1
|
Ariaeenejad S, Zeinalabedini M, Sadeghi A, Gharaghani S, Mardi M. Enhancing nutritional and potential antimicrobial properties of poultry feed through encapsulation of metagenome-derived multi-enzymes. BMC Biotechnol 2024; 24:76. [PMID: 39379947 PMCID: PMC11463139 DOI: 10.1186/s12896-024-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The encapsulation of metagenome-derived multi-enzymes presents a novel approach to improving poultry feed by enhancing nutrient availability and reducing anti-nutritional factors. By integrating and encapsulated enzymes such as carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase into feed formulations, this method not only improves feed digestibility but also potentially contributes to animal health and productivity through antimicrobial properties. RESULTS This study investigates the encapsulation of metagenome-derived enzymes, including carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase, using Arabic and Guar gums as encapsulating agents. The encapsulated multi-enzymes exhibited significant antimicrobial activity, achieving a 92.54% inhibition rate against Escherichia coli at a concentration of 6 U/mL. Fluorescence tracking with FITC-labeled enzymes confirmed efficient encapsulation and distribution, while physical characterization, including moisture content and solubility assessments, along with Atomic Force Microscopy (AFM) imaging, validated successful encapsulation. The encapsulated enzymes also effectively hydrolyzed poultry feed, leading to an increase in phenolic content and antioxidant activity, as confirmed by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. CONCLUSIONS The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars and enhancing physical properties such as solubility and water-holding capacity. The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars, antioxidant activity and enhancing physical properties such as solubility and water-holding capacity. Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR) analyses confirmed the enzymatic breakdown of the feed structure. These results suggest that supplementing poultry feed with encapsulated multi-enzymes can enhance its physical, nutritional, and functional properties, leading to improved digestibility and overall feed quality.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Research Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics & Drug Design (LBD), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohsen Mardi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Sousa J, Santos-Pereira C, Gomes JS, Costa ÂMA, Santos AO, Franco-Duarte R, Linhares JMM, Sousa SF, Silvério SC, Rodrigues LR. Heterologous expression and structure prediction of a xylanase identified from a compost metagenomic library. Appl Microbiol Biotechnol 2024; 108:329. [PMID: 38727750 PMCID: PMC11087322 DOI: 10.1007/s00253-024-13169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Xylanases are key biocatalysts in the degradation of the β-1,4-glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-β-xylanase belonging to glycosyl hydrolase family 10 (GH10). When xyl4 was expressed in Escherichia coli BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications. KEY POINTS: • A GH10 endo-1,4-β-xylanase (Xyl4) was isolated from a compost metagenomic library • MATLAB's in-house functions were developed to identify the xylanase-producing clones • Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis.
Collapse
Affiliation(s)
- Joana Sousa
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cátia Santos-Pereira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana S Gomes
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ângela M A Costa
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andréia O Santos
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - João M M Linhares
- Physics Center of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Sara C Silvério
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Yi L, Zhu J, Li Q, Guan X, Cheng W, Xie Y, Zhao Y, Zhao S. Panax notoginseng stems and leaves affect microbial community and function in cecum of duzang pigs. Transl Anim Sci 2024; 8:txad142. [PMID: 38425544 PMCID: PMC10904106 DOI: 10.1093/tas/txad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Panax notoginseng is a Chinese medicine with a long history in which stems and leaves are the wastes of processing Panax notoginseng and have not been effectively utilized. The effects of diets containing Panax notoginseng stems and leaves on the cecal short-chain fatty acid (SCFA) concentration and microbiome of independent pigs were studied. Diets containing Panax notoginseng stems and leaves did not affect the concentration of SCFA in the cecal contents of Duzang pigs but affected the microbial composition and diversity. Firmicutes, Proteobacteria, and Bacteroidetes dominate in the cecal of Duzang pigs. Feeding Duzang pigs with a 10% Panax notoginseng stems and leaves diet increases the abundance of Lactobacillus, Christensenellaceae R-7 group, and Akkermansia in the cecal. We found 14 genera positively associated with acetate, and they were Lactobacillus, Ruminococcaceae UCG 005, Ruminiclostridium 6; Escherichia Shigella and Family XIII AD3011 group showed negative correlations. Solobacterium, Desulfovibrio, and Erysipelatoclostridium were positively associated with propionate. Campylobacter, Clostridium sensu stricto 11, and Angelakisella were positively associated with butyrate. In conclusion, Panax notoginseng stems and leaves could affect the cecal microbial community and functional composition of Duzang pigs. Panax notoginseng stems and leaves reduce the enrichment of lipopolysaccharide biosynthetic pathway of the cecal microbiome, which may have a positive effect on intestinal health. The higher abundance of GH25 family in Duzang pig's cecal microbiome of fed Panax notoginseng stems and leaves diet. This increase may be the reason for the microbial diversity decrease.
Collapse
Affiliation(s)
- Lanlan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
| | - Qiuyan Li
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
| | - Xuancheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
| | - Wenjie Cheng
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
| | - Yuxiao Xie
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
- College of Biology and Agriculture, Zunyi Normal University, Guizhou 563006, China
| | - Yanguang Zhao
- Shanghai Academy of Science Technology, Shanghai Lab. Animal Research Center, Shanghai 201203, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Yunnan 650201, China
| |
Collapse
|
4
|
Yin YR, Li XW, Long CH, Li L, Hang YY, Rao MD, Yan X, Liu QL, Sang P, Li WJ, Yang LQ. Characterization of a GH10 extremely thermophilic xylanase from the metagenome of hot spring for prebiotic production. Sci Rep 2023; 13:16053. [PMID: 37749183 PMCID: PMC10520001 DOI: 10.1038/s41598-023-42920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
A xylanase gene (named xyngmqa) was identified from the metagenomic data of the Gumingquan hot spring (92.5 °C, pH 9.2) in Tengchong City, Yunnan Province, southwest China. It showed the highest amino acid sequence identity (82.70%) to endo-1,4-beta-xylanase from Thermotoga caldifontis. A constitutive expression plasmid (denominated pSHY211) and double-layer plate (DLP) method were constructed for cloning, expression, and identification of the XynGMQA gene. The XynGMQA gene was synthesized and successfully expressed in Escherichia coli DH5α. XynGMQA exhibited optimal activity at 90 °C and pH 4.6, being thermostable by maintaining 100% of its activity after 2 h incubated at 80 °C. Interestingly, its enzyme activity was enhanced by high temperatures (70 and 80 °C) and low pH (3.0-6.0). About 150% enzyme activity was detected after incubation at 70 °C for 20 to 60 min or 80 °C for 10 to 40 min, and more than 140% enzyme activity after incubation at pH 3.0 to 6.0 for 12 h. Hydrolytic products of beechwood xylan with XynGMQA were xylooligosaccharides, including xylobiose (X2), xylotriose (X3), and xylotetraose (X4). These properties suggest that XynGMQA as an extremely thermophilic xylanase, may be exploited for biofuel and prebiotic production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yi-Rui Yin
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China.
| | - Xin-Wei Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, 671003, People's Republic of China
| | - Chao-Hua Long
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Lei Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Yu-Ying Hang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Meng-Di Rao
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Xin Yan
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Quan-Lin Liu
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Peng Sang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, 671003, People's Republic of China
| | - Wen-Jun Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China.
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China.
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, 671003, People's Republic of China.
| |
Collapse
|
5
|
Mukherjee S, Lodha TD, Madhuprakash J. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus Paenibacillus: Special Emphasis on the Novel Xylanolytic Paenibacillus sp. LS1. Microbiol Spectr 2023; 11:e0502822. [PMID: 37071006 PMCID: PMC10269863 DOI: 10.1128/spectrum.05028-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Xylan is the most abundant hemicellulose in hardwood and graminaceous plants. It is a heteropolysaccharide comprising different moieties appended to the xylose units. Complete degradation of xylan requires an arsenal of xylanolytic enzymes that can remove the substitutions and mediate internal hydrolysis of the xylan backbone. Here, we describe the xylan degradation potential and underlying enzyme machinery of the strain, Paenibacillus sp. LS1. The strain LS1 was able to utilize both beechwood and corncob xylan as the sole source of carbon, with the former being the preferred substrate. Genome analysis revealed an extensive xylan-active CAZyme repertoire capable of mediating efficient degradation of the complex polymer. In addition to this, a putative xylooligosaccharide ABC transporter and homologues of the enzymes involved in the xylose isomerase pathway were identified. Further, we have validated the expression of selected xylan-active CAZymes, transporters, and metabolic enzymes during growth of the LS1 on xylan substrates using qRT-PCR. The genome comparison and genomic index (average nucleotide identity [ANI] and digital DNA-DNA hybridization) values revealed that strain LS1 is a novel species of the genus Paenibacillus. Lastly, comparative genome analysis of 238 genomes revealed the prevalence of xylan-active CAZymes over cellulose across the Paenibacillus genus. Taken together, our results indicate that Paenibacillus sp. LS1 is an efficient degrader of xylan polymers, with potential implications in the production of biofuels and other beneficial by-products from lignocellulosic biomass. IMPORTANCE Xylan is the most abundant hemicellulose in the lignocellulosic (plant) biomass that requires cooperative deconstruction by an arsenal of different xylanolytic enzymes to produce xylose and xylooligosaccharides. Microbial (particularly, bacterial) candidates that encode such enzymes are an asset to the biorefineries to mediate efficient and eco-friendly deconstruction of xylan to generate products of value. Although xylan degradation by a few Paenibacillus spp. is reported, a complete genus-wide understanding of the said trait is unavailable till date. Through comparative genome analysis, we showed the prevalence of xylan-active CAZymes across Paenibacillus spp., therefore making them an attractive option towards efficient xylan degradation. Additionally, we deciphered the xylan degradation potential of the strain Paenibacillus sp. LS1 through genome analysis, expression profiling, and biochemical studies. The ability of Paenibacillus sp. LS1 to degrade different xylan types obtained from different plant species, emphasizes its potential implication in lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | | | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| |
Collapse
|
6
|
Khamassi A, Dumon C. Enzyme synergy for plant cell wall polysaccharide degradation. Essays Biochem 2023; 67:521-531. [PMID: 37067158 DOI: 10.1042/ebc20220166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023]
Abstract
Valorizing plant cell wall, marine and algal polysaccharides is of utmost importance for the development of the circular bioeconomy. This is because polysaccharides are by far the most abundant organic molecules found in nature with complex chemical structures that require a large set of enzymes for their degradation. Microorganisms produce polysaccharide-specific enzymes that act in synergy when performing hydrolysis. Although discovered since decades enzyme synergy is still poorly understood at the molecular level and thus it is difficult to harness and optimize. In the last few years, more attention has been given to improve and characterize enzyme synergy for polysaccharide valorization. In this review, we summarize literature to provide an overview of the different type of synergy involving carbohydrate modifying enzymes and the recent advances in the field exemplified by plant cell-wall degradation.
Collapse
Affiliation(s)
- Ahmed Khamassi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
7
|
Wu H, Montanier CY, Dumon C. Quantifying CBM-Carbohydrate Interactions Using Microscale Thermophoresis. Methods Mol Biol 2023; 2657:103-114. [PMID: 37149525 DOI: 10.1007/978-1-0716-3151-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microscale thermophoresis (MST) is an emerging technology for studying a broad range of biomolecular interactions with a high sensitivity. The affinity constant can be obtained for a wide range of molecules within minutes based on reactions in microliters. Here we describe the application of MST in quantifying protein-carbohydrate interactions. A CBM3a and a CBM4 are titrated with insoluble substrate (cellulose nanocrystal) and soluble oligosaccharide (xylohexaose), respectively.
Collapse
Affiliation(s)
- Haiyang Wu
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
8
|
Mon ML, Marrero Díaz de Villegas R, Campos E, Soria MA, Talia PM. Characterization of a novel GH10 alkali-thermostable xylanase from a termite microbiome. BIORESOUR BIOPROCESS 2022; 9:84. [PMID: 38647897 PMCID: PMC10992782 DOI: 10.1186/s40643-022-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to assess the biochemical and molecular structural characteristics of a novel alkali-thermostable GH10 xylanase (Xyl10B) identified in a termite gut microbiome by a shotgun metagenomic approach. This endoxylanase candidate was amplified, cloned, heterologously expressed in Escherichia coli and purified. The recombinant enzyme was active at a broad range of temperatures (37-60 ºC) and pH values (4-10), with optimal activity at 50 ºC and pH 9. Moreover, its activity remained at more than 80% of its maximum at 50 °C for 8 h. In addition, Xyl10B was found to be stable in the presence of salt and several ions and chemical reagents frequently used in the industry. These characteristics make this enzyme an interesting candidate for pulp and paper bleaching industries, since this process requires enzymes without cellulase activity and resistant to high temperatures and alkaline pH (thermo-alkaliphilic enzymes). The products of xylan hydrolysis by Xyl10B (short xylooligosaccharides, xylose and xylobiose) could be suitable for application as prebiotics and in the production of bioethanol.
Collapse
Affiliation(s)
- Maria Laura Mon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Rubén Marrero Díaz de Villegas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marcelo A Soria
- Facultad de Agronomía, Cátedra de Microbiología Agrícola, Universidad de Buenos Aires, INBA UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Invitro bioprocessing of corn as poultry feed additive by the influence of carbohydrate hydrolyzing metagenome derived enzyme cocktail. Sci Rep 2022; 12:405. [PMID: 35013392 PMCID: PMC8749004 DOI: 10.1038/s41598-021-04103-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate-hydrolyzing enzymes play a crucial role in increasing the phenolic content and nutritional properties of polysaccharides substrate, essential for cost-effective industrial applications. Also, improving the feed efficiency of poultry is essential to achieve significant economic benefits. The current study introduced a novel thermostable metagenome-derived xylanase named PersiXyn8 and investigated its synergistic effect with previously reported α-amylase (PersiAmy3) to enhance poultry feed utilization. The potential of the enzyme cocktail in the degradation of poultry feed was analyzed and showed 346.73 mg/g poultry feed reducing sugar after 72 h of hydrolysis. Next, the impact of solid-state fermentation on corn quality was investigated in the presence and absence of enzymes. The phenolic content increased from 36.60 mg/g GAE in control sample to 68.23 mg/g in the presence of enzymes. In addition, the enzyme-treated sample showed the highest reducing power OD 700 of 0.217 and the most potent radical scavenging activity against ABTS (40.36%) and DPPH (45.21%) radicals. Moreover, the protein and ash contents of the fermented corn increased by 4.88% and 6.46%, respectively. These results confirmed the potential of the carbohydrate-hydrolyzing enzymes cocktail as a low-cost treatment for improving the phenolic content, antioxidant activity, and nutritional values of corn for supplementation of corn-based poultry feed.
Collapse
|
10
|
Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:126058. [PMID: 34597805 DOI: 10.1016/j.biortech.2021.126058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The field of enzymatic degradation of lignocellulose is actively growing and the recent updates of the last few years indicate that there is still much to learn. The growing number of protein sequences with unknown function in microbial genomes indicates that there is still much to learn on the mechanisms of lignocellulose degradation. In this review, a summary of the progress in the field is presented, including recent discoveries on the nature of the structural polysaccharides, new technologies for the discovery and functional annotation of gene sequences including omics technologies, and the novel lignocellulose-acting enzymes described. Novel enzymatic activities and enzyme families as well as accessory enzymes and their synergistic relationships regarding biomass breakdown are described. Moreover, it is shown that all the valuable knowledge of the enzymatic decomposition of plant biomass polymers can be employed towards the decomposition and upgrading of synthetic polymers, such as plastics.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
11
|
Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microb Cell Fact 2021; 20:107. [PMID: 34044834 PMCID: PMC8161579 DOI: 10.1186/s12934-021-01597-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India.
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, 12.602.810, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
12
|
Wang J, Liang J, Li Y, Tian L, Wei Y. Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota. AMB Express 2021; 11:19. [PMID: 33464408 PMCID: PMC7815853 DOI: 10.1186/s13568-020-01178-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
Abstract
Xylanases are widely used enzymes in the food, textile, and paper industries. Most efficient xylanases have been identified from lignocellulose-degrading microbiota, such as the microbiota of the cow rumen and the termite hindgut. Xylanase genes from efficient pulp and paper wastewater treatment (PPWT) microbiota have been previously recovered by metagenomics, assigning most of the xylanase genes to the GH10 family. In this study, a total of 40 GH10 family xylanase genes derived from a certain PPWT microbiota were cloned and expressed in Escherichia coli BL21 (DE3). Among these xylanase genes, 14 showed xylanase activity on beechwood substrate. Two of these, PW-xyl9 and PW-xyl37, showed high activities, and were purified to evaluate their xylanase properties. Values of optimal pH and temperature for PW-xyl9 were pH 7 and 60 ℃, respectively, while those for PW-xyl37 were pH 7 and 55 ℃, respectively; their specific xylanase activities under optimal conditions were 470.1 U/mg protein and 113.7 U/mg protein, respectively. Furthermore, the Km values of PW-xyl9 and PW-xyl37 were determined as 8.02 and 18.8 g/L, respectively. The characterization of these two xylanases paves the way for potential application in future pulp and paper production and other industries, indicating that PPWT microbiota has been an undiscovered reservoir of efficient lignocellulase genes. This study demonstrates that a metagenomic approach has the potential to screen efficient xylanases of uncultured microorganisms from lignocellulose-degrading microbiota. In a similar way, other efficient lignocellulase genes might be identified from PPWT treatment microbiota in the future.
Collapse
|