1
|
Yang J, Guo Z, Al-Dhabi NA, Shi J, Peng Y, Miao B, Liu H, Liang Y, Yin H, Liu X, Tang W, Jiang L. The succession of microbial community and distribution resistance gene in response to enrichment cultivation derived from a long-term toxic metal(loid)s polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176385. [PMID: 39304162 DOI: 10.1016/j.scitotenv.2024.176385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Microbial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing. And the co-occurrence relationships between soil microbial community after enrichment cultivation and MRGs genes were also analyzed through the BacMet database. Results showed that the dominant genus in the soils was Lactobacillus and Stenotrophomonas. The soil microbial community exhibited a notable correlation with Cd, Pb, and As, among which Cd exerted the most profound impact. Alishewanella, Pseudomonas, Massilia and Roseibacillus were significantly correlated with the fraction of Cd. After enrichment cultivation, the number of genera decrease to 96. And the dominant genus changed to Acinetobacter, Bacillus, Comamonas, Lysobacter, and Pseudoxanthomonas. High abundance of metal resistance genes (MRGs) including zntA, fpvA, zipB, cadA, czcA, czcB, czcC, zntA, arsR, pstS and pstB was found in the microbial community after enrichment cultivation. The potential host genus for MRGs was Acinetobacter, Comamonas, Lysinibacillus, Azotobacter, Bacillus, Lysobacter, Cupriavidus, Pseudoxanthomonas, and Thermomonas. Additionally, these microbial community after enrichment cultivation possessing pathways of bacterial chemotaxis and two-component systems was enabled them to adapt to the polluted environment. These observations provided potential guidance for microbe isolation and the development of strategies for the bioremediation of toxic metal(loid)s polluted soils.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Dos-Santos CM, Nascimento WBA, Cesar MJSC, Baldani JI, Schwab S. Diversity of bacteria of the genus Sphingomonas associated with sugarcane (Saccharum spp.) culm apoplast fluid and their agrotechnological potential. World J Microbiol Biotechnol 2024; 40:304. [PMID: 39155347 DOI: 10.1007/s11274-024-04111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
In sugarcane, sequences related to the genus Sphingomonas have been widely detected by microbiome studies. In this work, the presence of bacteria of this genus was confirmed using culture-dependent and independent techniques. A collection of thirty isolates was obtained using semispecific cultivation conditions, and a specific PCR assay was applied to help confirm the isolates as belonging to the genus. A series of laboratory evaluations were carried out to identify potential properties among the isolates in the collection, which consequently allowed the identification of some most promising isolates for the development of new agricultural bioinputs. In a separate analysis, the culture-independent fluorescence in situ hybridization (FISH) methodology was applied to demonstrate the natural occurrence of Sphingomonas in different organs and tissues of sugarcane. The results showed the presence of bacteria of the genus in the spaces between cells (apoplast) of the culm parenchyma, in vessels in the region of the leaf vein, on the adaxial surface of the leaf blade, and on the root surface, sometimes close to the base of root hairs, which suggests extensive colonization on the host plant. In summary, the present study corroborates previous metagenomic amplicon sequencing results that indicated a high occurrence of Sphingomonas associated with sugarcane. This is the first study that uses approaches other than amplicon sequencing to confirm the occurrence of the genus in sugarcane and, at the same time, demonstrates potentially beneficial activities to be explored by sugarcane cultivation.
Collapse
Affiliation(s)
- Carlos M Dos-Santos
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23897-000, Brazil
- Instituto SENAI de Inovação em Química Verde, Rio de Janeiro, Rio de Janeiro State, 20271-030, Brazil
| | - W Bruno A Nascimento
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
- Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23897-000, Brazil
| | - M Joana S C Cesar
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23897-000, Brazil
| | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
| | - Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil.
| |
Collapse
|
3
|
Cui C, Li F, Zeng Q, Li C, Shen W, Gao X, Li X, Zhao W, Dong J, Li J, Yang M. Influence of Fertilization Methods and Types on Wheat Rhizosphere Microbiome Community and Functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7794-7806. [PMID: 38561246 DOI: 10.1021/acs.jafc.3c09941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To investigate the effects of fertilization methods and types on wheat rhizosphere microorganisms, macroelement (N, K) and microelement (Zn) fertilizers were applied on wheat by foliar spraying (FS) and root irrigation (RI) methods in a field experiment. The results indicated that fertilization methods and types can have significant impacts on the diversity and structure of rhizospheric microorganisms in wheat. The application method produced more significant effects than the fertilizer type. RI-N played a more important role in improving the wheat yield and quality and affected the changes in some nitrogen-fixing bacterial communities. Finally, eight strains of bacteria belonging to Pseudomonas azotoformans and P. cedrina showed positive effects on the growth of wheat seedlings. Overall, our study provides a better understanding of the dynamics of wheat rhizosphere microbial communities and their relation to fertilization, yield, and quality, showing that plant growth-promoting rhizobacteria with nitrogen fixing may be a potential approach for more sustainable agriculture production.
Collapse
Affiliation(s)
- Chao Cui
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Fang Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chenyang Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Wei Shen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiaoyan Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Wanchun Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jiangang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| |
Collapse
|
4
|
Abdullah M, Tariq M, Zahra ST, Ahmad A, Zafar M, Ali S. Potential of psychrotolerant rhizobacteria for the growth promotion of wheat ( Triticum aestivum L.). PeerJ 2023; 11:e16399. [PMID: 38050608 PMCID: PMC10693821 DOI: 10.7717/peerj.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 12/06/2023] Open
Abstract
Wheat is the second most important staple crop grown and consumed worldwide. Temperature fluctuations especially the cold stress during the winter season reduces wheat growth and grain yield. Psychrotolerant plant growth-promoting rhizobacteria (PGPR) may improve plant stress-tolerance in addition to serve as biofertilizer. The present study aimed to isolate and identify PGPR, with the potential to tolerate cold stress for subsequent use in supporting wheat growth under cold stress. Ten psychrotolerant bacteria were isolated from the wheat rhizosphere at 4 °C and tested for their ability to grow at wide range of temperature ranging from -8 °C to 36 °C and multiple plant beneficial traits. All bacteria were able to grow at 4 °C to 32 °C temperature range and solubilized phosphorus except WR23 at 4 °C, whereas all the bacteria solubilized phosphorus at 28 °C. Seven bacteria produced indole-3-acetic acid at 4 °C, whereas all produced indole-3-acetic acid at 28 °C. Seven bacteria showed the ability to fix nitrogen at 4 °C, while all the bacteria fixed nitrogen at 28 °C. Only one bacterium showed the potential to produce cellulase at 4 °C, whereas four bacteria showed the potential to produce cellulase at 28 °C. Seven bacteria produced pectinase at 4 °C, while one bacterium produced pectinase at 28 °C. Only one bacterium solubilized the zinc at 4 °C, whereas six bacteria solubilized the zinc at 28 °C using ZnO as the primary zinc source. Five bacteria solubilized the zinc at 4 °C, while seven bacteria solubilized the zinc at 28 °C using ZnCO3 as the primary zinc source. All the bacteria produced biofilm at 4 °C and 28 °C. In general, we noticed behavior of higher production of plant growth-promoting substances at 28 °C, except pectinase assay. Overall, in vitro testing confirms that microbes perform their inherent properties efficiently at optimum temperatures rather than the low temperatures due to high metabolic rate. Five potential rhizobacteria were selected based on the in vitro testing and evaluated for plant growth-promoting potential on wheat under controlled conditions. WR22 and WR24 significantly improved wheat growth, specifically increasing plant dry weight by 42% and 58%, respectively. 16S rRNA sequence analysis of WR22 showed 99.78% similarity with Cupriavidus campinensis and WR24 showed 99.9% similarity with Enterobacter ludwigii. This is the first report highlighting the association of C. campinensis and E. ludwigii with wheat rhizosphere. These bacteria can serve as potential candidates for biofertilizer to mitigate the chilling effect and improve wheat production after field-testing.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mohsin Tariq
- Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Syeda Tahseen Zahra
- Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Azka Ahmad
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Punjab, Pakistan
| | - Marriam Zafar
- Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Shad Ali
- Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
5
|
Liu X, Huang Y, Guan H, Wiggenhauser M, Caggìa V, Schlaeppi K, Mestrot A, Bigalke M. Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162490. [PMID: 36871705 DOI: 10.1016/j.scitotenv.2023.162490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Zinc (Zn) is an important micronutrient but can be toxic at elevated concentrations. We conducted an experiment to test the effect of plant growth and soil microbial disturbance on Zn in soil and plants. Pots were prepared with and without maize and in an undisturbed soil, a soil that was disturbed by X-ray sterilization and a soil that was sterilized but reconditioned with the original microbiome. The Zn concentration and isotope fractionation between the soil and the soil pore water increased with time, which is probably due to physical disturbance and fertilization. The presence of maize increased the Zn concentration and isotope fractionation in pore water. This was likely related to the uptake of light isotopes by plants and root exudates that solubilized heavy Zn from the soil. The sterilization disturbance increased the concentration of Zn in the pore water, because of abiotic and biotic changes. Despite a threefold increase in Zn concentration and changes in the Zn isotope composition in the pore water, the Zn content and isotope fractionation in the plant did not change. These results have implications for Zn mobility and uptake in crop plants and are relevant in terms of Zn nutrition.
Collapse
Affiliation(s)
- Xiaowen Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China; Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland; Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China.
| | - Hang Guan
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Matthias Wiggenhauser
- Institute of Agricultural Sciences, Group of Plant Nutrition, ETH Zürich, Switzerland
| | - Veronica Caggìa
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Department of Environmental Sciences, Faculty of Science, University of Basel, 4056 Basel, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland; Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany.
| |
Collapse
|
6
|
Singh S, Kaur J, Ram H, Singh J, Kaur S. Agronomic bio-fortification of wheat ( Triticum aestivum L.) to alleviate zinc deficiency in human being. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2023; 22:505-526. [PMID: 37234132 PMCID: PMC10134721 DOI: 10.1007/s11157-023-09653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
Worldwide, 40% population consumes wheat (Triticum aestivum L.) as a staple food that is low in zinc (Zn) content. Zn deficiency is a major micronutrient disorder in crop plants and humans worldwide, adversely impacting agricultural productivity, human health and socio-economic concern. Globally, the entire cycle of increasing the Zn concentration in wheat grains and its ultimate effect on grain yield, quality, human health & nutrition and socio-economic status of livelihood is less compared. So the present studies were planned to compare the worldwide studies for the alleviation of Zn malnutrition. Zn intake is affected by numerous factors from soil to crop, crop to food and food to humans. The post-harvest fortification, diversification in dietary habits, mineral supplementation and biofortification are various possible approaches to enhance the Zn concentration in food. The wheat grains Zn is influenced by the Zn application technique and time concerning crop developmental stages. The use of soil microorganisms mobilize unavailable Zn, and improve Zn assimilation, plant growth, yield and Zn content in wheat. Climate change can have an inverse impact on the efficiency of agronomic biofortification methods due to a reduction in grain-filling stages. Agronomic biofortification can improve Zn content, crop yield as well as quality and ultimately, have a positive impact on human nutrition, health and socioeconomic status of livelihood. Though bio-fortification research has progressed, some crucial areas are still needed to be addressed or improved to achieve the fundamental purpose of agronomic biofortification.
Collapse
Affiliation(s)
| | - Jagmohan Kaur
- Punjab Agricultural University, Ludhiana, 141004 India
| | - Hari Ram
- Punjab Agricultural University, Ludhiana, 141004 India
| | | | - Sirat Kaur
- Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
7
|
Abstract
The genus Bacillus has been widely applied in contemporary agriculture as an environmentally-friendly biological agent. However, the real effect of commercial Bacillus-based fertilizers and pesticides varies immensely in the field. To harness Bacillus for efficient wheat production, we reviewed the diversity, functionality, and applicability of wheat-associated native Bacillus for the first time. Our main findings are: (i) Bacillus spp. inhabit the rhizosphere, root, stem, leaf, and kernel of wheat; (ii) B. subtilis and B. velezensis are the most widely endophytic species that can be isolated from both below and aboveground tissues; (iii) major functions of these representative strains are promotion of plant growth and alleviation of both abiotic and biotic stresses in wheat; (iv) stability and effectiveness are 2 major challenges during field application; (v) a STVAE pipeline that includes 5 processes, namely, Screen, Test, Validation, Application, and Evaluation, has been proposed for the capture and refinement of wheat-associated Bacillus spp. In particular, this review comprehensively addresses possible solutions, concerns, and criteria during the development of native Bacillus-based inoculants for sustainable wheat production.
Collapse
|
8
|
Plant Growth-Promoting Attributes of Zinc Solubilizing Dietzia maris Isolated from Polyhouse Rhizospheric Soil of Punjab. Curr Microbiol 2023; 80:48. [DOI: 10.1007/s00284-022-03147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
|
9
|
Rani N, Kaur G, Kaur S, Mutreja V, Upadhyay SK, Tripathi M. Comparison of diversity and zinc solubilizing efficiency of rhizobacteria obtained from solanaceous crops under polyhouse and open field conditions. Biotechnol Genet Eng Rev 2022:1-22. [PMID: 36544391 DOI: 10.1080/02648725.2022.2157949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Zinc-solubilizing bacteria (Zn-SB) play a crucial role in regulating soil fertility and plant health by maintaining Zn availability in the rhizosphere. It is uncertain how the Zn-SB population fluctuates across various cultivation systems since varied land-use patterns for agricultural aims may affect microbial activity and plant development effectiveness. The current study aims to examine the Zn-SB potential of various farming systems using Solanum lycopersicum, Solanum melongena, and Capsicum annuum grown in polyhouse soil (PS) and open fields (OF). Only twenty rhizobacterial isolates from PS and two isolates from OF out of 80 showed a strong ability to solubilize Zn, which was evaluated using Atomic Absorption Spectroscopy. Bacterial strain-PS4 solubilized 253.06 ppm of ZnO and produced a high quantity of lactic acid (168.62 g/ml) and acetic acid (470.5 g/ml), whereas bacterial strain OF1 solubilized 16.02 ppm of ZnO by releasing glycolic acid (42.89 g/ml), lactic acid (22.30 g/ml), formic acid (106.03 g/ml), and acetic acid (48.5 µg/ml). Further, in vitro studies demonstrated higher production of auxin, gibberellic acid and siderophore by PS1 as compared to OF1 strain. A large diversity of Zn-SB in the soil was indicated by biochemical analysis, which revealed that isolates belonged to the families Enterobacteriaceae, Bacillaceae, Burkholderiaceae, Streptococcaceae, Paenibacillaceae, Micrococcaceae, Morganellaceae, and Dietziaceae. The isolates PS4 and OF1 were identified as Bacillus cereus and Enterobacter hormaechei, respectively, using 16S rRNA sequencing. The findings show that soil from polyhouses has a greater diversity of Zn-solubilization rhizobacteria than soil from open areas. The findings suggested a potential land-use method for enhancing crop yields by employing microorganisms and polyhouse technology, which could be useful in the future study.
Collapse
Affiliation(s)
- Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Gurparteek Kaur
- Department of Agricultural Sciences, Chandigarh University, Mohali, Punjab, India
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vishal Mutreja
- Department of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
10
|
Suriyachadkun C, Chunhachart O, Srithaworn M, Tangchitcharoenkhul R, Tangjitjareonkun J. Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean ( Glycine max (L.) Merrill). J Microbiol Biotechnol 2022; 32:1435-1446. [PMID: 36330749 PMCID: PMC9720072 DOI: 10.4014/jmb.2206.06058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 μg/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 μg/ml and the strain EX51 produced the highest amount of ammonia 361.04 μg/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 μg/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.
Collapse
Affiliation(s)
- Chanwit Suriyachadkun
- Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chunhachart
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom, 73140, Thailand
| | - Moltira Srithaworn
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom, 73140, Thailand
| | | | - Janpen Tangjitjareonkun
- Department of Resources and Environment, Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, 20230, Thailand,Corresponding author Phone: +66-38-352813 Fax: +66-38-354587 E-mail:
| |
Collapse
|
11
|
Zhong C, Chen C, Gao X, Tan C, Bai H, Ning K. Multi-omics profiling reveals comprehensive microbe-plant-metabolite regulation patterns for medicinal plant Glycyrrhiza uralensis Fisch. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1874-1887. [PMID: 35668676 PMCID: PMC9491449 DOI: 10.1111/pbi.13868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 05/16/2023]
Abstract
Glycyrrhiza uralensis Fisch is a medicinal plant widely used to treat multiple diseases in Europe and Asia, and its efficacy largely depends on liquiritin and glycyrrhizic acid. The regulatory pattern responsible for the difference in efficacy between wild and cultivated G. uralensis remains largely undetermined. Here, we collected roots and rhizosphere soils from wild (WT) G. uralensis as well as those farmed for 1 year (C1) and 3 years (C3), generated metabolite and transcript data for roots, microbiota data for rhizospheres and conducted comprehensive multi-omics analyses. We updated gene structures for all 40 091 genes in G. uralensis, and based on 52 differentially expressed genes, we charted the route-map of both liquiritin and glycyrrhizic acid biosynthesis, with genes BAS, CYP72A154 and CYP88D6 critical for glycyrrhizic acid biosynthesis being significantly expressed higher in wild G. uralensis than in cultivated G. uralensis. Additionally, multi-omics network analysis identified that Lysobacter was strongly associated with CYP72A154, which was required for glycyrrhizic acid biosynthesis. Finally, we developed a holistic multi-omics regulation model that confirmed the importance of rhizosphere microbial community structure in liquiritin accumulation. This study thoroughly decoded the key regulatory mechanisms of liquiritin and glycyrrhizic acid, and provided new insights into the interactions of the plant's key metabolites with its transcriptome, rhizosphere microbes and environment, which would guide future cultivation of G. uralensis.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Karst Biodiversity and Ecological Security, College of Environmental and Life SciencesNanning Normal UniversityNanningChina
| | - Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Chongyang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
12
|
Singh J, Singh AV, Upadhayay VK, Khan A, Chandra R. Prolific contribution of Pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. World J Microbiol Biotechnol 2022; 38:227. [PMID: 36136176 DOI: 10.1007/s11274-022-03411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
The current study aimed to characterize the contribution of bacterium CP17 in zinc (Zn) biofortification in wheat under saline and non-saline conditions. This bacterial strain effectively solubilized Zn and tolerated up to 20% NaCl concentration. The Zn-solubilization potential was also quantified using AAS in a liquid broth supplemented with zinc oxide and zinc carbonate at various NaCl concentrations. Lowering the pH of liquid broth and analyzing a wide range of organic acids (thioacetic acid, glutamic acid, carboxylic acid, propionic acid, and so on) using UPLC-MS provided mechanistic insight for zinc solubilization. This strain was also shown to possess plant probiotic characteristics like phosphate solubilization, production of siderophore, indole acetic acid (IAA), exopolysaccharide (EPS), ACC deaminase, and ammonia. CP17 was identified as a Pseudomonas protegens based on the 16S rRNA gene analysis. In addition, the amplified product of the ACC deaminase producing gene (acdS) provided a molecular indication of the strain's endurance towards stress. The towel paper assay confirmed that the inoculation of Pseudomonas protegens CP17 significantly increased wheat seedlings' germination, growth, and biomass under different NaCl concentrations (0 mM, 100 mM, and 150 mM). Afterward, In situ pot experiment study was designed with the inoculation of Pseudomonas protegens in wheat under saline and non-saline conditions. The harvested wheat plants showed an elevated pattern of zinc content in the grain (i.e. 24.33 and 29.33mg/kg), straw (i.e. 45.73 and 50.23mg/kg) and soil (i.e. 0.978 and 1.32mg/kg) under saline and non-saline conditions, respectively and shown significant improvement over control. The results of the pot study revealed the amelioration in plant health, yield and uptake of available zinc from rhizospheric soil to straw and grain, along with enhanced dehydrogenase and phosphatase activities of rhizospheric soil under saline and non-saline conditions. This study supports the integrative role of Pseudomonas protegens CP17 as a bioinoculant for the efficacious strategy of zinc biofortification and growth promotion in wheat and ensures sustainable nutrient quality production under salinity stress.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Ajay Veer Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India.
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Amir Khan
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Ramesh Chandra
- Department of Soil Science, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| |
Collapse
|
13
|
Upadhayay VK, Singh AV, Khan A, Singh J, Pareek N, Raghav A. FE-SEM/EDX Based Zinc Mobilization Analysis of Burkholderia cepacia and Pantoea rodasii and Their Functional Annotation in Crop Productivity, Soil Quality, and Zinc Biofortification of Paddy. Front Microbiol 2022; 13:852192. [PMID: 35602065 PMCID: PMC9120762 DOI: 10.3389/fmicb.2022.852192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The experimental study was contrived to characterize two zinc-solubilizing bacteria (ZSB), namely BMRR126 and BMAR64, and their role in zinc (Zn) biofortification of rice. These bacteria solubilized Zn profoundly, determined qualitatively by halo-zone formation on a solid medium and quantitatively in a liquid broth by AAS and SEM-EDX. The lowering of pH and contact angle assessment of the liquid broth unveiled the establishment of the acidic conditions in a medium suitable for Zn solubilization. The characterization of both isolates on the basis of 16S rRNA gene analysis was identified as Burkholderia cepacia and Pantoea rodasii, respectively. These strains were also found to have some plant probiotic traits namely phosphate solubilization, production of siderophore, indole acetic acid (IAA), exopolysaccharide (EPS), and ammonia. The field experiments were performed at two diverse locations and under all treatments; the simultaneous use of BMRR126 and BMAR64 with zinc oxide (ZnO) resulted in the highest growth and productivity of the paddy crop. The utmost Zn achievement in the grain was estimated in a treatment (T9) (25.07 mg/kg) containing a consortium of BMRR126 and BMAR64 along with ZnO for the Terai region. The treatment containing single ZSB bioinoculant BMRR126 (T7) showed an elevated Zn amount in the rice grain (33.25 mg/kg) for the Katchar region. The soil parameters (pH, EC, organic carbon, NPK, available Zn, and dehydrogenase activity) were also positively influenced under all bacterial treatments compared to the uninoculated control. Our study clearly accentuates the need for Zn solubilizing bacteria (ZSB) to provide the benefits of Zn-biofortification in different regions.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Ajay Veer Singh
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
- *Correspondence: Ajay Veer Singh,
| | - Amir Khan
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Jyoti Singh
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, India
| |
Collapse
|
14
|
|
15
|
Li S, Dong L, Lian WH, Lin ZL, Lu CY, Xu L, Li L, Hozzein WN, Li WJ. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148235. [PMID: 34380255 DOI: 10.1016/j.scitotenv.2021.148235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Streptomycetes have been, for over 70 years, one of the most abundant sources for the discovery of new antibiotics and clinic drugs. However, in recent decades, it has been more and more difficult to obtain new phylotypes of the genus Streptomyces by using conventional samples and culture strategies. In this study, we combined culture-dependent and culture-independent approaches to better explore the Streptomyces communities in desert sandy soils. Moreover, two different culture strategies termed Conventional Culture Procedure (CCP) and Streptomycetes Culture Procedure (SCP) were employed to evaluate the isolation efficiency of Streptomyces spp. with different intensities of selectivity. The 16S rRNA gene amplicon analysis revealed a very low abundance (0.04-0.37%, average 0.22%) of Streptomyces in all the desert samples, conversely the percentage of Streptomyces spp. obtained by the culture-dependent method was very high (5.20-39.57%, average 27.76%), especially in the rhizospheric sand soils (38.40-39.57%, average 38.99%). Meanwhile, a total of 1589 pure cultures were isolated successfully, dominated by Streptomyces (29.52%), Microvirga (8.06%) and Bacillus (7.68%). In addition, 400 potential new species were obtained, 48 of which belonged to the genus Streptomyces. More importantly, our study demonstrated the SCP strategy which had highly selectivity could greatly expand the number and phylotypes of Streptomyces spp. by almost 4-fold than CCP strategy. These results provide insights on the diversity investigation of desert Streptomyces, and it could be reference for researchers to bring more novel actinobacteria strains from the environment into culture.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh 999088, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
16
|
Verma PK, Verma S, Chakrabarty D, Pandey N. Biotechnological Approaches to Enhance Zinc Uptake and Utilization Efficiency in Cereal Crops. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2021; 21:2412-2424. [DOI: 10.1007/s42729-021-00532-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 06/27/2023]
|
17
|
Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00806-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Méndez Mayboca FR, Plascencia-Jatomea M, Sánchez CLIZETH, Wong-Corral FJAVIER, Borboa Flores J, Guerra K, Murillo Amador B, Rueda Puente EO. HALOBACTERIAS PROMOTORAS DE CRECIMIENTO VEGETAL ASOCIADAS A Lippia palmeri (VERBENACEAE) EN LA ZONA ÁRIDA DEL NOROESTE DE MÉXICO. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.83820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La producción de orégano es de relevancia económica en el noroeste de México. Sin embargo, los productores para obtener altos rendimientos recurren a la fertilización química, pero su mal uso, agudiza la salinidad. Lippia palmeri crece de manera natural en suelos áridos, pobres en materia orgánica, alta salinidad y temperatura en el noroeste de México. En el contexto de una agricultura sustentable, los microorganismos mantienen la fertilidad del suelo e incrementan la productividad de la planta. Actualmente existe interés en proponer biofertilizantes en la agricultura de alta intrusión salina y elevadas temperaturas para el cultivo de orégano. Las Halobacterias Promotoras del Crecimiento de Plantas (HPCP), se han destacado por beneficiar a los cultivos nutrimentalmente y mitigar el efecto de la salinidad. El objetivo del presente trabajo consistió en identificar termo- y halo-tolerantes HPCP asociadas a la rizosfera de L. palmeri; se evaluó la actividad solubilizadora de fosfatos, producción de ácidos orgánicos, sideróforos y fijación de nitrógeno; se identificaron mediante el gen ARNr-16S aquellas con alta actividad evaluándose su efecto en la germinación y longitud radicular. Quince diferentes colonias sobresalieron al crecer en NaCl (0.25, 0.50 y 0.75 M) a 35 y 45 °C, destacando tres bacterias identificadas: Bacillus amyloliquefaciens, Bacillus subtilis y Bacillus licheniformis. El efecto en la longitud radicular es significativo por la aplicación de B. amyloliquefaciens. Estudios relacionados con la promoción vegetal deben ser considerados en posteriores estudios. Este es el primer informe de B. amyloliquefaciens como una bacteria fijadora de nitrógeno asociada a L. palmeri.
Collapse
|
19
|
Chen Y, Li S, Liu N, He H, Cao X, Lv C, Zhang K, Dai J. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23036-23047. [PMID: 33438124 DOI: 10.1007/s11356-020-12203-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/22/2020] [Indexed: 05/03/2023]
Abstract
Irrational application of chemical fertilizers causes soil nutrient imbalance, reduced microbial diversity, soil diseases, and other soil quality problems and is one of the main sources of non-point pollution. The application of microbial inoculant (MI) can improve the soil environment and crop growth to reduce problems caused by irrational application of chemical fertilizers. Field experiments were carried out in high-phosphorus soils to study the effects of the addition of various MIs combined with chemical fertilizers on soil properties, wheat growth, and soil microbial composition and structure. The MIs consisted of one fungal agent: Trichoderma compound agent (TC) and five bacterial agents, namely soil remediation agent (SR), anti-repeat microbial agent (AM), microbial agent (MA), plant growth-promoting rhizobacteria (PG), and biological fertilizer agent (BF). The wheat yield increased by 15.2-33.4% with the addition of MIs, and PG with Bacillus subtilis as the core microorganism had the most obvious effect on increasing the production (p < 0.05). For the entire growth period of wheat, all MIs applied significantly increased the available nitrogen (AN) (p < 0.05) but did not significantly affect the available phosphorus (AP). BF has the best effect on increasing AN in the soil. The 16S rRNA sequencing results indicated that the dominant phyla of soil bacteria were Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The addition of MIs increased the relative abundance of Acidobacteria, Actinobacteria, Chloroflexi and decreased Proteobacteria and Bacteroidetes. The diversity of soil bacterial community (Chao1) was significantly higher in the soil added with TC than that added with BF (p < 0.05). All bacterial agents significantly enriched various genera (p < 0.05), while the fungal agent (TC) did not enrich the genera significantly. pH and AN, but not TP, were closely related to the dominant bacteria phylum in high-P soil. The application of MIs improved AN in soil, increased the wheat yield, and changed the relative abundance of the soil dominant phylum, and these changes were closely related to the type of MIs. The results provide a scientific basis for rational use of different types of MIs in high-P soil.
Collapse
Affiliation(s)
- Yihui Chen
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Shuangshuang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Na Liu
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Huan He
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Xiaoyu Cao
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China.
| |
Collapse
|
20
|
Bhakat K, Chakraborty A, Islam E. Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil. World J Microbiol Biotechnol 2021; 37:39. [PMID: 33544268 DOI: 10.1007/s11274-021-03003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/12/2021] [Indexed: 11/29/2022]
Abstract
In this study, experiments were conducted to isolate, characterize, and evaluate rice rhizosphere bacteria for their arsenic (As) tolerance ability and zinc (Zn) solubilization potential in culture media and soil. Among 20 bacterial isolates recovered, six were found to solubilize inorganic Zn salt(s) efficiently under in vitro culture conditions. 16S rRNA gene sequence-based phylogenetic analysis indicated the affiliation of efficient Zn solubilizing bacteria (ZSB) to Burkholderia vietnamiensis and Burkholderia seminalis. Zinc solubilizing efficiency (ZSE) of the bacteria varied with the concentrations and types of Zn salts used in the experiments. Increasing trend in ZSE of the bacteria was noticed when the percentage of ZnO increased from 0.1 to 0.5 but the same decreased at 1.0%. Increased Zn solubilization was noticed when bacteria were incubated with lower concentration of Zn3(PO4)2 and ZnCO3. In general, Zn solubilization increased with increasing incubation time in lower volume medium, while some isolates failed to solubilize one or more tested Zn salts. However, enriched concentrated cells of the ZSB in glucose amended medium with 0.5% ZnO showed an increasing trend of Zn solubilization with time and were able to solubilize more than 300 mg/L Zn. This increased rate of Zn release by the ZSB was attributed to marked decline in pH that might be due to the enhanced gluconic acid production from glucose. As evident from the decreased ZSE of the bacteria in the presence of As(V) in particular, it seems arsenic imparts a negative effect on Zn solubilization. The ZSB were also able to increase the rate of Zn release in soil. A microcosm-based soil incubation study amending the enriched bacteria and 0.5% ZnO in soil showed an elevated level of both water-soluble and available Zn compared to un-inoculated control. During Zn solubilization in microcosms, viable cells in terms of colony-forming unit (CFU) declined by the same order of magnitude both in the presence and absence of ZnO that might be due to the nutrients limiting condition aroused during the incubation period rather than Zn toxicity. The bacteria in this study also exhibited plant growth promoting traits, such as growth in nitrogen-free medium, production of indole acetic acid (IAA), and solubilization of potassium and phosphate. Our findings suggested that Burkholderia spp. could be the potential candidates for enhancing Zn dissolution in the soil that might reduce the rate of inorganic Zn fertilization in agricultural soil.
Collapse
Affiliation(s)
- Kiron Bhakat
- Department of Microbiology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arindam Chakraborty
- Department of Microbiology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
21
|
Exemplifying endophytes of banana (Musa paradisiaca) for their potential role in growth stimulation and management of Fusarium oxysporum f. sp cubense causing panama wilt. Folia Microbiol (Praha) 2021; 66:317-330. [PMID: 33471292 DOI: 10.1007/s12223-021-00853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
In the present study, potentiality of endophytic microorganisms such as Rigidiporus vinctus AAU EF, Trichoderma reesei UH EF, and Sphingobacterium tabacisoli UH EB in the management of panama wilt and growth promotion of banana was assessed through artificial inoculation. During the study, a total of 220 bacterial and 110 fungal endophytes were isolated from root, pseudostem, and leaf samples of banana, and they were evaluated against Fusarium oxysporum f. sp cubense causing panama wilt. Out of total 330 bacterial and fungal endophytes, only five endophytes exhibited antagonism against Fusarium oxysporum f. sp cubense, out of which only three isolates, namely Trichoderma reesei UH EF, Rigidiporus vinctus AAU EF, and Sphingobacterium tabacisoli UH EB, produced indole acetic acid, siderophore, and hydrogen cyanide, except one bacterial strain Sphingobacterium tabacisoli UH EB which does not produce hydrogen cyanide. Furthermore, these three endophytes were identified through cultural and morphological characteristics as well as by the sequencing internal transcribed spacer (ITS) and 16S rRNA gene sequences analysis for bacteria, respectively. The response of host plant to endophyte inoculation was assessed by measuring the change in four growth parameters; plant height, pseudo stem girth (diameter), number of roots, and total number of leaves. The application of endophytes, irrespective of isolate and treatment type promoted the overall growth of the plant growth when compared with diseased plants with significant higher values recorded for all parameters assessed. The endophytes reported as growth promoters were found to have significant inhibition effect on Foc which can evidenced with lowest AUDPC values and epidemic rate at 99.09 units2 and 0.02 unit/day, respectively.
Collapse
|
22
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
23
|
Taye ZM, Helgason BL, Bell JK, Norris CE, Vail S, Robinson SJ, Parkin IAP, Arcand M, Mamet S, Links MG, Dowhy T, Siciliano S, Lamb EG. Core and Differentially Abundant Bacterial Taxa in the Rhizosphere of Field Grown Brassica napus Genotypes: Implications for Canola Breeding. Front Microbiol 2020; 10:3007. [PMID: 32010086 PMCID: PMC6974584 DOI: 10.3389/fmicb.2019.03007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
Modifying the rhizosphere microbiome through targeted plant breeding is key to harnessing positive plant-microbial interrelationships in cropping agroecosystems. Here, we examine the composition of rhizosphere bacterial communities of diverse Brassica napus genotypes to identify: (1) taxa that preferentially associate with genotypes, (2) core bacterial microbiota associated with B. napus, (3) heritable alpha diversity measures at flowering and whole growing season, and (4) correlation between microbial and plant genetic distance among canola genotypes at different growth stages. Our aim is to identify and describe signature microbiota with potential positive benefits that could be integrated in B. napus breeding and management strategies. Rhizosphere soils of 16 diverse genotypes sampled weekly over a 10-week period at single location as well as at three time points at two additional locations were analyzed using 16S rRNA gene amplicon sequencing. The B. napus rhizosphere microbiome was characterized by diverse bacterial communities with 32 named bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, and Acidobacteria. Overall microbial and plant genetic distances were highly correlated (R = 0.65). Alpha diversity heritability estimates were between 0.16 and 0.41 when evaluated across growth stage and between 0.24 and 0.59 at flowering. Compared with a reference B. napus genotype, a total of 81 genera were significantly more abundant and 71 were significantly less abundant in at least one B. napus genotype out of the total 558 bacterial genera. Most differentially abundant genera were Proteobacteria and Actinobacteria followed by Bacteroidetes and Firmicutes. Here, we also show that B. napus genotypes select an overall core bacterial microbiome with growth-stage-related patterns as to how taxa joined the core membership. In addition, we report that sets of B. napus core taxa were consistent across our three sites and 2 years. Both differential abundance and core analysis implicate numerous bacteria that have been reported to have beneficial effects on plant growth including disease suppression, antifungal properties, and plant growth promotion. Using a multi-site year, temporally intensive field sampling approach, we showed that small plant genetic differences cause predictable changes in canola microbiome and are potential target for direct and indirect selection within breeding programs.
Collapse
Affiliation(s)
- Zelalem M. Taye
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bobbi L. Helgason
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer K. Bell
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charlotte E. Norris
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sally Vail
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Stephen J. Robinson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Isobel A. P. Parkin
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Melissa Arcand
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Mamet
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew G. Links
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tanner Dowhy
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Eric G. Lamb
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Zinc biosorption, biochemical and molecular characterization of plant growth-promoting zinc-tolerant bacteria. 3 Biotech 2019; 9:421. [PMID: 31696026 DOI: 10.1007/s13205-019-1959-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zinc plays a key role in plant nutrition at low levels; however, at higher concentrations Zn ions can be highly phytotoxic and plant growth-promoting rhizobacteria can be used to reduce such metal toxicity. In the present investigation we had reported the zinc biosorption and molecular characterization of plant growth-promoting zinc-tolerant bacteria. Initially, thirty bacteria having zinc solubilizing ability were screened for MIC against zinc ion and displayed high value of MIC ranging from 2.5 to 62.5 mM. Biochemically, all the 30 isolates showed significant difference in the 6 biochemical tests performed. The molecular diversity studies based on the repetitive DNA PCR viz, REP, ERIC and BOX elements showed significant genetic diversity among these 30 zinc-tolerant bacteria. These ZTB strains also showed multiple PGP activities and all ZTB strains were found positive for production of IAA, GA3 and ammonia, whereas 24 were found positive for ACC deaminase activity, 8 showed siderophore production and 9 ZTB isolates were positive for HCN production. Out of 30 isolates, 24 showed phosphorus solubilization activity, 30 showed potash solubilization, 15 showed silica solubilization and 27 showed phytase production activities. All the 30 ZTB stains showed zinc solubilization up to 0.25% insoluble ZnO in the medium, whereas at 2% ZnO in MSM only 12 isolates showed solubilization which were further selected for zinc biosorption and pot studies. The heavy metal removal studies revealed that ZTB stains were able to remove zinc ions effectively from the medium efficiently and the highest zinc biosorption (< 90%) was recorded with the bacterial strain Z-15. Further, the inoculation of ZTB strains under zinc stress conditions (pot containing 1000 mg/kg Zn) resulted in significant increase of shoot length, root length and total chlorophyll content in maize seedlings compared with the uninoculated control. The partial 16S rDNA sequence of the potential ZTB isolates viz. Z-15, Z-24, Z-28 and Z-29 revealed their identity as Serratia sp. The ability of these zinc-tolerant bacteria to tolerate the toxic level of zinc may serve as suitable candidates for developing microbial formulations for the growth of crop plants in Zn-contaminated areas.
Collapse
|
25
|
Mayer E, Dörr de Quadros P, Fulthorpe R. Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants. Appl Environ Microbiol 2019; 85:e00383-19. [PMID: 31350315 PMCID: PMC6752021 DOI: 10.1128/aem.00383-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.
Collapse
Affiliation(s)
- Evan Mayer
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01448-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|