1
|
Herzig M, Maksimov P, Staubach C, Romig T, Knapp J, Gottstein B, Conraths FJ. Red foxes harbor two genetically distinct, spatially separated Echinococcus multilocularis clusters in Brandenburg, Germany. Parasit Vectors 2021; 14:535. [PMID: 34649615 PMCID: PMC8518320 DOI: 10.1186/s13071-021-05038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Alveolar echinococcosis (AE) is a clinically serious zoonosis caused by the fox tapeworm Echinococcus multilocularis. We studied the diversity and the distribution of genotypes of E. multilocularis isolated from foxes in Brandenburg, Germany, and in comparison to a hunting ground in North Rhine-Westphalia. Methods Echinococcus multilocularis specimens from 101 foxes, 91 derived from Brandenburg and 10 derived from North Rhine-Westphalia, were examined. To detect potential mixed infections with different genotypes of E. multilocularis, five worms per fox were analyzed. For genotyping, three mitochondrial markers, namely cytochrome c oxidase subunit 1 (Cox1), NADH dehydrogenase subunit 1 (Nad1), and ATP synthase subunit 6 (ATP6), and the nuclear microsatellite marker EmsB were used. To identify nucleotide polymorphisms, the mitochondrial markers were sequenced and the data were compared, including with published sequences from other regions. EmsB fragment length profiles were determined and confirmed by Kohonen network analysis and grouping of Sammon’s nonlinear mapping with k-means clustering. The spatial distribution of genotypes was analyzed by SaTScan for the EmsB profiles found in Brandenburg. Results With both the mitochondrial makers and the EmsB microsatellite fragment length profile analyses, mixed infections with different E. multilocularis genotypes were detected in foxes from Brandenburg and North Rhine-Westphalia. Genotyping using the mitochondrial markers showed that the examined parasite specimens belong to the European haplotype of E. multilocularis, but a detailed spatial analysis was not possible due to the limited heterogeneity of these markers in the parasite population. Four (D, E, G, and H) out of the five EmsB profiles described in Europe so far were detected in the samples from Brandenburg and North Rhine-Westphalia. The EmsB profile G was the most common. A spatial cluster of the E. multilocularis genotype with the EmsB profile G was found in northeastern Brandenburg, and a cluster of profile D was found in southern parts of this state. Conclusions Genotyping of E. multilocularis showed that individual foxes may harbor different genotypes of the parasite. EmsB profiles allowed the identification of spatial clusters, which may help in understanding the distribution and spread of the infection in wildlife, and in relatively small endemic areas. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05038-0.
Collapse
Affiliation(s)
- Mandy Herzig
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Thomas Romig
- Universität Hohenheim, Institut Für Biologie, Fachgebiet Parasitologie, Emil-Wolff-Straße 34, 70599, Stuttgart, Germany
| | - Jenny Knapp
- UMR CNRS 6249 Laboratoire Chrono-Environnement, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon, France.,Department of Parasitology-Mycology, National Reference Centre for Echinococcoses, University Hospital of Besançon, 25030, Besançon, France
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Berne, 3001, Berne, Switzerland
| | - Franz J Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
2
|
Neoh HM, Tan XE, Sapri HF, Tan TL. Pulsed-field gel electrophoresis (PFGE): A review of the "gold standard" for bacteria typing and current alternatives. INFECTION GENETICS AND EVOLUTION 2019; 74:103935. [PMID: 31233781 DOI: 10.1016/j.meegid.2019.103935] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
Pulsed-field gel electrophoresis (PFGE) is considered the "gold standard" for bacteria typing. The method involves enzyme restriction of bacteria DNA, separation of the restricted DNA bands using a pulsed-field electrophoresis chamber, followed by clonal assignment of bacteria based on PFGE banding patterns. Various PFGE protocols have been developed for typing different bacteria, leading it to be one of the most widely used methods for phylogenetic studies, food safety surveillance, infection control and outbreak investigations. On the other hand, as PFGE is lengthy and labourious, several PCR-based typing methods can be used as alternatives for research purposes. Recently, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and whole genome sequencing (WGS) have also been proposed for bacteria typing. In fact, as WGS provides more information, such as antimicrobial resistance and virulence of the tested bacteria in comparison to PFGE, more and more laboratories are currently transitioning from PFGE to WGS for bacteria typing. Nevertheless, PFGE will remain an affordable and relevant technique for small laboratories and hospitals in years to come.
Collapse
Affiliation(s)
- Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Malaysia.
| | - Xin-Ee Tan
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, Japan
| | - Hassriana Fazilla Sapri
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| |
Collapse
|
3
|
Rapid and robust analytical protocol for E. coli STEC bacteria subspecies differentiation using whole cell MALDI mass spectrometry. Talanta 2018; 182:164-170. [PMID: 29501136 DOI: 10.1016/j.talanta.2018.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 12/30/2022]
Abstract
Whole cell MALDI is regularly used for the identification of bacteria to species level in clinical Microbiology laboratories. However, there remains a need to rapidly characterize and differentiate isolates below the species level to support outbreak management. We describe the implementation of a modified preparative approach for MALDI-MS combined with a custom analytical computational pipeline as a rapid procedure for subtyping Shigatoxigenic E. coli (STEC) and accurately identifying strain-specifying biomarkers. The technique was able to differentiate E. coli O157:H7 from other STEC. Within O157 serotype O157:H7 isolates were readily distinguishable from Sorbitol Fermenting O157 isolates. Overall, nine homogeneous groups of isolates were distinguished, each exhibiting distinct profiles of defining mass spectra features. This offers a robust analytical tool useable in reference/diagnostic public health scenarios.
Collapse
|
4
|
Extended-spectrum β-lactamase, shigatoxin and haemolysis capacity of O157 and non-O157 E. coli serotypes from producer-distributor bulk milk. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Sauget M, Valot B, Bertrand X, Hocquet D. Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria? Trends Microbiol 2017; 25:447-455. [PMID: 28094091 DOI: 10.1016/j.tim.2016.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Bacterial typing is crucial to tackle the spread of bacterial pathogens but current methods are time-consuming and costly. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been recently integrated into the microbiology laboratory workflow for a quick and low-cost microbial species identification. Independent research groups have successfully redirected the original function of this technology from their primary purpose to discriminate subgroups within pathogen species. However, identical bacterial subgroups could be identified by unrelated peaks by independent methods, thus limiting their robustness and exportability. We propose several guidelines that could improve the performance of MALDI-TOF MS-based typing methods for use as a first-line epidemiological tool.
Collapse
Affiliation(s)
- Marlène Sauget
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France.
| | - Benoît Valot
- UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
6
|
Gwida M, Hotzel H, Geue L, Tomaso H. Occurrence of Enterobacteriaceae in Raw Meat and in Human Samples from Egyptian Retail Sellers. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:565671. [PMID: 27379312 PMCID: PMC4897388 DOI: 10.1155/2014/565671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022]
Abstract
The present study was performed to assess the presence of Enterobacteriaceae in raw meat and handlers in Egypt using cultivation and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 100 raw meat samples (chicken and beef meat, 50 each) were randomly purchased from butchers and local meat retailers located at Mansoura city, Egypt. Fifty human samples were collected from meat handlers (hand swabs and stool specimens, 25 each). 228 bacterial isolates were recovered from these samples. Unidentified isolates were characterized by partial 16S rRNA gene sequencing. Escherichia coli isolates were further typed using a DNA microarray system. Proteus spp. (60.0%) were found to be the most abundant followed by Escherichia coli (38.7%), Klebsiella spp. (17.3%), and Citrobacter spp. (13.3%). The presence of different Enterobacteriaceae in locally produced retail raw meat demonstrates the risk of infection of people through consumption of raw or undercooked meat and the risk for cross-contamination of other food products. Harmonized and concerted actions from veterinary and public health authorities are needed to reduce the risk of infection.
Collapse
Affiliation(s)
- Mayada Gwida
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Lutz Geue
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| |
Collapse
|
7
|
Suarez S, Nassif X, Ferroni A. [Applications of MALDI-TOF technology in clinical microbiology]. ACTA ACUST UNITED AC 2014; 63:43-52. [PMID: 25434794 DOI: 10.1016/j.patbio.2014.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
Abstract
Until now, the identification of micro-organisms has been based on the cultural and biochemical characteristics of bacterial and fungal species. Recently, Mass Spectrometry type Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF MS) was developed in clinical microbiology laboratories. This new technology allows identification of micro-organisms directly from colonies of bacteria and fungi within few minutes. In addition, it can be used to identify germs directly from positive blood culture bottles or directly from urine samples. Other ways are being explored to expand the use of MALDI-TOF in clinical microbiology laboratories. Indeed, some studies propose to detect bacterial antibiotic resistance while others compare strains within species for faster strain typing. The main objective of this review is to update data from the recent literature for different applications of MALDI-TOF technique in microbiological diagnostic routine.
Collapse
Affiliation(s)
- S Suarez
- Laboratoire de microbiologie, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris, 149, rue de Sèvres, 75015 Paris, France
| | - X Nassif
- Laboratoire de microbiologie, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris, 149, rue de Sèvres, 75015 Paris, France
| | - A Ferroni
- Laboratoire de microbiologie, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
8
|
Cheng K, Sloan A, McCorrister S, Peterson L, Chui H, Drebot M, Nadon C, Knox JD, Wang G. Quality evaluation of LC‐MS/MS‐based
E. coli
H antigen typing (MS‐H) through label‐free quantitative data analysis in a clinical sample setup. Proteomics Clin Appl 2014; 8:963-70. [DOI: 10.1002/prca.201400019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/22/2014] [Accepted: 09/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
- Department of Human Anatomy and Cell Sciences Faculty of Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Angela Sloan
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
| | - Stuart McCorrister
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
| | - Lorea Peterson
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
| | - Huixia Chui
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
- Henan Center of Disease Prevention and Control Henan Province China
| | - Mike Drebot
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
- Department of Medical Microbiology Faculty of Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Celine Nadon
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
- Department of Medical Microbiology Faculty of Medicine University of Manitoba Winnipeg Manitoba Canada
| | - J. David Knox
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
- Department of Medical Microbiology Faculty of Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Gehua Wang
- National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada
| |
Collapse
|
9
|
Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PLoS One 2014; 9:e101924. [PMID: 25003758 PMCID: PMC4087019 DOI: 10.1371/journal.pone.0101924] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
Background In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification. Methods Specific peaks in the outbreak strain’s spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak. Results Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates. Conclusions MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.
Collapse
|
10
|
Comparative study of traditional flagellum serotyping and liquid chromatography-tandem mass spectrometry-based flagellum typing with clinical Escherichia coli isolates. J Clin Microbiol 2014; 52:2275-8. [PMID: 24671787 DOI: 10.1128/jcm.00174-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Schäfer MO, Genersch E, Fünfhaus A, Poppinga L, Formella N, Bettin B, Karger A. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Vet Microbiol 2014; 170:291-7. [PMID: 24613082 DOI: 10.1016/j.vetmic.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
Infection with Paenibacillus larvae, the etiological agent of American foulbrood, is lethal for honey bee larvae and may lead to loss of the entire colony. Of the four known ERIC-genotypes of P. larvae, ERIC I and II are most frequently observed and differ significantly in virulence. The course of the disease on the larval level is more accelerated after infection with genotype II strains allowing nurse bees to remove diseased larvae more efficiently before capping. For this reason the lead clinical symptom, conversion of capped larvae into 'ropy mass', is less frequently found than after infection with ERIC I strains bearing the risk of false negative diagnosis. In this study, the potential of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the discrimination of P. larvae genotypes ERIC I and II was explored on the basis of a comprehensive set of isolates. Using commercial software and a reference database constructed from field and type strains, ERIC I and II genotypes of all field isolates could be unambiguously identified on basis of mass spectra. Statistical analysis showed that the genotype is the main determinant for the spectral phenotype and MS-based ERIC-type determination is robust against sample selection. Furthermore, analysis of samples from Canada and New Zealand showed that distribution of ERIC II is not restricted to Europe as previously assumed. We suggest adding ERIC I and II genotype isolates as type-specific reference spectra for use in routine diagnostics.
Collapse
Affiliation(s)
- Marc Oliver Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Anne Fünfhaus
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Lena Poppinga
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Noreen Formella
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara Bettin
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
13
|
La Scola B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn 2014; 11:287-98. [DOI: 10.1586/erm.11.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bernard La Scola
- URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| |
Collapse
|
14
|
Bernaschi P, Del Chierico F, Petrucca A, Argentieri A, Ciofi Degli Atti M, Ciliento G, Carletti M, Muraca M, Locatelli F, Putignani L. Microbial tracking of multidrug-resistant Klebsiella pneumoniae isolates in a pediatric hospital setting. Int J Immunopathol Pharmacol 2013; 26:463-72. [PMID: 23755761 DOI: 10.1177/039463201302600219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigated the clonal relatedness of seven multi-drug-resistant (MDR) Klebsiella pneumoniae isolates, as well as three susceptible K. pneumoniae isolates collected during hospital outbreaks and outbreak-related microbiological surveillance, respectively. The relatedness among K. pneumoniae isolates was assessed by pulsed field gel electrophoresis (PFGE) and automated repetitive-sequence-based PCR (rep-PCR) genotyping and the results were compared to a proteomic phenotyping performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). All typing methods agreed on the generation of three different clusters of K. pneumoniae isogenetic/related MDR strains. After strengthening hospital infection control measures, no other spreading events involving MDR-K. pneumoniae were reported until the end of the observation period. This preliminary investigation suggests that, in a hierarchical approach to bacterial typing, MALDI-TOF MS proteome profiling might offer a fast and valuable preliminary screening tool able to support microbiologists during nosocomial outbreak surveys.
Collapse
Affiliation(s)
- P Bernaschi
- Unit of Microbiology, Bambino Gesu Childrens Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur J Clin Microbiol Infect Dis 2013; 33:767-78. [PMID: 24213848 PMCID: PMC3996285 DOI: 10.1007/s10096-013-2011-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/22/2013] [Indexed: 12/19/2022]
Abstract
Vibrio cholerae belonging to the non-O1, non-O139 serogroups are present in the coastal waters of Germany and in some German and Austrian lakes. These bacteria can cause gastroenteritis and extraintestinal infections, and are transmitted through contaminated food and water. However, non-O1, non-O139 V. cholerae infections are rare in Germany. We studied 18 strains from German and Austrian patients with diarrhea or local infections for their virulence-associated genotype and phenotype to assess their potential for infectivity in anticipation of possible climatic changes that could enhance the transmission of these pathogens. The strains were examined for the presence of genes encoding cholera toxin and toxin-coregulated pilus (TCP), as well as other virulence-associated factors or markers, including hemolysins, repeats-in-toxin (RTX) toxins, Vibrio seventh pandemic islands VSP-1 and VSP-2, and the type III secretion system (TTSS). Phenotypic assays for hemolysin activity, serum resistance, and biofilm formation were also performed. A dendrogram generated by incorporating the results of these analyses revealed genetic differences of the strains correlating with their clinical origin. Non-O1, non-O139 strains from diarrheal patients possessed the TTSS and/or the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which were not found in the strains from ear or wound infections. Routine matrix-assisted laser desorption/ionization (MALDI-TOF) mass spectrometry (MS) analysis of all strains provided reliable identification of the species but failed to differentiate between strains or clusters. The results of this study indicate the need for continued surveillance of V. cholerae non-O1, non-O139 in Germany, in view of the predicted increase in the prevalence of Vibrio spp. due to the rise in surface water temperatures.
Collapse
|
16
|
Del Chierico F, Petrucca A, Vernocchi P, Bracaglia G, Fiscarelli E, Bernaschi P, Muraca M, Urbani A, Putignani L. Proteomics boosts translational and clinical microbiology. J Proteomics 2013; 97:69-87. [PMID: 24145144 DOI: 10.1016/j.jprot.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/28/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
Abstract
The application of proteomics to translational and clinical microbiology is one of the most advanced frontiers in the management and control of infectious diseases and in the understanding of complex microbial systems within human fluids and districts. This new approach aims at providing, by dedicated bioinformatic pipelines, a thorough description of pathogen proteomes and their interactions within the context of human host ecosystems, revolutionizing the vision of infectious diseases in biomedicine and approaching new viewpoints in both diagnostic and clinical management of the patient. Indeed, in the last few years, many laboratories have matured a series of advanced proteomic applications, aiming at providing individual proteome charts of pathogens, with respect to their morph and/or cell life stages, antimicrobial or antimycotic resistance profiling, epidemiological dispersion. Herein, we aim at reviewing the current state-of-the-art on proteomic protocols designed and set-up for translational and diagnostic microbiological purposes, from axenic pathogens' characterization to microbiota ecosystems' full description. The final goal is to describe applications of the most common MALDI-TOF MS platforms to advanced diagnostic issues related to emerging infections, increasing of fastidious bacteria, and generation of patient-tailored phylotypes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- F Del Chierico
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Petrucca
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Diagnostic Science, Sant'Andrea Hospital, Via di Grottarossa 1035, 00185 Rome, Italy
| | - P Vernocchi
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - G Bracaglia
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - E Fiscarelli
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - P Bernaschi
- Unit of Microbiology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - M Muraca
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Urbani
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy; IRCCS-Santa Lucia Foundation, Rome, Italy
| | - L Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
17
|
Interlaboratory comparison of intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry results for identification and differentiation of Brucella spp. J Clin Microbiol 2013; 51:3123-6. [PMID: 23850950 DOI: 10.1128/jcm.01720-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical microbiological diagnosis of human brucellosis is time-consuming, hazardous, and subject to variable interpretation. Intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the routine identification of Brucella spp. Analysis of mass peak patterns allowed accurate identification to the genus level. However, statistical models based on peak intensities were needed for definite species differentiation. Interlaboratory comparison confirmed the reproducibility of the results.
Collapse
|
18
|
Clark CG, Kruczkiewicz P, Guan C, McCorrister SJ, Chong P, Wylie J, van Caeseele P, Tabor HA, Snarr P, Gilmour MW, Taboada EN, Westmacott GR. Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes. J Microbiol Methods 2013; 94:180-91. [PMID: 23816532 DOI: 10.1016/j.mimet.2013.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022]
Abstract
It is rapidly becoming apparent that many E. coli pathotypes cause a considerable burden of human disease. Surveillance of these organisms is difficult because there are few or no simple, rapid methods for detecting and differentiating the different pathotypes. MALDI-TOF mass spectroscopy has recently been rapidly and enthusiastically adopted by many clinical laboratories as a diagnostic method because of its high throughput, relatively low cost, and adaptability to the laboratory workflow. To determine whether the method could be adapted for E. coli pathotype differentiation the Bruker Biotyper methodology and a second methodology adapted from the scientific literature were tested on isolates representing eight distinct pathotypes and two other groups of E. coli. A total of 136 isolates was used for this study. Results confirmed that the Bruker Biotyper methodology that included extraction of proteins from bacterial cells was capable of identifying E. coli isolates from all pathotypes to the species level and, furthermore, that the Bruker extraction and MALDI-TOF MS with the evaluation criteria developed in this work was effective for differentiating most pathotypes.
Collapse
Affiliation(s)
- Clifford G Clark
- Enteric Diseases Program, Bacteriology and Enteric Diseases Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schaumann R, Knoop N, Genzel GH, Losensky K, Rosenkranz C, Stîngu CS, Schellenberger W, Rodloff AC, Eschrich K. Discrimination of Enterobacteriaceae and Non-fermenting Gram Negative Bacilli by MALDI-TOF Mass Spectrometry. Open Microbiol J 2013; 7:118-22. [PMID: 23919091 PMCID: PMC3722536 DOI: 10.2174/1874285801307010118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/07/2013] [Accepted: 04/17/2013] [Indexed: 11/22/2022] Open
Abstract
Discrimination of Enterobacteriaceae and Non-fermenting Gram Negative Bacilli by MALDI-TOF Mass Spectrometry Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has proven to be an effective identification tool in medical microbiology. Discrimination to subspecies or serovar level has been found to be challenging using commercially available identification software. By forming our own reference database and using alternative analysis methods, we could reliably identify all implemented Enterobacteriaceae and non-fermenting gram negative bacilli by MALDI-TOF MS and even succeeded to distinguish Shigella sonnei from Escherichia coli (E. coli) and Salmonella enterica spp. enterica serovar Enteritidis from Salmonella enterica spp. enterica serovar Typhimurium. Furthermore, the method showed the ability to separate Enterohemorrhagic E. coli (EHEC) and Enteropathogenic E. coli (EPEC) from non-enteropathogenic E. coli.
Collapse
Affiliation(s)
- Reiner Schaumann
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cryptosporidium is a protozoan parasite of medical and veterinary importance that causes gastroenteritis in a variety of vertebrate hosts. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The identification and validation of Cryptosporidium virulence factors have been hindered by the renowned difficulties pertaining to the in vitro culture and genetic manipulation of this parasite. Nevertheless, substantial progress has been made in identifying putative virulence factors for Cryptosporidium. This progress has been accelerated since the publication of the Cryptosporidium parvum and C. hominis genomes, with the characterization of over 25 putative virulence factors identified by using a variety of immunological and molecular techniques and which are proposed to be involved in aspects of host-pathogen interactions from adhesion and locomotion to invasion and proliferation. Progress has also been made in the contribution of host factors that are associated with variations in both the severity and risk of infection. Here we provide a review comprised of the current state of knowledge on Cryptosporidium infectivity, pathogenesis, and transmissibility in light of our contemporary understanding of microbial virulence.
Collapse
|
21
|
Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. MASS SPECTROMETRY REVIEWS 2013; 32:188-217. [PMID: 22996584 DOI: 10.1002/mas.21359] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85069, USA.
| | | | | |
Collapse
|
22
|
Mass spectrometry and tandem mass spectrometry characterization of protein patterns, protein markers and whole proteomes for pathogenic bacteria. J Microbiol Methods 2013; 92:381-6. [DOI: 10.1016/j.mimet.2013.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/17/2022]
|
23
|
MS-H: a novel proteomic approach to isolate and type the E. coli H antigen using membrane filtration and liquid chromatography-tandem mass spectrometry (LC-MS/MS). PLoS One 2013; 8:e57339. [PMID: 23437374 PMCID: PMC3578835 DOI: 10.1371/journal.pone.0057339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/21/2013] [Indexed: 11/23/2022] Open
Abstract
Serotyping is the long-standing gold standard method to determine E. coli H antigens; however, this method requires a panel of H-antigen specific antibodies and often culture-based induction of the H-antigen flagellar motility. In this study, a rapid and accurate method to isolate and identify the Escherichia coli (E. coli) H flagellar antigen was developed using membrane filtration and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Flagella were isolated from pure culture, digested with trypsin, and then subjected to LC-MS/MS using one of two systems (Agilent-nano-LC-QSTAR XL or Proxeon-nano-LC-LTQ-Orbitrap XL). The resulting peptide sequence data were searched against a custom E. coli flagella/H antigen database. This approach was evaluated using flagella isolated from reference E. coli strains representing all 53 known H antigen types and 41 clinical E. coli strains. The resulting LC-MS/MS classifications of H antigen types (MS-H) were concordant with the known H serogroup for all 53 reference types, and of 41 clinical isolates tested, 38 (92.7%) were concordant with the known H serogroup. MS-H clearly also identified two clinical isolates (4.9%) that were untypeable by serotyping. Notably, successful detection and classification of flagellar antigens with MS-H did not generally require induction of motility, establishing this proteomic approach as more rapid and cost-effective than traditional methods, while providing equitable specificity for typing E. coli H antigens.
Collapse
|
24
|
Karger A, Stock R, Ziller M, Elschner MC, Bettin B, Melzer F, Maier T, Kostrzewa M, Scholz HC, Neubauer H, Tomaso H. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing. BMC Microbiol 2012; 12:229. [PMID: 23046611 PMCID: PMC3534143 DOI: 10.1186/1471-2180-12-229] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/25/2012] [Indexed: 11/17/2022] Open
Abstract
Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.
Collapse
Affiliation(s)
- Axel Karger
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Südufer 10, Greifswald-Insel Riems D-17493, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Naseer U, Olsson-Liljequist BE, Woodford N, Dhanji H, Cantón R, Sundsfjord A, Lindstedt BA. Multi-locus variable number of tandem repeat analysis for rapid and accurate typing of virulent multidrug resistant Escherichia coli clones. PLoS One 2012; 7:e41232. [PMID: 22859970 PMCID: PMC3407997 DOI: 10.1371/journal.pone.0041232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
One hundred E. coli isolates from Norway
(n = 37), Sweden (n = 24), UK
(n = 20) and Spain (n = 19), producing
CTX-M-type - (n = 84), or SHV-12
(n = 4) extended spectrum β-lactamases, or the plasmid
mediated AmpC, CMY-2 (n = 12), were typed using multi-locus
sequence typing (MLST) and multi-locus variable number of tandem repeat analysis
(MLVA). Isolates clustered into 33 Sequence Types (STs) and 14 Sequence Type
Complexes (STCs), and 58 MLVA-Types (MTs) and 25 different MLVA-Type Complexes
(MTCs). A strong agreement between the MLST profile and MLVA typing results was
observed, in which all ST131-isolates (n = 39) and most of
the STC-648 (n = 10), STC-38 (n = 9),
STC-10 (n = 9), STC-405 (n = 8) and
STC-23 (n = 6) isolates were clustered distinctly into
MTC-29, -36, -20, -14, -10 and -39, respectively. MLVA is a rapid and accurate
tool for genotyping isolates of globally disseminated virulent multidrug
resistant E. coli lineages, including ST131.
Collapse
Affiliation(s)
- Umaer Naseer
- Research Group for Host-Microbe Interactions, Department of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
26
|
Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36:380-407. [DOI: 10.1111/j.1574-6976.2011.00298.x] [Citation(s) in RCA: 581] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022] Open
|
27
|
Schumaker S, Borror CM, Sandrin TR. Automating data acquisition affects mass spectrum quality and reproducibility during bacterial profiling using an intact cell sample preparation method with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:243-253. [PMID: 22223309 DOI: 10.1002/rcm.5309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) has emerged as a promising tool to rapidly profile bacteria at the genus and species level and, more recently, at the sub-species (strain) level. Recently, it has been proposed that the approach can be enhanced with regard to reproducibility and throughput by automating spectrum acquisition; however, effects of automating spectrum acquisition on spectrum quality and reproducibility have not been investigated. Using an intact cell-based sample preparation method, we directly compared the quality and reproducibility of spectra acquired in a fully automated fashion to those acquired manually by two operators with different levels of experience. While automation tended to increase base peak resolution, other measures of spectrum quality, including signal-to-noise (S:N) ratio, data richness, and reproducibility were reduced. Negative effects of automation on the performance of this approach to bacterial profiling may be particularly important during profiling of closely related strains of bacteria that yield very similar spectra.
Collapse
Affiliation(s)
- Stephanie Schumaker
- Division of Mathematical and Natural Sciences, Arizona State University, MC 2352, P.O. Box 37100, Phoenix, AZ 85069, USA
| | | | | |
Collapse
|
28
|
Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2011; 77:4136-46. [PMID: 21515723 DOI: 10.1128/aem.02418-10] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques.
Collapse
|