and the possible routes it may take from a healthy to a BV state. This study aims to identify the progression from healthy Lactobacillus-dominant populations to symptomatic BV by analyzing 8,026 vaginal samples and using a manifold-detection framework. This approach is inspired by single-cell analysis and aims to identify low-dimensional trajectories in the high-dimensional composition space. This framework further order samples along these trajectories and assign a score (pseudo-time) to each sample based on its proximity to the BV state. Our results reveal distinct routes of progression between healthy and BV state for each CST, with pseudo-time scores correlating with community diversity and quantifying the health state of each sample. BV indicators, including Nugent score, positive Amsel's test, and several Amsel's criteria, can also be successfully predicted based on pseudo-time scores. Additionally, Gardnerella vaginalis can be identified as a key taxon in BV development using this approach, with increased abundance in samples with high pseudo-time, indicating an unhealthier state across all BV-development routes on the manifold. Taken together, these findings demonstrate how manifold detection can be used to successfully characterizes the progression from healthy Lactobacillus-dominant populations to BV and to accurately quantify the health condition of new samples along the route of BV development.
Collapse
Affiliation(s)
| | - Elhanan Borenstein
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
7
|
Kipp EJ, Lindsey LL, Khoo B, Faulk C, Oliver JD, Larsen PA. Metagenomic surveillance for bacterial tick-borne pathogens using nanopore adaptive sampling. Sci Rep 2023; 13:10991. [PMID: 37419899 PMCID: PMC10328957 DOI: 10.1038/s41598-023-37134-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Technological and computational advancements in the fields of genomics and bioinformatics are providing exciting new opportunities for pathogen discovery and genomic surveillance. In particular, single-molecule nucleotide sequence data originating from Oxford Nanopore Technologies (ONT) sequencing platforms can be bioinformatically leveraged, in real-time, for enhanced biosurveillance of a vast array of zoonoses. The recently released nanopore adaptive sampling (NAS) strategy facilitates immediate mapping of individual nucleotide molecules to a given reference as each molecule is being sequenced. User-defined thresholds then allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. Here, we show how NAS can be used to selectively sequence DNA of multiple bacterial tick-borne pathogens circulating in wild populations of the blacklegged tick vector, Ixodes scapularis.
Collapse
Affiliation(s)
- Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| | - Laramie L Lindsey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Benedict Khoo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| |
Collapse
|
8
|
Paulson AR, Lougheed SC, Huang D, Colautti RI. Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada. Microbiol Spectr 2023; 11:e0140423. [PMID: 37184407 PMCID: PMC10269869 DOI: 10.1128/spectrum.01404-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that β-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.
Collapse
Affiliation(s)
- Amber R. Paulson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | | - David Huang
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
9
|
Zuke JD, Erickson R, Hummels KR, Burton BM. Visualizing dynamic competence pili and DNA capture throughout the long axis of Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542325. [PMID: 37292776 PMCID: PMC10246001 DOI: 10.1101/2023.05.26.542325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first step in the process of bacterial natural transformation is DNA capture. Although long-hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA-binding had not yet been visualized for Bacillus subtilis. Here, we visualize functional competence pili in Bacillus subtilis using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy. In strains that produce pilin monomers within ten-fold of wild type levels, the median length of detectable pili is 300nm. These pili are retractile and associate with DNA. Analysis of pilus distribution at the cell surface reveals that they are predominantly located along the long axis of the cell. The distribution is consistent with localization of proteins associated with subsequent transformation steps, DNA-binding and DNA translocation in the cytosol. These data suggest a distributed model for B. subtilis transformation machinery, in which initial steps of DNA capture occur throughout the long axis of the cell and subsequent steps may also occur away from the cell poles.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin - Madison
- Microbiology Doctoral Training Program, University of Wisconsin - Madison
| | - Rachel Erickson
- Department of Bacteriology, University of Wisconsin - Madison
| | - Katherine R. Hummels
- Current address: Department of Microbiology and Immunology, Harvard Medical School
| | | |
Collapse
|
10
|
Samaddar S, O'Neal AJ, Marnin L, Rolandelli A, Singh N, Wang X, Butler LR, Rangghran P, Laukaitis HJ, Cabrera Paz FE, Fiskum GM, Polster BM, Pedra JHF. Metabolic disruption impacts tick fitness and microbial relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542501. [PMID: 37292783 PMCID: PMC10245996 DOI: 10.1101/2023.05.26.542501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arthropod-borne microbes rely on the metabolic state of a host to cycle between evolutionarily distant species. For instance, arthropod tolerance to infection may be due to redistribution of metabolic resources, often leading to microbial transmission to mammals. Conversely, metabolic alterations aids in pathogen elimination in humans, who do not ordinarily harbor arthropod-borne microbes. To ascertain the effect of metabolism on interspecies relationships, we engineered a system to evaluate glycolysis and oxidative phosphorylation in the tick Ixodes scapularis. Using a metabolic flux assay, we determined that the rickettsial bacterium Anaplasma phagocytophilum and the Lyme disease spirochete Borrelia burgdorferi, which are transstadially transmitted in nature, induced glycolysis in ticks. On the other hand, the endosymbiont Rickettsia buchneri, which is transovarially maintained, had a minimal effect on I. scapularis bioenergetics. Importantly, the metabolite β-aminoisobutyric acid (BAIBA) was elevated during A. phagocytophilum infection of tick cells following an unbiased metabolomics approach. Thus, we manipulated the expression of genes associated with the catabolism and anabolism of BAIBA in I. scapularis and detected impaired feeding on mammals, reduced bacterial acquisition, and decreased tick survival. Collectively, we reveal the importance of metabolism for tick-microbe relationships and unveil a valuable metabolite for I. scapularis fitness.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Parisa Rangghran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hanna J Laukaitis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Gary M Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
11
|
Alker AT, Aspiras AE, Dunbar TL, Farrell MV, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine Proteobacteria reveals functional insights during bacteria-stimulated metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526474. [PMID: 36778221 PMCID: PMC9915575 DOI: 10.1101/2023.01.31.526474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea , which stimulates the metamorphosis of the model tubeworm, Hydroides elegans . Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for rapidly creating and iteratively testing genetic tractability by modifying marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts enabled the successful transformation of twelve marine strains across two Proteobacteria classes, four orders and ten genera. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with broader implications for environmental restoration and biotechnology.
Collapse
|
12
|
Militzer N, Pinecki Socias S, Nijhof AM. Changes in the Ixodes ricinus microbiome associated with artificial tick feeding. Front Microbiol 2023; 13:1050063. [PMID: 36704557 PMCID: PMC9871825 DOI: 10.3389/fmicb.2022.1050063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Artificial tick feeding systems (ATFS) can be used to study tick biology and tick-pathogen interactions. Due to the long feeding duration of hard ticks, antibiotics are commonly added to the in vitro blood meal to prevent the blood from decaying. This may affect the ticks' microbiome, including mutualistic bacteria that play an important role in tick biology. This effect was examined by the consecutive feeding of Ixodes ricinus larvae, nymphs, and adults in vitro with and without the supplementation of gentamicin and in parallel on calves. DNA extracted from unfed females was analyzed by 16S rRNA sequencing. The abundance of Candidatus Midichloria mitochondrii, Rickettsia helvetica and Spiroplasma spp. was measured by qPCR in unfed larvae, nymphs, and adults. Larvae and nymphs fed on calves performed significantly better compared to both in vitro groups. Adults fed on blood supplemented with gentamicin and B vitamins had a higher detachment proportion and weight compared to the group fed with B vitamins but without gentamicin. The detachment proportion and weights of females did not differ significantly between ticks fed on calves and in vitro with gentamicin, but the fecundity was significantly higher in ticks fed on calves. 16S rRNA sequencing showed a higher microbiome species richness in ticks fed on calves compared to ticks fed in vitro. A shift in microbiome composition, with Ca. Midichloria mitochondrii as dominant species in females fed as juveniles on calves and R. helvetica as the most abundant species in females previously fed in vitro was observed. Females fed in vitro without gentamicin showed significant lower loads of Ca. M. mitochondrii compared to females fed in vitro with gentamicin and ticks fed on calves. Spiroplasma spp. were exclusively detected in female ticks fed on cattle by qPCR, but 16S rRNA sequencing results also showed a low abundance in in vitro females exposed to gentamicin. In conclusion, the employed feeding method and gentamicin supplementation affected the ticks' microbiome composition and fecundity. Since these changes may have an impact on tick biology and vector competence, they should be taken into account in studies employing ATFS.
Collapse
Affiliation(s)
- Nina Militzer
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sophia Pinecki Socias
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany,Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany,*Correspondence: Ard M. Nijhof, ✉
| |
Collapse
|
13
|
Guizzo MG, Hatalová T, Frantová H, Zurek L, Kopáček P, Perner J. Ixodes ricinus ticks have a functional association with Midichloria mitochondrii. Front Cell Infect Microbiol 2023; 12:1081666. [PMID: 36699720 PMCID: PMC9868949 DOI: 10.3389/fcimb.2022.1081666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
In addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in Ixodes ricinus is not understood. We have previously shown that I. ricinus ticks are primarily inhabited by a single species of symbiont, Midichloria mitochondrii, an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged I. ricinus females. To study the functional integration of M. mitochondrii into the biology of I. ricinus, an M. mitochondrii-depleted model of I. ricinus ticks was sought. Various techniques have been described in the literature to achieve dysbiosed or apo-symbiotic ticks with various degrees of success. To address the lack of a standardized experimental procedure for the production of apo-symbiotic ticks, we present here an approach utilizing the ex vivo membrane blood feeding system. In order to deplete M. mitochondrii from ovaries, we supplemented dietary blood with tetracycline. We noted, however, that the use of tetracycline caused immediate toxicity in ticks, caused by impairment of mitochondrial proteosynthesis. To overcome the tetracycline-mediated off-target effect, we established a protocol that leads to the production of an apo-symbiotic strain of I. ricinus, which can be sustained in subsequent generations. In two generations following tetracycline administration and tetracycline-mediated symbiont reduction, M. mitochondrii was gradually eliminated from the lineage. Larvae hatched from eggs laid by such M. mitochondrii-free females repeatedly performed poorly during blood-feeding, while the nymphs and adults performed similarly to controls. These data indicate that M. mitochondrii represents an integral component of tick ovarian tissue, and when absent, results in the formation of substandard larvae with reduced capacity to blood-feed.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Tereza Hatalová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Helena Frantová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Ludek Zurek
- CEITEC, University of Veterinary Sciences, Brno, Czechia,Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia,Department of Chemistry and Biochemistry, Mendel University, Brno, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia,*Correspondence: Jan Perner,
| |
Collapse
|
14
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
15
|
Couret J, Schofield S, Narasimhan S. The environment, the tick, and the pathogen - It is an ensemble. Front Cell Infect Microbiol 2022; 12:1049646. [PMID: 36405964 PMCID: PMC9666722 DOI: 10.3389/fcimb.2022.1049646] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 03/22/2024] Open
Abstract
Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the agent of Lyme disease in the USA. The geographic distribution of I. scapularis, endemic to the northeastern and northcentral USA, is expanding as far south as Georgia and Texas, and northwards into Canada and poses an impending public health problem. The prevalence and spread of tick-borne diseases are influenced by the interplay of multiple factors including microbiological, ecological, and environmental. Molecular studies have focused on interactions between the tick-host and pathogen/s that determine the success of pathogen acquisition by the tick and transmission to the mammalian host. In this review we draw attention to additional critical environmental factors that impact tick biology and tick-pathogen interactions. With a focus on B. burgdorferi we highlight the interplay of abiotic factors such as temperature and humidity as well as biotic factors such as environmental microbiota that ticks are exposed to during their on- and off-host phases on tick, and infection prevalence. A molecular understanding of this ensemble of interactions will be essential to gain new insights into the biology of tick-pathogen interactions and to develop new approaches to control ticks and tick transmission of B. burgdorferi, the agent of Lyme disease.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Samantha Schofield
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
16
|
Narasimhan S, Rajeevan N, Graham M, Wu MJ, DePonte K, Marion S, Masson O, O'Neal AJ, Pedra JHF, Sonenshine DE, Fikrig E. Tick transmission of Borrelia burgdorferi to the murine host is not influenced by environmentally acquired midgut microbiota. MICROBIOME 2022; 10:173. [PMID: 36253842 PMCID: PMC9575305 DOI: 10.1186/s40168-022-01378-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/20/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ixodes scapularis is the predominant tick vector of Borrelia burgdorferi, the agent of Lyme disease, in the USA. Molecular interactions between the tick and B. burgdorferi orchestrate the migration of spirochetes from the midgut to the salivary glands-critical steps that precede transmission to the vertebrate host. Over the last decade, research efforts have invoked a potential role for the tick microbiome in modulating tick-pathogen interactions. RESULTS Using multiple strategies to perturb the microbiome composition of B. burgdorferi-infected nymphal ticks, we observe that changes in the microbiome composition do not significantly influence B. burgdorferi migration from the midgut, invasion of salivary glands, or transmission to the murine host. We also show that within 24 and 48 h of the onset of tick feeding, B. burgdorferi spirochetes are within the peritrophic matrix and epithelial cells of the midgut in preparation for exit from the midgut. CONCLUSIONS This study highlights two aspects of tick-spirochete interactions: (1) environmental bacteria associated with the tick do not influence spirochete transmission to the mammalian host and (2) the spirochete may utilize an intracellular exit route during migration from the midgut to the salivary glands, a strategy that may allow the spirochete to distance itself from microbiota in the midgut lumen effectively. This may explain in part, the inability of environment-acquired midgut microbiota to significantly influence spirochete transmission. Unraveling a molecular understanding of this exit strategy will be critical to gain new insights into the biology of the spirochete and the tick. Video Abstract.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA.
| | | | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06420, USA
| | - Ming-Jie Wu
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| | - Kathleen DePonte
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| | - Solenne Marion
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
- Current address: Roche Diagnostics International, 6343, Rotkreuz, Switzerland
| | - Orlanne Masson
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Daniel E Sonenshine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| |
Collapse
|
17
|
Stewart PE, Raffel SJ, Gherardini FC, Bloom ME. Kinetics of tick infection by the relapsing fever spirochete Borrelia hermsii acquired through artificial membrane feeding chambers. Sci Rep 2022; 12:13479. [PMID: 35931720 PMCID: PMC9356064 DOI: 10.1038/s41598-022-17500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
The relapsing fever agent Borrelia hermsii is transmitted by the tick Ornithodoros hermsi. To study the B. hermsii-tick interactions required for pathogen acquisition and transmission we developed an artificial membrane feeding system for O. hermsi nymphs and adults that results in a high percentage of engorgement. This system provides the nutritional requirements necessary for the tick to develop, mate, and produce viable eggs. By inoculating the blood with B. hermsii, we were able to obtain infected ticks for quantitative studies on pathogen acquisition and persistence. These ticks subsequently transmitted the spirochetes to mice, validating this system for both acquisition and transmission studies. Using this feeding method, a mutant of the antigenic variation locus of B. hermsii (Vmp-) that is incapable of persisting in mice was acquired by ticks at equivalent densities as the wild-type. Furthermore, Vmp is not required for persistence in the tick, as the mutant and wild-type strains are maintained at similar numbers after ecdysis and subsequent feeding. These results support the theory that Vmp is an adaptation for mammalian infection but unnecessary for survival within the tick. Interestingly, B. hermsii numbers severely declined after acquisition, though these ticks still transmitted the infection to mice. This procedure reduces animal use and provides a safe, highly controlled and well-contained alternative method for feeding and maintaining O. hermsi colonies. Importantly, this system permits quantitative studies with B. hermsii strains through ingestion during the blood meal, and thus more closely recapitulates pathogen acquisition in nature than other artificial systems.
Collapse
Affiliation(s)
- Philip E Stewart
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Sandra J Raffel
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frank C Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Marshall E Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
18
|
Guizzo MG, Tirloni L, Gonzalez SA, Farber MD, Braz G, Parizi LF, Dedavid E Silva LA, da Silva Vaz I, Oliveira PL. Coxiella Endosymbiont of Rhipicephalus microplus Modulates Tick Physiology With a Major Impact in Blood Feeding Capacity. Front Microbiol 2022; 13:868575. [PMID: 35591999 PMCID: PMC9111531 DOI: 10.3389/fmicb.2022.868575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States.,Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Sergio A Gonzalez
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Marisa D Farber
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Glória Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Verhoeve VI, Fauntleroy TD, Risteen RG, Driscoll TP, Gillespie JJ. Cryptic Genes for Interbacterial Antagonism Distinguish Rickettsia Species Infecting Blacklegged Ticks From Other Rickettsia Pathogens. Front Cell Infect Microbiol 2022; 12:880813. [PMID: 35592653 PMCID: PMC9111745 DOI: 10.3389/fcimb.2022.880813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 01/28/2023] Open
Abstract
Background The genus Rickettsia (Alphaproteobacteria: Rickettsiales) encompasses numerous obligate intracellular species with predominantly ciliate and arthropod hosts. Notable species are pathogens transmitted to mammals by blood-feeding arthropods. Mammalian pathogenicity evolved from basal, non-pathogenic host-associations; however, some non-pathogens are closely related to pathogens. One such species, Rickettsia buchneri, is prevalent in the blacklegged tick, Ixodes scapularis. While I. scapularis transmits several pathogens to humans, it does not transmit Rickettsia pathogens. We hypothesize that R. buchneri established a mutualism with I. scapularis, blocking tick superinfection with Rickettsia pathogens. Methods To improve estimates for assessing R. buchneri infection frequency in blacklegged tick populations, we used comparative genomics to identify an R. buchneri gene (REIS_1424) not present in other Rickettsia species present throughout the I. scapularis geographic range. Bioinformatic and phylogenomics approaches were employed to propose a function for the hypothetical protein (263 aa) encoded by REIS_1424. Results REIS_1424 has few analogs in other Rickettsiales genomes and greatest similarity to non-Proteobacteria proteins. This cohort of proteins varies greatly in size and domain composition, possessing characteristics of Recombination hotspot (Rhs) and contact dependent growth inhibition (CDI) toxins, with similarity limited to proximal C-termini (~145 aa). This domain was named CDI-like/Rhs-like C-terminal toxin (CRCT). As such proteins are often found as toxin-antidote (TA) modules, we interrogated REIS_1423 (151 aa) as a putative antidote. Indeed, REIS_1423 is similar to proteins encoded upstream of CRCT domain-containing proteins. Accordingly, we named these proteins CDI-like/Rhs-like C-terminal toxin antidotes (CRCA). R. buchneri expressed both REIS_1423 and REIS_1424 in tick cell culture, and PCR assays showed specificity for R. buchneri over other rickettsiae and utility for positive detection in three tick populations. Finally, phylogenomics analyses uncovered divergent CRCT/CRCA modules in varying states of conservation; however, only R. buchneri and related Tamurae/Ixodes Group rickettsiae carry complete TA modules. Conclusion We hypothesize that Rickettsia CRCT/CRCA modules circulate in the Rickettsia mobile gene pool, arming rickettsiae for battle over arthropod colonization. While its functional significance remains to be tested, R. buchneri CRCT/CRCA serves as a marker to positively identify infection and begin deciphering the role this endosymbiont plays in the biology of the blacklegged tick.
Collapse
Affiliation(s)
- Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tyesha D. Fauntleroy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Riley G. Risteen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Joseph J. Gillespie,
| |
Collapse
|
20
|
Dowling APG, Young SG, Loftin K. Collaborating With Community Scientists Across Arkansas to Update Tick Distributions and Pathogen Prevalence of Spotted Fever Group Rickettsia and Ehrlichia. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:565-575. [PMID: 34850921 DOI: 10.1093/jme/tjab196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Tick-borne diseases (TBD) in humans have dramatically increased over recent years and although the bulk of cases are attributable to Lyme Disease in the Northeastern US, TBDs like spotted fever rickettsiosis and ehrlichiosis heavily impact other parts of the country, namely the mid-south. Understanding tick and pathogen distributions and prevalence traditionally requires active surveillance, which quickly becomes logistically and financially unrealistic as the geographic area of focus increases. We report on a community science effort to survey ticks across Arkansas to obtain updated data on tick distributions and prevalence of human tick-borne disease-causing pathogens in the most commonly encountered ticks. During a 20-mo period, Arkansans submitted 9,002 ticks from 71 of the 75 counties in the state. Amblyomma americanum was the most common tick species received, accounting for 76% of total tick submissions. Nearly 6,000 samples were screened for spotted fever group Rickettsia (SFGR) and Ehrlichia, resulting in general prevalence rates of 37.4 and 5.1%, respectively. In addition, 145 ticks (2.5%) were infected with both SFGR and Ehrlichia. Arkansas Department of Health reported 2,281 spotted fever and 380 ehrlichiosis cases during the same period as our tick collections. Since known SFGR vectors Dermacentor variabilis and Amblyomma maculatum were not the most common ticks submitted, nor did they have the highest prevalence rates of SFGR, it appears that other tick species play the primary role in infecting humans with SFGR. Our investigation demonstrated the utility of community science to efficiently and economically survey ticks and identify vector-borne disease risk in Arkansas.
Collapse
Affiliation(s)
- Ashley P G Dowling
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Sean G Young
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kelly Loftin
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
21
|
Kumar D, Downs LP, Adegoke A, Machtinger E, Oggenfuss K, Ostfeld RS, Embers M, Karim S. An Exploratory Study on the Microbiome of Northern and Southern Populations of Ixodes scapularis Ticks Predicts Changes and Unique Bacterial Interactions. Pathogens 2022; 11:130. [PMID: 35215074 PMCID: PMC8880235 DOI: 10.3390/pathogens11020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
The black-legged tick (Ixodes scapularis) is the primary vector of Borrelia burgdorferi, the causative agent of Lyme disease in North America. However, the prevalence of Lyme borreliosis is clustered around the Northern States of the United States of America. This study utilized a metagenomic sequencing approach to compare the microbial communities residing within Ix. scapularis populations from northern and southern geographic locations in the USA. Using a SparCC network construction model, we performed potential interactions between members of the microbial communities from Borrelia burgdorferi-infected tissues of unfed and blood-fed ticks. A significant difference in bacterial composition and diversity was found between northern and southern tick populations. The network analysis predicted a potential antagonistic interaction between endosymbiont Rickettsia buchneri and Borrelia burgdorferi sensu lato. The network analysis, as expected, predicted significant positive and negative microbial interactions in ticks from these geographic regions, with the genus Rickettsia, Francisella, and Borreliella playing an essential role in the identified clusters. Interactions between Rickettsia buchneri and Borrelia burgdorferi sensu lato need more validation and understanding. Understanding the interplay between the microbiome and tick-borne pathogens within tick vectors may pave the way for new strategies to prevent tick-borne infections.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Latoyia P. Downs
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Abdulsalam Adegoke
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Erika Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Kelly Oggenfuss
- Cary Institute of Ecosystem Studies, Millbrook, NY 12542, USA; (K.O.); (R.S.O.)
| | - Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, NY 12542, USA; (K.O.); (R.S.O.)
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA;
| | - Shahid Karim
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
22
|
Cull B, Burkhardt NY, Wang XR, Thorpe CJ, Oliver JD, Kurtti TJ, Munderloh UG. The Ixodes scapularis Symbiont Rickettsia buchneri Inhibits Growth of Pathogenic Rickettsiaceae in Tick Cells: Implications for Vector Competence. Front Vet Sci 2022; 8:748427. [PMID: 35071375 PMCID: PMC8770908 DOI: 10.3389/fvets.2021.748427] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ixodes scapularis is the primary vector of tick-borne pathogens in North America but notably does not transmit pathogenic Rickettsia species. This tick harbors the transovarially transmitted endosymbiont Rickettsia buchneri, which is widespread in I. scapularis populations, suggesting that it confers a selective advantage for tick survival such as providing essential nutrients. The R. buchneri genome includes genes with similarity to those involved in antibiotic synthesis. There are two gene clusters not found in other Rickettsiaceae, raising the possibility that these may be involved in excluding pathogenic bacteria from the tick. This study explored whether the R. buchneri antibiotic genes might exert antibiotic effects on pathogens associated with I. scapularis. Markedly reduced infectivity and replication of the tick-borne pathogens Anaplasma phagocytophilum, R. monacensis, and R. parkeri were observed in IRE11 tick cells hosting R. buchneri. Using a fluorescent plate reader assay to follow infection dynamics revealed that the presence of R. buchneri in tick cells, even at low infection rates, inhibited the growth of R. parkeri by 86-100% relative to R. buchneri-free cells. In contrast, presence of the low-pathogenic species R. amblyommatis or the endosymbiont R. peacockii only partially reduced the infection and replication of R. parkeri. Addition of host-cell free R. buchneri, cell lysate of R. buchneri-infected IRE11, or supernatant from R. buchneri-infected IRE11 cultures had no effect on R. parkeri infection and replication in IRE11, nor did these treatments show any antibiotic effect against non-obligate intracellular bacteria E. coli and S. aureus. However, lysate from R. buchneri-infected IRE11 challenged with R. parkeri showed some inhibitory effect on R. parkeri infection of treated IRE11, suggesting that challenge by pathogenic rickettsiae may induce the antibiotic effect of R. buchneri. This research suggests a potential role of the endosymbiont in preventing other rickettsiae from colonizing I. scapularis and/or being transmitted transovarially. The confirmation that the observed inhibition is linked to R. buchneri's antibiotic clusters requires further investigation but could have important implications for our understanding of rickettsial competition and vector competence of I. scapularis for rickettsiae.
Collapse
Affiliation(s)
- Benjamin Cull
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Nicole Y. Burkhardt
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Xin-Ru Wang
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Cody J. Thorpe
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J. Kurtti
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Ulrike G. Munderloh
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
23
|
Microbiomes of Blood-Feeding Arthropods: Genes Coding for Essential Nutrients and Relation to Vector Fitness and Pathogenic Infections. A Review. Microorganisms 2021; 9:microorganisms9122433. [PMID: 34946034 PMCID: PMC8704530 DOI: 10.3390/microorganisms9122433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Blood-feeding arthropods support a diverse array of symbiotic microbes, some of which facilitate host growth and development whereas others are detrimental to vector-borne pathogens. We found a common core constituency among the microbiota of 16 different arthropod blood-sucking disease vectors, including Bacillaceae, Rickettsiaceae, Anaplasmataceae, Sphingomonadaceae, Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Staphylococcaceae. By comparing 21 genomes of common bacterial symbionts in blood-feeding vectors versus non-blooding insects, we found that certain enteric bacteria benefit their hosts by upregulating numerous genes coding for essential nutrients. Bacteria of blood-sucking vectors expressed significantly more genes (p < 0.001) coding for these essential nutrients than those of non-blooding insects. Moreover, compared to endosymbionts, the genomes of enteric bacteria also contained significantly more genes (p < 0.001) that code for the synthesis of essential amino acids and proteins that detoxify reactive oxygen species. In contrast, microbes in non-blood-feeding insects expressed few gene families coding for these nutrient categories. We also discuss specific midgut bacteria essential for the normal development of pathogens (e.g., Leishmania) versus others that were detrimental (e.g., bacterial toxins in mosquitoes lethal to Plasmodium spp.).
Collapse
|
24
|
Thorpe CJ, Wang XR, Munderloh UG, Kurtti TJ. Tick Cell Culture Analysis of Growth Dynamics and Cellular Tropism of Rickettsia buchneri, an Endosymbiont of the Blacklegged Tick, Ixodes scapularis. INSECTS 2021; 12:968. [PMID: 34821769 PMCID: PMC8626015 DOI: 10.3390/insects12110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The blacklegged tick, Ixodes scapularis, a species of significant importance to human and animal health, harbors an endosymbiont Rickettsia buchneri sensu stricto. The symbiont is largely restricted to the ovaries, but all life stages can harbor various quantities or lack R. buchneri entirely. The endosymbiont is cultivable in cell lines isolated from embryos of Ixodes ticks. Rickettsia buchneri most readily grows and is maintained in the cell line IRE11 from the European tick, Ixodes ricinus. The line was characterized by light and electron microscopy and used to analyze the growth dynamics of wildtype and GFPuv-expressing R. buchneri. qPCR indicated that the genome copy doubling time in IRE11 was >7 days. Measurements of fluorescence using a plate reader indicated that the amount of green fluorescent protein doubled every 11 days. Two 23S rRNA probes were tested via RNA FISH on rickettsiae grown in vitro and adapted to evaluate the tissue tropism of R. buchneri in field-collected female I. scapularis. We observed strong positive signals of R. buchneri in the ovaries and surrounding the nucleus of the developing oocytes. Tissue tropism in I. scapularis and in vitro growth dynamics strengthen the contemporary understanding of R. buchneri as a transovarially transmitted, non-pathogenic endosymbiont.
Collapse
Affiliation(s)
- Cody J. Thorpe
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108, USA; (X.-R.W.); (U.G.M.)
| | | | | | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108, USA; (X.-R.W.); (U.G.M.)
| |
Collapse
|
25
|
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol 2021; 37:722-733. [PMID: 33962878 PMCID: PMC8282638 DOI: 10.1016/j.pt.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Ixodes scapularis and Ixodes pacificus are the predominant vectors of multiple human pathogens, including Borrelia burgdorferi, one of the causative agents of Lyme disease in North America. Differences in the habitats and host preferences of these closely related tick species present an opportunity to examine key aspects of the tick microbiome. While advances in sequencing technologies have accelerated a descriptive understanding of the tick microbiome, molecular and mechanistic insights into the tick microbiome are only beginning to emerge. Progress is stymied by technical difficulties in manipulating the microbiome and by biological variables related to the life cycle of Ixodid ticks. This review highlights these challenges and examines avenues to understand the significance of the tick microbiome in tick biology.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA.
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland School of Medicine, College Park, MD 20472, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20472, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| |
Collapse
|